27.01.2014 Views

Stein's method, Malliavin calculus and infinite-dimensional Gaussian

Stein's method, Malliavin calculus and infinite-dimensional Gaussian

Stein's method, Malliavin calculus and infinite-dimensional Gaussian

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

References<br />

[1] P. Baldi, G. Kerkyacharian, D. Marinucci <strong>and</strong> D. Picard (2006). High-frequency asymptotics<br />

for wavelet-based tests for <strong>Gaussian</strong>ity <strong>and</strong> isotropy on the torus. To appear in: J. Mult.<br />

Anal.<br />

[2] A. D. Barbour (1990). Stein’s <strong>method</strong> for di¤usion approximations. Probab. Theory Related<br />

Fields 84(3), 297–322.<br />

[3] O. Barndor¤-Nielsen, J. Corcuera, M. Podolskij <strong>and</strong> J. Woerner (2008). Bipower variations<br />

for <strong>Gaussian</strong> processes with stationary increments. Preprint.<br />

[4] J.C. Breton <strong>and</strong> I. Nourdin (2008). Error bounds on the non-normal approximation of<br />

Hermite power variations of fractional Brownian motion. Electron. Comm. Probab. 13, 482-<br />

493 (Electronic)<br />

[5] P. Breuer <strong>and</strong> P. Major (1983). Central limit theorems for non-linear functionals of <strong>Gaussian</strong><br />

…elds. J. Multivariate Anal. 13(3), 425-441.<br />

[6] T. Cacoullos, V. Papahanasiou <strong>and</strong> S.A. Utev (1994). Variational inequalities with examples<br />

<strong>and</strong> an application to the central limit theorem. Ann. Probab. 22(3), 1607–1618.<br />

[7] D. Chambers et E. Slud (1989). Central limit theorems for nonlinear functionals of stationary<br />

<strong>Gaussian</strong> processes. Probab. Theory Related Fields 80, 323-349.<br />

[8] S. Chatterjee (2007). A new <strong>method</strong> of normal approximation. Ann. Probab. 36(4), 1584-<br />

1610<br />

[9] S. Chatterjee (2009). Fluctuation of eigenvalues <strong>and</strong> second order Poincaré inequalities.<br />

Probab. Theory Related Fields 143, 1–40.<br />

[10] S. Chatterjee <strong>and</strong> E. Meckes (2008). Multivariate normal approximation using exchangeable<br />

pairs. ALEA 4, 257-283 (Electronic)<br />

[11] L.H.Y. Chen (1985). Poincaré-type inequalities via stochastic integrals. Z. Wahrsch. verw.<br />

Gebiete 69, 251–277.<br />

[12] L.H.Y. Chen (1987). Characterization of probability distributions by Poincaré-type inequalities.<br />

Ann. Inst. H. Poincaré Probab. Statist. 23(1), 91–110.<br />

[13] L.H.Y. Chen (1988). The central limit theorem <strong>and</strong> Poincaré-type inequalities. Ann. Probab.<br />

16(1), 300–304.<br />

[14] L. Chen <strong>and</strong> Q.-M. Shao (2005). Stein’s <strong>method</strong> for normal approximation. In: An introduction<br />

to Stein’s <strong>method</strong>, 1–59. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 4,<br />

Singapore Univ. Press, Singapore, 2005.<br />

[15] H. Cherno¤ (1981). A note on an inequality involving the normal distribution. Ann. Probab.<br />

9(3), 533–535.<br />

[16] J.M. Corcuera, D. Nualart <strong>and</strong> J.H.C. Woerner (2006). Power variation of some integral<br />

long memory process. Bernoulli 12(4), 713-735.<br />

61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!