21.02.2014 Views

88 ON q-LAPLACE TRANSFORMS OF A GENERAL CLASS OF q ...

88 ON q-LAPLACE TRANSFORMS OF A GENERAL CLASS OF q ...

88 ON q-LAPLACE TRANSFORMS OF A GENERAL CLASS OF q ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

86 R. K. YADAV, S. D. PUROHIT AND P. NIRWAN<br />

(ii) Again if we take N = 2, k = −2, λ = n + µ and S j,q = (q; q 2 ) j (−1) j q j(j−1) in<br />

the theorem (2.1), we obtained the q-Laplace transform of the discrete q-Hermite<br />

polynomial H n (x ; q) as:<br />

{<br />

qL s x µ+n H n (x ; q) } = (q; q) n/2<br />

∑<br />

n+µ<br />

s n+µ+1<br />

j=0<br />

(q −n ; q) 2j (−s 2 ) j q j(j−2µ−1)<br />

(q 2 ; q 2 ) j (q −µ ; q) 2j<br />

· (3.2)<br />

(iii) On setting N = 1, k = 1 and S j,q = (−1)n+j q −n(2n+1)<br />

2 +j 2 + j 2 (p; q) n<br />

in the<br />

(p; q) j<br />

main result (2.1), we obtain the q-Laplace transform of the Generalized Stieltjes-<br />

Weigert polynomial S n (x; p; q) as:<br />

{<br />

qL s x λ S n (x; p, q) } [<br />

= (−1)n q −n(2n+1)<br />

2 (p; q) n (q; q) λ q<br />

s λ+1 · −n , q 1+λ ;<br />

2Φ 2<br />

p , 0 ;<br />

q, − q s<br />

]<br />

n+ 3 2<br />

.<br />

(3.3)<br />

(iv) If we take N = 1, k = 1 and S j,q = (qα+n−1 ; q) j (2q) j q n(n−1)<br />

2 −nj+ j(j−1)<br />

2<br />

in the<br />

(−q; q) j<br />

Theorem 2.1, we obtain the q-Laplace transform of the q-Bessel function of second<br />

type y n (x; α/q 2 ) as<br />

qL s<br />

{<br />

x λ y n (x; α/q 2 ) } = q n(n−1)<br />

2 (q; q) λ<br />

s λ+1<br />

n ∑<br />

j=0<br />

(q −n ; q) j (q α+n−1 ; q) j (−2q/s) j (q λ+1 ; q) j<br />

(q; q) j (−q; q) j<br />

.<br />

(3.4)<br />

Similarly, one can deduce a number of known results due to Yadav and Purohit [15],<br />

involving the q-Laplace images of a variety of q-polynomials as the applications of<br />

the Theorem 2.1.<br />

4. q-Laplace Transforms of Basic Hypergeometric<br />

Functions and q-Polynomials<br />

In the following table, we enumerate the q-Laplace transforms of certain basic<br />

hypergeometric functions and q-polynomials. Some of the results deduced, are<br />

expressible in terms of the q-analogue of the Kampé-de Fériet functions.<br />

Eq.No. f(t) ϕ(s) ≡ q L s {f(t)} = 1<br />

(1−q)<br />

4.1 x λ ; λ > 0<br />

4.2 x ν e q (ax k ); k ∈<br />

4.3 e q (x) r Φ s<br />

[<br />

a1 , · · · , a r;<br />

b 1 , · · · , b s ;<br />

4.4 sin q(x) rΦ s<br />

[<br />

a1 , · · · , a r ;<br />

b 1 , · · · , b s ;<br />

4.5 cos q (x) r Φ s<br />

[<br />

a1 , · · · , a r ;<br />

b 1 , · · · , b s;<br />

]<br />

q, tx<br />

(q; q) ν<br />

s 1+ν<br />

∞ ∑<br />

] 1<br />

2is<br />

Φ 1 : 0 ; r<br />

q, tx<br />

]<br />

q, tx<br />

s∫<br />

−1<br />

0<br />

(q; q) λ<br />

s 1+λ<br />

E q (qst)f(t) d(t; q); Re(s) > 0<br />

(<br />

a/s k) r (q<br />

1+ν , q<br />

1+ν+1 , · · · , q<br />

1+ν+k−1 ; q<br />

k )r<br />

r=0<br />

(q; q) r<br />

1<br />

s<br />

Φ 1 : 0 ; r<br />

( )<br />

q : −; a1 , · · · , a r;<br />

q ;<br />

0 : 0 ; s − : − ; b 1 , · · · , b s ;<br />

1 s , s<br />

t ( )<br />

q : −; a1 , · · · , a r;<br />

q ;<br />

0 : 0 ; s − : − ; b 1 , · · · , b s ; s i , s<br />

t<br />

−<br />

2is 1 Φ 1 : 0 ; r<br />

( )<br />

q : −; a1 , · · · , a r ;<br />

q ; −i<br />

0 : 0 ; s − : − ; b 1 , · · · , b s ; s , s<br />

t<br />

1<br />

2s Φ 1 : 0 ; r<br />

(<br />

q : −; a1 , · · · , a r ;<br />

q ; i 0 : 0 ; s − : − ; b 1 , · · · , b s ; s , t )<br />

s<br />

1<br />

2s Φ 1 : 0 ; r<br />

(<br />

q : −; a1 , · · · , a r;<br />

q ; −i<br />

0 : 0 ; s − : − ; b 1 , · · · , b s; s , t )<br />

s

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!