27.01.2014 Views

Barycentric Coordinates for Arbitrary Polygons in the Plane

Barycentric Coordinates for Arbitrary Polygons in the Plane

Barycentric Coordinates for Arbitrary Polygons in the Plane

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

22 K. Hormann<br />

twice) and also <strong>in</strong> <strong>the</strong> case that Ψ is a set of (possibly nested) polygons, we conclude<br />

that<br />

n∑<br />

κ i > 0.<br />

i=1<br />

But <strong>the</strong> sum of <strong>the</strong> κ i can be rearranged, by a change of summation <strong>in</strong>dex, to be half <strong>the</strong><br />

sum of <strong>the</strong> w i (v) <strong>in</strong> <strong>the</strong> <strong>for</strong>m of Equation (11) and <strong>the</strong>re<strong>for</strong>e W (v) is positive <strong>for</strong> any v<br />

<strong>in</strong>side Ψ. Likewise one can show that W (v) is negative over <strong>the</strong> exterior of Ψ.<br />

C<br />

Lagrange and L<strong>in</strong>earity Property<br />

From <strong>the</strong> representation of <strong>the</strong> homogeneous coord<strong>in</strong>ates <strong>in</strong> Equation (11) it follows<br />

that w i (v) is C ∞ everywhere except at <strong>the</strong> vertices v i−1 , v i , v i+1 and <strong>the</strong> edges e i−1 ,<br />

e i . As a consequence, <strong>the</strong> normalized coord<strong>in</strong>ates λ i (v) are C ∞ at all v /∈ Ψ. To study<br />

<strong>the</strong> behaviour of λ i on one of <strong>the</strong> edges e j of Ψ, we consider <strong>the</strong> slightly modified<br />

homogeneous coord<strong>in</strong>ates<br />

ŵ i (v) = w i (v)A j (v) = r j(v)r j+1 (v)<br />

(z i−1 (v) + z i (v)),<br />

r i (v)<br />

where z i (v) = tan(α i (v)/2) s<strong>in</strong>(α j (v))/2. Then we have <strong>for</strong> any v ∈ e j that z i (v) = 0<br />

<strong>for</strong> i ≠ j and z j (v) = 1 and <strong>the</strong>re<strong>for</strong>e ŵ j (v) = r j+1 (v), ŵ j+1 (v) = r j (v), and<br />

ŵ i (v) = 0 <strong>for</strong> i ≠ j, j + 1. It follows that λ i (v) = 0 <strong>for</strong> all i ≠ j, j + 1 and<br />

λ j (v) =<br />

r j+1 (v)<br />

r j (v) + r j+1 (v) , λ r j (v)<br />

j+1(v) =<br />

r j (v) + r j+1 (v) ,<br />

which are <strong>the</strong> standard barycentric coord<strong>in</strong>ates on an edge, converg<strong>in</strong>g to δ ij as v approaches<br />

v j . Fur<strong>the</strong>r it is clear that <strong>the</strong> functions ŵ i are C ∞ over e j and so are <strong>the</strong> λ i .<br />

INSTITUT FÜR INFORMATIK

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!