21.02.2014 Views

88 ON q-LAPLACE TRANSFORMS OF A GENERAL CLASS OF q ...

88 ON q-LAPLACE TRANSFORMS OF A GENERAL CLASS OF q ...

88 ON q-LAPLACE TRANSFORMS OF A GENERAL CLASS OF q ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

84 R. K. YADAV, S. D. PUROHIT AND P. NIRWAN<br />

polynomials, the q-Bessel polynomials of second type, the q-Laguerre polynomials,<br />

the q-Jacobi polynomials, the q-Konhauser polynomials and several others. We<br />

mention the definitions of some of these polynomials as under<br />

The q-Rogers- Szegö polynomials<br />

n∑<br />

[ ] n<br />

h n (x ; q) = x k . (1.23)<br />

k<br />

q<br />

The discrete q-Hermite polynomials<br />

H n (x ; q) =<br />

[n/2]<br />

∑<br />

k=0<br />

k=0<br />

The Generalized Stieltjes-Weigert polynomials<br />

∑<br />

n [ ]<br />

S n (x, p; q) = (−1) n q −n(2n+1)/2 n<br />

(p; q) n<br />

j<br />

The q-Bessel polynomials of second type<br />

(q; q) n (−1) k q k(k−1) x n−2k<br />

(q 2 ; q 2 ) k (q; q) n−2k<br />

· (1.24)<br />

j=0<br />

y n (x; α/q 2 ) = q n(n−1)/2 2Φ 1<br />

[ q −n , q α+n−1 ;<br />

−q ;<br />

q<br />

· qj2 (−q 1/2 x) j<br />

(p; q) j<br />

· (1.25)<br />

]<br />

q , −2xq . (1.26)<br />

We shall also use the following definitions of various q-Polynomials and basic hypergeometric<br />

functions cf. Gasper and Rahman [7], Jain and Srivastava [9], Koelink<br />

and Swarttouw [10], in the sequel.<br />

The Affine q-Krowtchauck polynomials<br />

K Aff<br />

n (x; a, N; q) = 3 Φ 2<br />

[ q −n , x, 0;<br />

aq , q −N ;<br />

The Haln-Exton q-Bessel function J v (x ; q)<br />

J v (x ; q) = xv (q v+1 [<br />

; q) ∞ 0;<br />

· 1Φ 1<br />

(q : q) ∞ q v+1 ;<br />

The big q-Jacobi polynomials<br />

P n<br />

(α,β) (x; γ, δ; q) = (αq, −δαq/γ; q) n(γ/αq) n<br />

·<br />

(q, −q; q) n<br />

[<br />

q<br />

3Φ −n , α β q n+1 , α xq/γ ;<br />

2<br />

αq, −δα q/γ ;<br />

The q-Lommel polynomials<br />

m∑<br />

]<br />

q, q . (1.27)<br />

q , qx 2 ]<br />

. (1.28)<br />

]<br />

q, q . (1.29)<br />

x 2n−m (q n+1 ; q) ∞ (q v [<br />

; q) ∞ q<br />

R m,v (x ; q) =<br />

(q; q)<br />

n=0 ∞ (q v+m−n · −n , q v+m−n ;<br />

2Φ 1<br />

; q) ∞ q v q , q<br />

].<br />

n+1<br />

;<br />

(1.30)<br />

The q-Bessel function of second type is given by<br />

J −v (x; q) = eivπ (q v+1 ; q) ∞ x −v q v(v−1)/2 ∞∑ (−1) k q k(k+1)/2 x 2k q −vk<br />

·<br />

(q; q) ∞ (q −v+1 . (1.31)<br />

, q) k (q, q) k<br />

k=0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!