21.02.2014 Views

88 ON q-LAPLACE TRANSFORMS OF A GENERAL CLASS OF q ...

88 ON q-LAPLACE TRANSFORMS OF A GENERAL CLASS OF q ...

88 ON q-LAPLACE TRANSFORMS OF A GENERAL CLASS OF q ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ON</strong> q-<strong>LAPLACE</strong> <strong>TRANSFORMS</strong> <strong>OF</strong> A <strong>GENERAL</strong> <strong>CLASS</strong>... 87<br />

1<br />

[ ]<br />

a1 , · · · , a<br />

4.6 sinh r ;<br />

q(x) rΦ s q, tx<br />

2s Φ 1 : 0 ; r<br />

(<br />

q : −; a1 , · · · , a r ;<br />

q ; 1 0 : 0 ; s − : − ; b 1 , · · · , b s ; s , t )<br />

s<br />

b 1 , · · · , b s ;<br />

−<br />

2s 1 Φ 1 : 0 ; r<br />

(<br />

q : −; a1 , · · · , a r;<br />

q ; −1<br />

0 : 0 ; s − : − ; b 1 , · · · , b s; s , t )<br />

s<br />

[ ] 1<br />

a1 , · · · , a<br />

4.7 cosh r ;<br />

2s<br />

Φ 1 : 0 ; r<br />

( )<br />

q : −; a1 , · · · , a r;<br />

q ;<br />

0 : 0 ; s − : − ; b<br />

q(x) rΦ s q, tx<br />

1 , · · · , b s ;<br />

1 s , s<br />

t<br />

b 1 , · · · , b s ;<br />

+ 1 2s Φ 1 : 0 ; r<br />

(<br />

q : −; a1 , · · · , a r ;<br />

q ; −1<br />

0 : 0 ; s − : − ; b 1 , · · · , b s ; s , t )<br />

[ ] s<br />

(q; q) ν (q; q)ν −;<br />

4.8 (x + a) ν<br />

s 1+ν or<br />

(−as; q) ∞ s 1+ν 0 Φ 0 q, −as<br />

−;<br />

[<br />

]<br />

4.9 x λ (q; q) ν+λ<br />

q −ν ;<br />

(x + a) ν ; λ > 0<br />

s 1+ν+λ 1 Φ 1<br />

q −ν−λ q , as/q<br />

;<br />

[<br />

4.10<br />

K Aff<br />

n (x; a, N; q)<br />

n > N<br />

4.11 J v (x ; q)<br />

4.12 J −v (x; q)<br />

4.13 P (α,β)<br />

n (x; γ, δ; q)<br />

4.14 R m,v (x ; q)<br />

(q; q) ∞<br />

s<br />

[<br />

1<br />

s 1+ν · 4Φ 4<br />

Φ 1 : 0 ; 2<br />

0 : 1 ; 2<br />

e ivπ [<br />

(q; q) −ν<br />

(q; q) ν s 1−ν · 4Φ 4<br />

1/s : − ; q −n , 0 ;<br />

− : 1/s ; aq, q −N ;<br />

q v+1<br />

2 , −q v+1<br />

2 , q v+2<br />

2 , −q v+2<br />

2 ;<br />

q v+1 , 0, 0, 0;<br />

q 1−ν<br />

2 , −q 1−ν<br />

2 , q 2−ν<br />

2 , −q 2−ν<br />

2 ;<br />

q 1−ν , 0 , 0 , 0;<br />

(αq, −δα q/γ, q) n (γ/α q) n (q; q) ∞<br />

(q, ⎡−q; q) n s<br />

qα<br />

1+ρ<br />

Φ 1 : 0; 2<br />

⎢ sγ : − ; q−n , αβ q n+1 ;<br />

0 : 1; 2 ⎣<br />

− : qα<br />

sγ<br />

−δαq<br />

; αq, ;<br />

γ<br />

(q; q) −m (q ν [<br />

; q) m q<br />

−n , q<br />

ν+m−n ;<br />

s 1−m 2Φ 1<br />

[<br />

q ν ;<br />

q 1−m<br />

2 , −q 1−m<br />

2 , q 2−m<br />

2 , −q 2−m<br />

2 ;<br />

4Φ 4<br />

q 1−ν−m , 0 , 0 , 0 ;<br />

]<br />

q, q, q<br />

q ,<br />

q, q 1+ρ , q⎥<br />

⎦<br />

q, q n+1 ]<br />

]<br />

q<br />

s 2<br />

]<br />

q, q−ν+1<br />

s 2<br />

⎤<br />

]<br />

q, q1−ν−m<br />

s 2<br />

To prove the result (4.2), we take f(x) = x ν e q (ax k ) in the equation (1.9) and<br />

make use the definition (1.4), which yields<br />

{<br />

qL s x ν e q (ax k ) } = (q; q) ∑ ∞<br />

∞ q j(1+ν) ∞<br />

{<br />

∑ a(s −1 q j ) k} r<br />

s 1+ν<br />

.<br />

(q; q) j (q, q) r<br />

j=0<br />

On interchanging the order of summations and then summing the resulting 0 Φ 0 (.)<br />

series with the help of equation (2.2), the right hand side of the above expression<br />

(q; q) ∞ (<br />

∞<br />

∑<br />

) a/s<br />

k r<br />

(q 1+ν , q 1+ν+1 , · · · , q 1+ν+k−1 ; q k ) r<br />

s 1+ν<br />

(4.15)<br />

(q; q)<br />

r=0<br />

r<br />

[ ]<br />

a1 , · · · , a<br />

For the proof of the result (4.3), we take f(x) = e q (x) r Φ r ;<br />

s q, tx in<br />

b 1 , · · · , b s ;<br />

the equation (1.9) and make use of definition (1.4) and (1.16), this yields;<br />

{ [ ]}<br />

a1 , · · · , a<br />

qL s e q (x) r Φ r ;<br />

s q, tx =<br />

b 1 , · · · , b s ;<br />

(q; q) ∞<br />

∞∑ q j ∑ ∞<br />

(s −1 q j ) r ∑ ∞<br />

(a 1 , · · · , a r ; q) k (ts −1 q j ) k<br />

s (q; q) j (q; q) r (q, b 1 , · · · , b s ; q) k<br />

j=0<br />

r=0<br />

On interchanging the order of summations and then summing the inner 0 Φ 0 (.)<br />

series with the help of equation (2.2), the right hand side of the above expression<br />

reduces<br />

(q; q) ∞<br />

s<br />

∞∑<br />

∞∑<br />

k=0 r=0<br />

k=0<br />

r=0<br />

(a 1 , · · · , a r ; q) k (t/s) k (1/s) r<br />

(q 1+r+k ; q) ∞ (q; q) r (q, b 1 , · · · , b s ; q) k<br />

(4.16)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!