10.03.2014 Views

CATALOGUE 2010 - ITME

CATALOGUE 2010 - ITME

CATALOGUE 2010 - ITME

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INSTYTUT TECHNOLOGII MATERIAŁÓW ELEKTRONICZNYCH<br />

INSTITUTE OF ELECTRONIC MATERIALS TECHNOLOGY<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

<strong>CATALOGUE</strong> <strong>2010</strong><br />

Shortform<br />

<br />

We offer cooperation and we can provide<br />

custom-prepared materials.<br />

For more information about the <strong>ITME</strong>,<br />

please contact us at:<br />

Tel. + 48 22 835 30 41<br />

Fax : + 48 22 864 54 96<br />

E-mail: itme@itme.edu.pl<br />

Homepage: www.itme.edu.pl<br />

* WARSZAWA


CONTENTS<br />

INTRODUCTION<br />

I. SEMICONDUCTOR MATERIALS<br />

- Silicon Wafers – as Cut, Lapped, Etched, Polished<br />

- High-Resistivity, Thick Silicon Epitaxial Layers for Photodetectores and Detectors of Nuclear<br />

Radiation<br />

- Silicon Epitaxial Wafers<br />

- A III B V Compounds for Microwave and Optoelectronic Devices<br />

- Multicomponent Epitaxial Submicron and Nanometer Scale MOVPE Heterostructures of III-V<br />

Semiconductors<br />

- SiC Wafers Polityp 4H and 6H<br />

II. MATERIALS FOR OPTO-PIEZO- AND SUPERCONDUCTOR ELECTRONICS<br />

- Materials for Solid State Laser<br />

- Substrates for HTSc Layers<br />

- SAW Quartz Substrates<br />

- Synthetic Quartz Crystals<br />

- Substrates materials for GaN<br />

III. CERAMIC AND CERAMIC TO METAL COMPONENTS<br />

Ceramics and Seals Technology:<br />

- Pure Alumina Ceramics<br />

- Yttria Ceramics, Zirconia Ceramics<br />

- Ceramic-Metal Feed-Through, Composite Ceramics Al 2 O 3 – ZrO 2<br />

- Alumina Cooper Direct Bonding Substrates<br />

- Ceramics Blade Adjustment Tools<br />

- Transparent Ceramics<br />

IV. GLASS PRODUCTS<br />

- Glass Laboratory<br />

- Glass Fiber Optic Products for Sensor Systems<br />

- Glass Filters for Dentist Polymerization Lamps<br />

- Fiber Optic Light Guide Rods<br />

- Light Guide Applicators for Surgical Photon Coagulator<br />

- Active Fluoride Glasses<br />

- High Non-Linear Refractive Index Glass<br />

- Multicapillary Glass Plates<br />

- All-solid PCF<br />

V. THICK-FILM MATERIALS<br />

- Thick-Film Technology<br />

- Thick-Film Compositions<br />

VI. ELECTRONIC DEVICES, COMPONENTS AND MASKS<br />

- Ultraviolet Detectors Built on GaN/AlGaN<br />

- X-rays and α - particles detectors on GaAs<br />

- Laser Diode 810 nm 1.5W<br />

- Laser Diode 810 nm 3W<br />

- InGaAs/InP RCE Photodiodes for 1.5 μm; 1.94μm; 2.06 μm band<br />

- Mask shop at <strong>ITME</strong><br />

- Diffractive Optical Elements (DOEs)<br />

- Double-Sided Diffractive Optical Elements<br />

- Diffractive Beam Concentrator for Laser Diode Bars<br />

- Kinoform Sampling Filter<br />

- SAW Filters and Components for Sensors<br />

- Fixed-Point Sealed Cells of metals as temperature standards<br />

VII. SERVICE<br />

- Laboratory of Characterisation of High Purity Materials


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: (+48 22) 835 30 41, tel.:(+48 22) 834 90 03, Fax: (+48 22) 864 54 96<br />

http://www.itme.edu.pl e-mail: itme@itme.edu.pl<br />

INTRODUCTION<br />

The Institute of Electronic Materials Technology (<strong>ITME</strong>) develops highly advanced<br />

technologies for the production of materials with perfect crystallography and specific<br />

properties to suit the requirements of modern day and future electronics. <strong>ITME</strong> has been the<br />

leading centre for electronic materials for 30 years, and now is subordinate to the Ministry of<br />

Economy<br />

<strong>ITME</strong> produces crystals of semi-conductors, and optical, piezoelectric and superconductive<br />

materials. It also manufactures super-pure metals, active glass and optical fibres, new<br />

ceramic and composite materials, and other materials which have unique properties and wide<br />

range of applications.<br />

The research and development work is integrated with experimental production of electronic<br />

products and components. These top-quality and international-standard products are widely<br />

used both at home and worldwide.<br />

<strong>ITME</strong> cooperates with numerous domestic and foreign research centres, participates in<br />

national and international research programs and provides access to its modern laboratories<br />

for schools and universities for educational purposes.<br />

<strong>ITME</strong> continues the idea and work of the outstanding Polish scientist, Professor Jan<br />

Czochralski who originated the method of material mono-crystallization which is now widely<br />

used throughout the world.<br />

SINGLE CRYSTALS GROWN in <strong>ITME</strong> by CZOCHRALSKI METHOD:<br />

Si<br />

A III B V :<br />

(GaAs, InP, GaP, InAs, GaP)<br />

Oxides: YAG, YAP, LiNbO 3 , LiTaO 3 , Li 2 BB4O 7 ,<br />

Sapphire (Al 2 O 3 ) , NdGaO 3 , LSAT, ABCO 4<br />

(A=Ca, Sr; B=Nd, La; C=Al, Ga),<br />

Ca 4 GdO(BO 3 ) 3<br />

Materials for Electronics − single crystals of perfect crystallographic structures<br />

and specific properties required in advanced electronics<br />

For:<br />

‣ semiconductor devices,<br />

‣ opto-, piezo-, microelectronics,<br />

‣ high temperature superconductor (HTSc) layers


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

SILICON WAFERS - AS CUT, LAPPED, ETCHED, POLISHED<br />

Silicon wafers are cut from silicon single crystal using internal diameter diamond discs. Silicon wafers are lapped of<br />

both sides with abrasive mixture. After cutting or lapping the wafers are washed in ultrasonic washers or undergo<br />

active washing. The wafers’ edges are mechanically rounded. Silicon wafers are etched in acid mixture or alkaline.<br />

Wafers surface is alkaline or acid etched according to the customer’s request. Active sides of the wafers (for single<br />

side polishes wafers) or both sides (for two sides polished wafers) are chemo-mechanically polished. The below<br />

mentioned parameters are dealing with our standard production. On the customer’s request we are ready to<br />

discuss orders for wafers with some other parameters, for instance:<br />

Low radial resistivity variation (RRV) combined with the uniform distribution of dopants in the<br />

crystal (this parameter depends on shape of phase boundary and the phenomena in the<br />

boundary layer during monocrystallization process).<br />

Perfect crystallographic structure of material (free from swirls, with dislocations density lower<br />

than recommended by SEMI standard — 500/cm 2 ).<br />

Low oxygen concentration (O 2


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

HIGH - RESISTIVITY, THICK SILICON EPITAXIAL<br />

LAYERS for PHOTODETECTORS AND DETECTORS<br />

OF NUCLEAR RADIATION<br />

Detectors built on an epitaxial layer of the high-resistivity silicon which is deposited<br />

on the silicon substrate of low resistivity are characterized by:<br />

‣ well determined thickness of depletion region;<br />

‣ low voltage of full depletion;<br />

‣ low leakage current;<br />

‣ long minority carrier life-time.<br />

Areas of application:<br />

experimental physics, dosimetry of high energy particles;<br />

multiplicity filters of charged-particle;<br />

p-i-n photodetectors for ultraviolet light, visible light, and<br />

infrared radiation;<br />

avalanche photodiodes.<br />

Technical parameters of silicon epitaxial wafers:<br />

Substrates: * Diameter: 76.2 ± 0.2 mm; 100 ± 0.5 mm;<br />

* Orientation: with 2 ÷ 4 ± 0.5 deg off towards ;<br />

* Conductivity type: p and n.<br />

Epitaxial layers:<br />

* single layer;<br />

* multilayer epitaxial structures;<br />

* epilayer with the designed profile of resistivity;<br />

EPITAXIAL LAYER THICKNESS:<br />

‣ from 1 μm to 200 μm;<br />

‣ radial thickness variation < 6 %;<br />

EPITAXIAL LAYER RESISTIVITY:<br />

‣<br />

from 0,1Ωcm to 5000 Ωcm;<br />

The following methods are used for the characterization of layers:<br />

‣ thickness measurement by infra-red spectrometry (FTIR) ;<br />

♦ (map of the thickness distribution on the wafer on request)<br />

‣ resistivity measurement by the spreading resistance technique<br />

and the C-V measurements;<br />

♦ characterization of deep traps by C-DLTS on request.<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext. 188; Fax: (+48 22) 834 90 03<br />

Fax: (+48 22 ) 864 54 96<br />

Contact person: Jerzy Sarnecki M.Sc.<br />

e-mail:sarnecki@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

SILICON EPITAXIAL WAFERS<br />

Standard epitaxial layers<br />

Silicon epitaxial layers are deposited on silicon monocrystaline substrates by means of CVD<br />

process. SiCl 4 or SiHCl 3 are used as a silicon source and phosphorus (for n- type) or boron<br />

(for p-type) as dopants.<br />

Technical data:<br />

Substrates specification:<br />

Cz - grown monocrystaline Si;<br />

orientation: or off 2.5 ÷ 4 deg. towards .<br />

standard dimensions:<br />

substrate resistivity:<br />

Diameter [mm] Thickness [µm ]<br />

76 380<br />

100 525<br />

125 625<br />

Conductivity<br />

type<br />

Epitaxial layers parameters:<br />

Dopant<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext. 188; Fax: (+48 22) 834 90 03<br />

Fax: (+48 22 ) 864 54 96<br />

Contact person: Jerzy Sarnecki M.Sc.<br />

e-mail:sarnecki@itme.edu.pl<br />

Resistivity range<br />

[Ωcm]<br />

n Sb 0.008 ÷0.02<br />

n As 0.001 ÷ 0.005<br />

p B 0.005 ÷ 0.02<br />

Thickness range<br />

[µm]<br />

Tolerance<br />

%<br />

2 – 10 ± 4<br />

10 – 50 ± 5<br />

50 – 100 ± 8<br />

Resistivity range<br />

[Ωcm]<br />

Tolerance<br />

%<br />

0.5 – 5 ± 10<br />

5 – 50 ± 15<br />

50 – 200 ± 20<br />

Besides standard, single layers, multilayers epitaxial structures are available.


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

SILICON EPITAXIAL WAFERS<br />

FOR NUCLEAR RADIATION DETECTORS<br />

AND PHOTODETECTORS<br />

Hihg resistivity epitaxial layer deposited on a low resistivity substrate<br />

Epitaxial layer thicknes: 20 to 200 µm<br />

Epitaxial layer resistivity: 50 to 5000 Ωcm<br />

RESISTIVITY PROFILES<br />

N-type epitaxial layers<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext. 188; Fax: (+48 22) 834 90 03<br />

Fax: (+48 22 ) 864 54 96<br />

Contact person: Jerzy Sarnecki M.Sc.<br />

e-mail:sarnecki@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: (+48 22) 835 30 41, Tel.:(+48 22) 834 90 03, Fax: (+48 22) 864 54 96<br />

e-mail: itme@itme.edu.pl<br />

AIIIBV compounds for semiconductor devices<br />

A III B V compounds for semiconductor devices<br />

The Institute of Electronic Materials Technology has an experience for over 30 years<br />

in the technology of A III B V compounds. In this field we carry research and a small<br />

scale production.<br />

We have developed synthesis, monocrystalization, mechanical processing and<br />

characterization of: GaAs, InAs, GaP, InP, GaSb, InSb.<br />

OUR PRODUCT RANGE<br />

GaAs<br />

grown by Czochralski (LEC) method (low and high-pressure)<br />

diameter 2", 3" and 4", orientation [100] or [111]<br />

• n-type : Te, Sn or Si (n=10 17 ÷10 19 cm -3 )<br />

• p-type : Zn (n=10 17 ÷10 19 cm -3 )<br />

• SI : undoped (µ>6x10 3 cm 2 /Vs, ρ>10 7 Ωcm)<br />

• SI : Cr (ρ>10 7 Ωcm)<br />

• 3" GaAs wafers (semiconducting or SI) with EPD < 10 4 cm -2 are also available.<br />

InAs<br />

grown by Czochralski (LEC) method<br />

diameter 2" orientation [100] or [111]<br />

• n-type : undoped (n≤ 10 17 cm -3 ; µ>2x10 4 cm 2 /Vs)<br />

• n-type : S (n=1x10 17 ÷ 5x10 19 cm -3 ; µ>3x10 3 cm 2 /Vs)<br />

• p-type : Zn (p=1x10 17 ÷ 5x10 19 cm -3 ; µ>80cm 2 /Vs)<br />

For more information please contact:<br />

Tel.: (+48 22) 834 91 86; (+48 22) 835 30 41 ext. 170, 430<br />

Fax: (+48 22 ) 864 54 96;<br />

Contact person: Andrzej Hruban, Ph.D.<br />

e-mail: hruban_a@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: (+48 22) 835 30 41, Tel.:(+48 22) 834 90 03, Fax: (+48 22) 864 54 96<br />

e-mail: itme@itme.edu.pl<br />

AIIIBV compounds for semiconductor devices<br />

GaP<br />

grown by Czochralski (LEC) method<br />

diameter 2", 3" orientation [100] [111] or [110]<br />

• n-type : undoped (n≤ 3x10 16 cm -3 ; µ>140cm 2 /Vs)<br />

• n-type : S (n=2x10 17 ÷ 5x10 18 cm -3 , µ>90cm 2 /Vs)<br />

• p-type : Zn (p=5x10 17 ÷ 5x10 18 cm -3 )<br />

• p-type : Cd (p=2x10 16 ÷ 3x10 17 cm -3 )<br />

• SI : Cr (ρ>10 7 Ωcm)<br />

InP<br />

grown by Czochralski (LEC) method<br />

diameter 2" orientation [100] or [111]<br />

• n-type : undoped (n=5x10 17 ÷1x10 16 cm -3 )<br />

• n-type : S, Sn (n=2x10 17 ÷1x10 19 cm -3 )<br />

• p-type : Zn (p=5x10 17 ÷1x10 19 cm -3 )<br />

• SI : Fe (ρ>10 7 Ωcm, µ>2x10 3 cm 2 /Vs)<br />

GaSb<br />

grown by Czochralski method<br />

diameter 2" orientation [100] or [111]<br />

• p-type : undoped (p≤ 2x10 17 cm -3 ; µ>600cm 2 /Vs)<br />

• p-type : Si (p>3x10 17 ÷ 1x10 19 cm -3 , µ>250cm 2 /Vs)<br />

• n-type : Te (n=1x10 17 ÷ 1x10 18 cm -3 ; µ>2500cm 2 /Vs)<br />

We offer materials in the form of:<br />

• single crystal ingots with stable diameter 2" ÷ 4" and required orientation , or<br />

,<br />

• substrate wafers of single crystals, oriented, one- or double-side polished,<br />

• single crystal seeds and other pieces with orientation and shape upon request,<br />

• high purity (6N, 7N) polycrystalline materials,<br />

• high purity (6N) metals: In, Te, Zn, Cu, Al, Bi and Sb,<br />

• boron trioxide (B 2 O 3 ) for LEC method.<br />

Our high purity and high quality materials meet the world standards. Basing on our materials many<br />

electronic devices such as: IC, FETs, MESFETs, DEL, laser diodes and other optical elements<br />

(mirrors and lenses) are made.<br />

For more information please contact:<br />

Tel.: (+48 22) 834 91 86; (+48 22) 835 30 41 ext. 170, 430<br />

Fax: (+48 22 ) 864 54 96;<br />

Contact person: Andrzej Hruban, Ph.D.<br />

e-mail: hruban_a@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

MULTICOMPONENT EPITAXIAL SUBMICRON AND<br />

NANOMETER SCALE MOVPE HETEROSTRUKTURES<br />

OF III–V SEMICONDUCTORS<br />

The growth of various structures was developed applying binary, ternary and<br />

quaternary compounds related to GaAs, InP and GaN: GaAs, Al x Ga 1-x As, InP, In x Ga 1-x As,<br />

In x Ga 1-x As y P 1-y , In x Ga 1-x P, In x (Ga y Al 1-y ) z P, GaN/Al 2 O 3 , AlGaN/Al 2 O 3 Very high parameters of<br />

simple monolayers and sophisticated structures like low background, high mobility, ideal<br />

uniformity and repeatability, atomic scale growth rate, etc. have been achieved. Deposited<br />

layers as Super-Lattice structures, Quantum Wells (QWs), Strained Layers (SL) were applied<br />

in electron device fabrication, i.e. 2-DEG transistors, lasers and others. Epitaxial technology<br />

is also scaled up towards replacing traditional As and P gaseous sources with less toxic<br />

organics.<br />

Areas of application:<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

experimental physics;<br />

microelectronic devices (2-DEG transistors:<br />

GaAs/AlGaAs and InP/InGaAs/InAlAs);<br />

optoelectronic devices (laser, photodiodes, etc.).<br />

Epitaxial layers:<br />

single layer;<br />

multilayers epitaxial structures;<br />

epilayer with the designed profile of chemical composition;<br />

multi-quantum wells and superlattice structures;<br />

strained layers.<br />

EPITAXIAL LAYER THICKNESS:<br />

* from 1ML to 15μm;<br />

* radial thickness variation on the wafer: in the range of 1ML.<br />

The following methods are used for the characterization of layers:<br />

‣ X-ray;<br />

‣ Photoluminescence;<br />

‣ Hall method;<br />

‣ C-V profile;<br />

‣ Atomic Force Microscopy. (AFM)<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext. 136,165<br />

Fax: (+48 22 ) 864 54 96; Fax.: (+48 22) 834 90 03<br />

Contact person: Włodzimierz Strupiński, Ph.D.<br />

e-mail: strupi_w@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

SiC Wafers Polityp 4H<br />

4H-SiC<br />

4H-SiC 2” wafer 1” wafer 15x15 mm,10x10 mm, 5x5 mm<br />

Diameter (50.8 ± 0.25) mm (25.4 ± 0.25) mm 15x15, 10x10, 5x5 ± 0.25 mm<br />

Thickness (µm) 500±25 µm 500±25 µm 500-2000±25 µm<br />

Carrier Type n-type n-type n-type<br />

Dopant Nitrogen or Boron Nitrogen or Boron Nitrogen or Boron<br />

Resistivity (RT) 0.01 - 0.1 Ωcm 0.01 - 0.1 Ωcm 0.01- 0.1 Ωcm<br />

Micropipe Density ≤ 100 cm -2 ≤ 50 cm -2 ≤ 30 cm -2<br />

Dislocations Density ≤ 8x10 4 cm -2 ≤ 5x10 4 cm -2 ≤ 5x10 4 cm -2<br />

Edge exclusion 3 mm ----------- ----------<br />

Usable area ≥ 80 % ≥ 90 % ≥ 95 %<br />

Wafer Orientation<br />

On axis ± 0.5° ± 0.5° ± 0.5°<br />

Off axis 2°, 4° or 8°± 0.5° 2°, 4° or 8°± 0.5° 2°, 4° or 8°± 0.5°<br />

Orientation flat orientation parallel {1 –1 0 0} ±5° parallel {1 –1 0 0} ±5° ----------<br />

Orientation flat length (15.88±1.65) mm (7.5 ±1.0) mm ----------<br />

Identification flat<br />

Si-face: 90° cw. from Si-face: 90° cw. from ----------<br />

orientation<br />

orientation flat ±5° orientation flat ±5°<br />

Identification flat length (8.0 ±1.65) mm (4.0 ±0.75) mm ----------<br />

Surface treatment<br />

Single or double face Single or double face Single or double face polished<br />

polished<br />

polished<br />

Surface Roughness < 0.3 nm ( Epi-ready);<br />


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

SiC Wafers Polityp 6H<br />

6H-SiC<br />

6H-SiC 2” wafer 1” wafer 15x15 mm,10x10 mm, 5x5 mm<br />

Diameter (50.8 ± 0.25) mm (25.4 ± 0.25) mm 15x15, 10x10, 5x5 ± 0.25 mm<br />

Thickness 500±25 µm 500±25 µm 500-2000±25 µm<br />

Carrier Type n-type or p-type n-type or p-type n-type or p-type<br />

Dopant Nitrogen or Boron Nitrogen or Boron Nitrogen or Boron<br />

Resistivity (RT) 0.01 - 0.1 Ωcm 0.01 - 0.1 Ωcm 0.01 - 0.1 Ωm<br />

Micropipe Density ≤ 80 cm -2 ≤ 50 cm -2 ≤ 30 cm -2<br />

Dislocations Density ≤ 8x10 4 cm -2 ≤ 5x10 4 cm -2 ≤ 5x10 4 cm -2<br />

Edge exclusion 3 mm ----------- ----------<br />

Usable area ≥ 90 % ≥ 90 % ≥ 95 %<br />

Wafer Orientation<br />

On axis ± 0.5° ± 0.5° ± 0.5°<br />

Off axis 2°, 4° or 8°± 0.5° 2°, 4° or 8°± 0.5° 2°, 4° or 8°± 0.5°<br />

Orientation flat orientation parallel {1 –1 0 0} ±5° parallel {1 –1 0 0} ±5° ----------<br />

Orientation flat length (15.88±1.65) mm (7.5 ±1.0) mm ----------<br />

Identification flat<br />

Si-face: 90° cw. from Si-face: 90° cw. from ----------<br />

orientation<br />

orientation flat ±5° orientation flat ±5°<br />

Identification flat length (8.0 ±1.65) mm (4.0 ±0.75) mm ----------<br />

Surface treatment<br />

Single or double face Single or double face Single or double face polished<br />

polished<br />

polished<br />

Surface Roughness < 0.3 nm ( Epi-ready);<br />


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

MATERIALS FOR SOLID STATE LASER<br />

Yttrium aluminium garnet (Y 3 Al 5 O 12 ) single crystals doped with rare earths elements and/or<br />

chromium, neodymim doped yttrium orthovanadate (YVO 4 ) and calcium gadolinium oxyborate<br />

(Ca 4 GdO(BO 3 ) 3 ) for different laser applications and second harmonic generation (SHG).<br />

Crystal<br />

Lasing<br />

wavelength<br />

YVO 4 : Nd YAG: Co +2<br />

Ho, Tm, Cr:<br />

Y 3 Al 5 O 12<br />

(*) Er: Y 3 Al 5 O 12 Cr: Y 3 Al 5 O 12 Nd(1-2 at%): YVO 4 Ca 4 GdO(BO 3 ) 3<br />

2,13 μm 2,94 μm (**)<br />

1,064 μm 1,342<br />

μm<br />

Active ion Ho 0,36 at.% Er 3+ Cr 4+<br />

10 17 ÷10 18 /cm 3 Nd 3+<br />

Crystallographic<br />

[100]<br />

[111] [111] [111]<br />

orientation<br />

[001]<br />

SHG<br />

0,532 μm<br />

[010]<br />

Crystal structure Cuibc garnet Cuibc garnet Cuibc garnet Tetragonal Monoclinic<br />

Refractive index 1,80 1,80<br />

(λ=1,06)<br />

1,815<br />

(λ=1,06)<br />

n o =1,9573<br />

n e =2,1652<br />

Hardness (Mohs) 8,5 8,5 8,5 ~5 ~6,5<br />

Max. dimensions<br />

Diameter 20mm<br />

Length 80mm<br />

Diameter 20mm<br />

Length 80mm<br />

Diameter 20mm<br />

Length 80mm<br />

5x5x1÷10 mm<br />

Diameter 20mm<br />

Length 80mm<br />

(*) Er (1,5 at.%): YAG for 1,5μm are also grown.<br />

(**) For high power solid state passive Q-switch<br />

For more information please contact:<br />

Tel.: (+48 22) 834 99 49 or (+48 22) 835 30 41 ext. 464;<br />

Fax: (+48 22) 864 54 96, Tel.: (+48 22) 834 90 03<br />

Contact person: Tadeusz Łukasiewicz, Prof. Dr Sc.<br />

e-mail : lukasi_t@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

SUBSTRATES FOR HTSc LAYERS<br />

Single crystals of SrLaAlO 4 , SrLaGaO 4 , CaNdAlO 4 and NdGaO 3 are<br />

the attractive compounds used as substrates for the high temperature<br />

superconductor thin films. High quality YBaCuO, BiSrCaCuO,<br />

Bi(Pb)CaCuO and TlBaCaCuO thin films have been successfully grown on<br />

these substrates by different techniques.<br />

NEODYMIUM<br />

GALLATE<br />

STRONTIUM<br />

LANTHANUM<br />

ALUMINATE<br />

STRONTIUM<br />

LANTHANUM<br />

GALLATE<br />

CALCIUM<br />

NEODYMIUM<br />

ALUMINATE<br />

NdGaO 3<br />

SrLaAlO 4<br />

SrLaGaO 4<br />

CaNdAlO 4<br />

Crystal growth<br />

method<br />

Czochralski Czochralski Czochralski Czochralski<br />

Crystal structure orthorhombic tetragonal tetragonal tetragonal<br />

Lattice constant<br />

a = 0.5426 nm<br />

a = 0.3754 nm<br />

a = 0.3843 nm<br />

a = 0.369 nm<br />

b = 0.5496 nm<br />

c = 1.263 nm<br />

c = 1.268 nm<br />

c = 2.215 nm<br />

c = 0.7707 nm<br />

Max. wafer<br />

diameter<br />

2 inch < 1 inch < 1 inch < 1 inch<br />

Orientation [100]; [110]; [001] [100]; [110]; [001] [100]; [110]; [001] [100]; [110]; [001]<br />

Standard sizes max. Φ2 inch 10 mm x 10 mm<br />

15 mm x 15 mm<br />

10 mm x 10 mm<br />

15 mm x 15 mm<br />

10 mm x 10 mm<br />

15 mm x 15 mm<br />

Standard thickness 0,5 mm ÷ 1 mm 0,5 mm ÷ 1 mm 0,5 mm ÷ 1 mm 0,5 mm ÷1 mm<br />

Surface quality<br />

one- or both side<br />

epipolished<br />

one- or both side<br />

epipolished<br />

one- or both side<br />

epipolished<br />

one- or both side<br />

epipolished<br />

Density 7,56 g/cm 3 5,924 g/cm 3 6,389 g/cm 3 5,527 g/cm 3<br />

Melting point 1750 o C 1650 o C 1520 o C 1860 o C<br />

For more information please contact:<br />

Tel.: (+48 22) 834 99 49 or (+48 22) 835 30 41 ext. 464;<br />

Fax: (+48 22) 864 54 96,<br />

Contact person: Tadeusz Łukasiewicz, Prof. Dr Sc.<br />

e-mail : lukasi_t@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

SAW QUARTZ SUBSTRATES<br />

Since 1993 the Institute of Electronic Materials Technology has joined outstanding<br />

family of quartz substrate producers developing seed-free 3-inch diameter SAW wafers. This<br />

document describes technical specification of standard single side polished AT-ST oriented<br />

Φ3" and Φ100mm α-Si0 2 substrates which are used for SAW resonators up to 1GHz<br />

frequency. For special applications <strong>ITME</strong> manufactures 3" wafers having non-standard cuts<br />

like 55T oriented seed free wafers and double rotated SC wafers with seed. In order to get<br />

microcomposition homogeneity, our substrates are produced from special oriented crystals,<br />

i.e. crystals that have the same or very similar orientation as prepared wafers. This feature can<br />

be very beneficial when substrates are used for sensors, because they are relatively large<br />

elements. We are open for cooperation if different shapes, dimensions and finish of plates are<br />

requested.<br />

Type of parameter Units Tolerance Value Value<br />

MACROSCOPIC PARAMETERS<br />

Diameter<br />

Thickness<br />

thickness variation of plate<br />

bow<br />

disorientation of ST-AT cuts<br />

(-X) reference flat width<br />

(-X) reference flat disorientation<br />

SURFACE MICROSCOPIC PARAMETERS<br />

(active face)<br />

face roughness (R a )<br />

scratch length<br />

total length of scratches<br />

dig diameter<br />

number of digs<br />

depth or length of edge chip within 1.5 mm<br />

peripheral zone<br />

MATERIAL PROPERTIES<br />

bar type close to<br />

hardness<br />

twins<br />

α- coefficient<br />

inclusion diameter<br />

inclusion density<br />

mm<br />

mm<br />

mm<br />

mm<br />

arc min.<br />

mm<br />

arc min.<br />

nm<br />

mm<br />

mm<br />

mm<br />

count<br />

mm<br />

± 0.1<br />

± 0.05<br />

0.002<br />

0.002<br />

2<br />

± 2<br />

2<br />

nominal<br />

± 1<br />

± 1<br />

± 0.01<br />

1<br />

± 0.1<br />

α-units 0.01<br />

mm 0.01<br />

cm 3 average<br />

76.2 = 3"<br />

0.5<br />

< 0.020<br />

< 0.040<br />

< 20<br />

< 25<br />

< 15<br />

< 5<br />

< 5<br />

< 10<br />

< 0.2<br />


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

SYNTHETIC QUARTZ CRYSTALS<br />

Institute of Electronic Materials Technology has the pleasure to offer Synthetic Quartz<br />

Single Crystals manufactured by hydrothermal crystallization method. This material is used<br />

for fabrication of piezoelectric units and optical elements. Quality according to IEC 758.<br />

1. All bars are RH, free of twins and cracks.<br />

2. Inclusion density.<br />

Inclusion size 10 ÷ 30 μm 30 ÷ 70 μm 70 ÷100 μm > 100 μm<br />

maximum number of inclusions allowed per cm 3<br />

Class Ia 3 2 1 1<br />

Class I 6 4 2 2<br />

3. Grades: Grade 4 Q min 1.2 x 10 6<br />

Grade 3 Q min 1.8 x 10 6<br />

Grade 2 Q min 2.4 x 10 6<br />

4. In current production we grow the following type of bars.<br />

Type<br />

Orientation<br />

Bar dimensions<br />

Seed dimensions<br />

Z X Y Z s X s<br />

BBo − 60 Y ± 30' 60÷70 110÷120 190÷230 2±0.5 75±0.5<br />

BBo − 90 Y ± 30' 95÷100 115÷125 200÷230 2±0.5 60±0.5<br />

Z o − 90 Y ± 30' 90÷105 133÷143 200÷230 2±0.5 80±0.5<br />

Z o − 35 Y ± 30' 32÷37 46÷51 200÷230 2±0.5 32±0.5<br />

R − 33/80 ST ± 30' R 29÷35 100÷105 Y' 125÷150 Z'2±0.5 80±0.5<br />

R − 33/80 ST ± 30' R 29÷35 120÷130 Y' 135÷150 Z'2±0.5 104±0.5<br />

5. Starting with above types, we also offer a large variety quartz elements (plates, wafers,<br />

prisms) which can be predimensioned suitable to your needs. They can have different<br />

oriented faces, which can be lapped and polished.<br />

For more information please contact:<br />

Tel.: (+48 22) 834 99 49; (+48 22) 835 30 41 ext. 480<br />

Fax: (+48 22) 864 54 96,<br />

Contact person: Władysław Hofman, M.Sc.


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

SUBSTRATE MATERIALS for GaN<br />

MIXED PEROVSKITE − (La, Sr) (Al, Ta) O 3 − LSAT<br />

‣ Crystal system: regular (mixed<br />

perovskite)<br />

‣ Lattice constant: a = 7.735 Å<br />

‣ Lattice mismatch: Δ < 1%<br />

NEODYMIUM GALLATE − NdGaO 3<br />

‣ Crystal system:<br />

‣ Space group:<br />

orthorombic<br />

Pbnm<br />

‣ Lattice constants: a = 5.4276 Å<br />

b = 5.4979Å<br />

c = 7.7078Å<br />

‣ Lattice mismatch : Δ ~ 0,7% (101)<br />

SAPPHIRE − Al 2 O 3<br />

‣ Crystal system: trigonal<br />

‣ Space group:<br />

R 3cH<br />

‣ Lattice constants: a = b = 4.7589 Å<br />

c = 12.991 Å<br />

‣ Lattice mismatch: Δ ∼14%<br />

For more information please contact:<br />

Tel.: (+48 22) 834 99 49 or (+48 22) 835 30 41 ext. 464;<br />

Fax: (+48) 864 54 96<br />

Contact person: Tadeusz Łukasiewicz, Prof.<br />

e-mail: lukasi_t@itme.edu.pl


Institute of Electronic Materials Technology<br />

Wólczyńska 133 str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

CERAMICS AND SEALS TECHNOLOGY<br />

MATERIAL CHARACTERISTICS:<br />

PURE ALUMINA CERAMICS<br />

Pure alumina ceramics due to their high insulation resistance at elevated temperatures, high<br />

dielectric strength, low dielectric loss tangent at high frequencies is one of the best dielectric<br />

materials available for use in applications requiring electrical insulation.<br />

The mechanical strength of pure alumina ceramics may be extremely high if properly controlled by<br />

the size and homogenity of the constituent crystallites. It is recommended to use ceramics in<br />

compression because compressive strength is nearly 10 times that of the flexural strength. This<br />

may be achieved through design or by the establishment of operating conditions.<br />

Thermal and chemical propertes of pure alumina ceramics are always of great interest. Thermal<br />

conductivity is nearly equivalent to stainless steel. Pure alumina ceramics is inert to oxidation, not<br />

corroded by chemical agents and not subjected to radiation damage.<br />

APPLICATIONS:<br />

Pure alumina ceramics can be applied to:<br />

mechanical seal faces,<br />

nozzles for abrasives spraying corrosive reagents,<br />

high pressure liquid media,<br />

laboratory apparatus components,<br />

metallized parts of high vacuum and high-voltage feed-through,<br />

and many other applications.<br />

NOTE: Dimensions of ceramic parts on customer's request.<br />

PARAMETER<br />

Value<br />

Multiplicator<br />

Al-95 Al-97 Al-99<br />

Unit<br />

Al 2 O 3 content 95 97.5 99.5 %<br />

Apparent density 3.7 3.7 3.8 g/cm 3<br />

Modulus of rupture 240 280 240 MPa<br />

Dielectric strength 10 10 kV/mm<br />

Dielectric constant for "S"<br />

band and 293K 9 9.5 10 +0.4<br />

Volume resistivity at 293K 10 12 10 12 Ωcm<br />

Linear expansion coeff.<br />

<br />

<br />

293÷373K<br />

293÷873K<br />

5.6÷6.0<br />

6.5÷7.5<br />

5.0÷7.0<br />

7.0÷8.0<br />

5.0÷7.0<br />

7.0÷8.5<br />

10 -6<br />

10 -6 1/K<br />

1/K<br />

Thermal shock resistance 160 160 K<br />

For more information please contact: Fax: (+48 22) 864 54 96; Fax: (+48 22) 834 90 03<br />

Contact person:<br />

Zdzisław Librant, Ph.D. Tel.: (+48 22) 835 30 41 ext. 150, 479, 143, e-mail: libran_z@itme.edu.pl<br />

Henryk Tomaszewski, Ph.D. Tel.: (+48 22) 835 30 41 ext. 472, e-mail: tomasz_h@itme.edu.pl<br />

Wiesława Olesińska, Ph.D. Tel.: (+48 22) 835 30 41 ext. 479,


Institute of Electronic Materials Technology<br />

Wólczyńska 133 str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

CERAMICS AND SEALS TECHNOLOGY<br />

YTTRIA CERAMICS<br />

MATERIAL CHARACTERISTICS:<br />

Pure yttria melts at 2703 K; its theoretical density is 5.01 g/cm 3 . Yttria ceramics (purity of<br />

4N) having properties close to those of theoretical was developed in the Institute of Electronic<br />

Materials Technology .<br />

APPLICATION:<br />

High melting temperature and chemical resistance to agressive media give rise to<br />

application of yttria ceramics as structural materials at high temperatures and corrosive<br />

environment. Ceramic crucibles used in crystallization processes of superconducting<br />

compounds are good examples of such aplication. High purity yttria crucibles are also used in<br />

the process of YBaCuO monocrystallization as a source of yttria.<br />

Following shapes and dimensions of yttria crucibles are offered:<br />

1. cylindrical:<br />

a) internal diameter: 4.0 mm, hight: 3 mm,<br />

b) internal diameter: 8.0 mm, hight: 50 mm,<br />

c) internal diameter: 15.0 mm, hight: 70 mm,<br />

2. conical:<br />

a) internal diameter: 55/28 mm, hight: 50 mm.<br />

The walls of crucibles are approximately of 1 mm thick.<br />

Another dimensions and wall thicknesses are also available according to the order of<br />

customers.<br />

ZIRCONIA CERAMICS<br />

MATERIAL CHARACTERISTICS:<br />

Yttria stabilized zirconia subjected to special thermal treatment is transformed into<br />

tetragonal form stable at room temperature. This type of ceramics (called TZP -Tetragonal<br />

Zirconia Polycrystal) has superior resistance for fracture. Other mechanical properties such as<br />

strength, modulus of rupture, grinding resistance are also very good. TZP ceramics is<br />

antimagnetic, antistatic, chemically inert (with the exception of hydrofluoric acid).<br />

BASIC PROPERTIES:<br />

Zirconia contents: 94 %<br />

Density: 6,1 g/cm 3<br />

Bending strength:<br />

400 MPa<br />

Grindability:<br />

0,01 mm<br />

Fracture toghness (K Ic ): 10 MN m -3/2<br />

For more information please contact: Fax: (+48 22) 864 54 96; Fax: (+48 22) 834 90 03<br />

Contact person:<br />

Zdzisław Librant, Ph.D. Tel.: (+48 22) 835 30 41 ext. 150, 479, 143, e-mail: libran_z@itme.edu.pl<br />

Henryk Tomaszewski, Ph.D. Tel.: (+48 22) 835 30 41 ext. 472, e-mail: tomasz_h@itme.edu.pl<br />

Wiesława Olesińska, Ph.D. Tel.: (+48 22) 835 30 41 ext. 479,


Institute of Electronic Materials Technology<br />

Wólczyńska 133 str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

CERAMICS AND SEALS TECHNOLOGY<br />

MATERIAL CHARACTERISTICS:<br />

CERAMIC-METAL FEED-THROUGH<br />

Ceramic parts are made of pure alumina containing over 97% Al 2 O 3 . Metallic parts are made of FeNi42, kovar,<br />

copper and aluminium. AgCu28, AgCu21Ni alloys, silver and copper are applied as a braze depending on<br />

operating or assembling conditions. Permanent assembling with apparatus or devices is carried cut by soldering<br />

or welding. Metallic flanges may be also designed to enable the multiple assembling and disassembling with<br />

apparatus or devices.<br />

APPLICATIONS:<br />

Ceramic-metal feed-through are widely used in terminals of various type of vacuum or high-voltage equipment<br />

i.e. nuclear technique apparatus, ion accelerators, pressurised containers and others.<br />

TECHNICAL DATA:<br />

Insulation resistance:<br />

min. 10 10 Ω<br />

Working voltage:<br />

min. 3 kV<br />

Leakage (helium detection): 1,33x10 -8 Pam 3 s -1<br />

Thermal resistance (depending<br />

on the kind of braze and atmosphere): 770÷1120 K<br />

Continous working temperature: max. 570 K<br />

Thermal shock resistance:<br />

in gas environment<br />

208÷473 K<br />

in liquid environment<br />

273÷373 K<br />

Pressure strength:<br />

max. 10 MPa<br />

special performance<br />

max.100 MPa<br />

NOTE: Dimensions of metallic and ceramic parts on customer's request.<br />

MATERIAL CHARACTERISTICS:<br />

COMPOSITE CERAMICS Al 2 O 3 -ZrO 2<br />

(Abrasive resistance)<br />

Alumina - zirconia composite ceramics was developed for applications where very high strength and excellent<br />

abrasive resistance in required e.g. for cutting tools, nozzeles for abrasives spraying and others.<br />

APPLICATIONS:<br />

1. Ceramic cutting tools are produced in the form of multiblade inserts, 4.76 and 7.94 mm thick<br />

respectively. They are designed for the moderately accurate and finishing turning of both carbon<br />

steel and cast iron having a hardness value up to 260 HB. The production of ceramic multiblade<br />

inserts is performed with the cooperation of the Institute of Metal Cutting.<br />

2. Ceramic nozzles for abrasives spraying.<br />

TECHNICAL DATA:<br />

Alumina content: 90 %<br />

Bulk density: 4.1 g/cm 3<br />

Bending strength:<br />

400 MPa<br />

Young's modulus:<br />

380 GPa<br />

Fracture toughness K k : 8.0 MPa m 1/2<br />

NOTE: Dimensions, shapes and surface finishing subject to customer specification on request.<br />

For more information please contact: Fax: (+48 22) 864 54 96; Fax: (+48 22) 834 90 03<br />

Contact person:<br />

Zdzisław Librant, Ph.D. Tel.: (+48 22) 835 30 41 ext. 150, 479, 143, e-mail: libran_z@itme.edu.pl<br />

Henryk Tomaszewski, Ph.D. Tel.: (+48 22) 835 30 41 ext. 472, e-mail: tomasz_h@itme.edu.pl<br />

Wiesława Olesińska, Ph.D. Tel.: (+48 22) 835 30 41 ext. 479,


Institute of Electronic Materials Technology<br />

Wólczyńska 133 str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

CERAMICS AND SEALS TECHNOLOGY<br />

Alumina-copper direct bonding substrates<br />

CHARACTERISTICS:<br />

Alumina-copper direct bonding substrates are compound materials consisting of alumina<br />

plates and copper foil (0,1 ÷ 0,3).<br />

Alumina-copper direct bonding substrates - " CDBsubstrates " posses an extraordinary good<br />

thermal conductivity, which makes them suitable for use as a base for all power electronics<br />

applications.<br />

A high strength of copper-alumina joints is formed as a result of hyper-eutectic bond.<br />

Thermal expansion coefficient of CDB substrates is very similar to that of alumina since the<br />

alumina plates effectively control the expansion of Cu-Al 2 O 3 -Cu compounds. Thus direct<br />

bonding of silicon chips to CDB substrates is possible without the use of molybdenum disks.<br />

TECHNICAL DATE:<br />

Alumina 96,0 or 99,6% Al 2 O 3 ,<br />

Standard thickness of alumina plates 0,63 mm,<br />

Thickness of copper foil 0,1 ÷ 0,3 mm, oxygen free (OFHC - Cu),<br />

Copper tear strength - "peel test" 25 ÷ 100 MPa (dependant on application),<br />

Maximum working temperature 1.123K (850 o C),<br />

Thermal expansion coefficient of CDB substrates ca 7,3 x 10 -6 K -1 ,<br />

Thermal conductivity of alumina 24 ÷ 28 W x m -1 x K -1 ,<br />

Thermal conductivity of copper 385 W x m -1 x K -1 ,<br />

Dielectric constant of alumina 9 ÷ 10,<br />

Volume resistivity of CBD substrates at 473 K (200 o C) 10 12 Ohm x cm<br />

Absolutely non toxic.<br />

APPLICATIONS:<br />

<br />

<br />

<br />

<br />

<br />

<br />

Power Semiconductor Modules,<br />

High Power Circuits,<br />

Trasnsistors,<br />

Rectifier Bridges,<br />

Thyristors,<br />

Automobile Electronics.<br />

For more information please contact: Fax: (+48 22) 864 54 96; Fax: (+48 22) 834 90 03<br />

Contact person:<br />

Zdzisław Librant, Ph.D. Tel.: (+48 22) 835 30 41 ext. 150, 479, 143, e-mail: libran_z@itme.edu.pl<br />

Henryk Tomaszewski, Ph.D. Tel.: (+48 22) 835 30 41 ext. 472, e-mail: tomasz_h@itme.edu.pl<br />

Wiesława Olesińska, Ph.D. Tel.: (+48 22) 835 30 41 ext. 479,


Institute of Electronic Materials Technology<br />

Wólczyńska 133 str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

CERAMICS AND SEALS TECHNOLOGY<br />

CERAMICS BLADE ADJUSTMENT TOOLS<br />

A good example of application of TZP ceramics is antistatic tip of screwdriver as adjustment<br />

tool for electronics. Ceramic blade tools are intended for the precision adjustment of variable<br />

capacitors, inductors and resistors in applications where there are stringent requirements for<br />

minimum dielectric and eddy current loses resulting from contact with the non-static insulating<br />

tip.<br />

There are particulary suited for surface mount components. The ceramic tips are durable and<br />

display excelent resistance to: solder adhesion, mechanical wear, cracking, thermal cycling<br />

and acid corrosion (with the exception of hydrofluoric acid). The ceramic blade adjustment<br />

tools which are manufactured by the Institute of<br />

Electronic Materials Technology (<strong>ITME</strong>), are avaible<br />

in six versions:<br />

flat blade 0.9 x 0.4 mm,<br />

flat blade 1.3 x 0.4 mm,<br />

flat blade 1.8 x 0.4 mm,<br />

flat blade 2.6 x 0.4 mm,<br />

cross point,<br />

truncated cross point.<br />

COMPOSITE CERAMICS Al 2 O 3 -ZrO 2<br />

(Thermal shock resistance)<br />

MATERIAL CHARACTERISTICS:<br />

Alumina - zirconia composite ceramics was developed for applications where high resistance<br />

for cyclic thermal shock is required e.g. for assembling of glass and metal parts in technology<br />

of TV picture tubes (pinchucks).<br />

APPLICATIONS:<br />

Parts of apparatus or devices exposed to severe heat fluxes and rapid temperature changes.<br />

TECHNICAL DATE:<br />

Alumina content: 85 %<br />

Thermal shock resistancei.e. parametr R, ΔT: 1000 K<br />

Bulk density: 4.2 g/cm 3<br />

Bending strength:<br />

110 MPa<br />

Young's modulus:<br />

240 GPa<br />

Facture toghness K Ic : 2.9 MPa m 1/2<br />

NOTE: Dimensions, shapes and surface finishing subject to customer specification on request.<br />

For more information please contact: Fax: (+48 22) 864 54 96; Fax: (+48 22) 834 90 03<br />

Contact person:<br />

Zdzisław Librant, Ph.D. Tel.: (+48 22) 835 30 41 ext. 150, 479, 143, e-mail: libran_z@itme.edu.pl<br />

Henryk Tomaszewski, Ph.D. Tel.: (+48 22) 835 30 41 ext. 472, e-mail: tomasz_h@itme.edu.pl<br />

Wiesława Olesińska, Ph.D. Tel.: (+48 22) 835 30 41 ext. 479,


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel/Fax: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

TRANSPARENT CERAMICS<br />

Yttrium aluminate garnet (Y 3 Al 5 O 12 ,YAG) doped with Nd is one of the major laser materials. Single<br />

crystals of YAG are normally synthesized by the Czochralski method. However, this method is<br />

expensive, and it is difficult to produce large size YAG single crystals. In recent years, a lot of efforts<br />

have been made for synthesizing transparent polycrystalline YAG ceramics. Transparent polycrystalline<br />

YAG ceramics have the advantages of low price, ease of manufacture and mass-production, the<br />

possibility of making large sized crystals, and the possibility of the incorporation of Q-switching and<br />

Raman shifting within the source.<br />

The main advantage of polycrystalline yttria (Y 2 O 3 ) and magnesium aluminate spinel (MgAl 2 O 4 )<br />

ceramics compared with single crystals lies in the fabrication process, because densification of particulate<br />

solids by sintering takes place at temperatures well below melting temperature. However, in order to<br />

achieve a high degree of transparency full elimination of internal porosity is necessary.<br />

Contact person:<br />

Zdzisław Librant Ph.D.<br />

e-mail: zdzislaw.librant@itme.edu.pl


Institute of Electronic Materials Technology<br />

ul. Wólczyńska 133, 01-919 Warszawa<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

GLASS LABORATORY<br />

Research and development activity of our laboratory mainly includes the elaborating of synthesis and<br />

melting methods of different types glasses for optics, electronics and optoelectronics. We are specialized<br />

now in following areas of the fiber optic manufacturing:<br />

‣ designing and melting of the different kinds of optical and technical glasses,<br />

‣ casting of glass blocks and tubes (e.g. tubes made of EMA type „black glass”),<br />

‣ mechanical shaping of glass through cutting, surrounding, grinding and polishing methods,<br />

‣ thick wall glass tubes manufacturing and the next changing of their cross-section, shape, wall thickness,<br />

diameter etc.,<br />

‣ pulling of different kinds and shapes optical rods, multicore fiber optic rods, optical fibers,<br />

‣ manufacturing of fiber optic light and image guide structures (e.g. tips for dentist lamps, tapers, fiber<br />

optic face plates, specialized light guide bundles, including quartz fiber).<br />

The main types of glasses manufactured in our Laboratory are given in table below.<br />

On the further pages we present some of our glass products.<br />

No. Glass type Basic properties Forms of supply Possible applications<br />

1. Low dispersion,<br />

low- or non-silicate<br />

tantalum-niobiumlanthanum<br />

LaSF<br />

type<br />

2. Low dispersion<br />

zirconium-silicate<br />

3. Low refractive<br />

index alkaline<br />

boro-silicate BK<br />

type<br />

-Refractive index n d = 1,78÷1,85.<br />

-Thermal expansion coefficient α for the<br />

temperature range 20÷300 o C:<br />

65÷70 or 90÷95*10 -7 K -1 .<br />

-Transmission: no less than 80% (λ=0,45÷2,3μm.,<br />

d=10mm).<br />

-Short wavelength absorption edge (0%<br />

transmission): λ=300÷350nm.<br />

-Refractive index n d = 1,58÷1,62.<br />

-Average dispersion n F -n C = 0,01202±0,00005.<br />

-Thermal expansion coefficient for the range<br />

20÷300 o C: 86÷92*10 -7 K -1 .<br />

-Transmission: higher than 90% in VIS and NIR<br />

range for thickness 10mm.<br />

-Short wavelength absorption edge 280÷300nm.<br />

-High chemical resistance, in particular against<br />

alkaline.<br />

-Refractive index: n d =1,46÷1,53.<br />

-Average dispersion n F -n C = 0,0075÷0,0085.<br />

-Thermal expansion coefficient α= 64÷68*10 -7 K -1<br />

or 86÷90 *10 -7 K -1 for coefficient for the range<br />

20÷300 o C.<br />

-Transmission: no less than 92÷95% in VIS i NIR<br />

range up to 2,0μm for thickness 10mm.<br />

-Short wavelength absorption edge:<br />

λ=250÷280nm.<br />

-Blocks: max.<br />

500x200x60mm.<br />

-Rods: max. 50mm in<br />

diameter, max.500mm length.<br />

-Gobs (hot formed pieces):<br />

cross section round or<br />

angular.<br />

-Blocks: max.<br />

500x200x60mm.<br />

-Rods round and rectangular<br />

shape, grinded and polished:<br />

max. diameter 50mm, max.<br />

length 500mm.<br />

-Blocks: max.<br />

500x200x60mm.<br />

-Slabs and gobs.<br />

-High wallthickness tubes for<br />

further thermal treatment<br />

(shaping, profiling, resizing,<br />

callibration, wall thinning and<br />

s.o.):<br />

-inner diameter − 16÷20mm,<br />

-outer diameter − 30÷40mm,<br />

-length − 350÷400 mm.<br />

-Optical components in<br />

conventional optics (plates,<br />

prismes, lenses).<br />

-Rods of core glasses for fiber<br />

optics (fiber optic face plates<br />

for passive electronic image<br />

intensifiers; fiber optic tapers).<br />

-Conventional optics.<br />

-Rods for fiber optic technology<br />

(optical fibers, light and image<br />

guide multifiber integrated rods<br />

for dental lamps, laser devices,<br />

endoscopes).<br />

-Cladding glass for fiber optics<br />

manufacturing (fibers,<br />

multicore rods).<br />

-Conventional optics.<br />

4. High VIS<br />

absorption black<br />

EMA type<br />

-Very hig absorption (Extra Maral Absorption) in<br />

visible range of wavelength.<br />

-Thermal expansion coefficient<br />

α= 60÷65*10 -7 K -1 or 82÷88 *10 -7 K -1 for<br />

20÷300 o C.<br />

-Small slabs and gobs.<br />

-Tubes: inner diameter −<br />

16÷35mm,<br />

outer diameter − 20÷45mm,<br />

length − 350÷1000 mm.<br />

-VIS absorbing and NIR<br />

transmitting optical filters.<br />

-Absorbing glass in fiber optics<br />

manufacturing (face plates,<br />

tapers, endoscopes).


Institute of Electronic Materials Technology<br />

ul. Wólczyńska 133, 01-919 Warszawa<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

5. Solarization<br />

resistant borosilicate<br />

6. Soda-lime,<br />

alkaline-silikate,<br />

boro-silicate,<br />

borate colored by<br />

transition (heavy)<br />

metal and/or rare<br />

earths metal oxides<br />

7. Phosphate and<br />

lead-phosphate<br />

doped by transition<br />

metal and/or rare<br />

earths metal oxides<br />

-Refractive index: n d =1,5475±0,0005.<br />

-Abbe value ν d =51,3±0,3.<br />

-Average dispersion n F -n C = 0,0088÷0,0003.<br />

-Thermal expansion coefficient:<br />

α=74,6±0,3*10 -7 K -1 for 20÷300 o C.<br />

-High resistance against UV and γ irradiation.<br />

-Colored glasses characterized by wide or<br />

selective absorption bands spectral<br />

characteristics.<br />

-Main dopants: Co, Ni, Cu, Fe, Cr, Mn, Ti, V, Nd,<br />

Er, Pr<br />

Glasses doped by Co, Ni, Cu, Fe, Cr, Mn, Ti, V,<br />

Nd, Er, Pr, Yb.<br />

-Blocks: max. 500x200x60mm.<br />

-Slabs: max. 240x180x50mm.<br />

-Plates: max. 500x 60x2÷20mm.<br />

-Rods: max. 500x50mm.<br />

-Slabs, gobs, plates different<br />

sizes and shapes.<br />

-Filters: max. 100x100x1÷5mm,<br />

max. diameter 100mm.<br />

-Slabs, gobs, plates small<br />

diamensions.<br />

-Rods: diameter 3÷15mm, length<br />

up to 150mm.<br />

-Filters: max. 50x50xx2÷5mm,<br />

max. diameter 50mm.<br />

-Special (military) applications<br />

in optical devices (lenses,<br />

prismes, plates).<br />

-Filters for VIS and NIR<br />

regions of radiation.<br />

-Filters for VIS and NIR laser<br />

rods (e.g. Yb-Er-Crphosphate<br />

glass for „eye safe”<br />

1,53÷1,55μm lasers)<br />

8. High VIS and IR<br />

transmission<br />

fluoride ZBLAN<br />

type<br />

9. Fluoride ZBLAN<br />

type doped by rare<br />

earths metal ions<br />

-Glasses synthesized on the base of very pure and<br />

O 2- , OH - free fluorides: ZrF 4 , BaF 2 , LaF 3 , AlF 3 ,<br />

NaF.<br />

-High transmitance in VIS and NIR regions (up to<br />

6μm.).<br />

-Main dopants: Nd, Er, Pr.<br />

-Spectral characteristics: see Fig.5.<br />

-Laser properties: 1,06; 1,35; 1,54μm.<br />

-Rods: diameter 10mm,<br />

length up to 10mm.<br />

-Window plates: diametetr up to<br />

10mm.<br />

-Rods: max. diameter 10mm,<br />

max. length 100mm<br />

-Windows for NIR range of<br />

radiation.<br />

-Laser rods.<br />

-Optical active fibers - laser<br />

fibers.<br />

-Fiber intensifiers.<br />

10. Heavy Metal<br />

Oxide (HMO)<br />

synthesized in<br />

oxide system PbO-<br />

Bi 2 O 3 -Ga 2 O 3<br />

-Transmision in the range:<br />

a) 0,6÷2,7μm − 65÷75%,<br />

b) 2,7÷4,0μm − > 40%,<br />

c) 4,0÷6,0μm − 55÷65% for 2mm (see Fig.6).<br />

-Short wavelength absorption edge − 465±5nm.<br />

-Long wavelength absorption edge − 8,0±0,1μm.<br />

-Refractive index − 2,35÷2,50.<br />

-Thermal expansion coefficient − 115±5*10 -7 K -1<br />

for 20÷300 o C.<br />

-Transformation temperature − 340±10 o C.<br />

-Density − 7,95±0,10g/cm 3 .<br />

-High Verdet constant − 15,5 ÷32,5*10 4 min/T*m.<br />

-Non-linear optical properties.<br />

-Slabs, gobs, plates.<br />

-Windows plates: grinded and<br />

polished, max.<br />

50x50x3÷10mm.<br />

-Filters in biomedical devices<br />

for IR stimulation.<br />

-Input windows for IR sensors<br />

We offer scientific and technological cooperation.<br />

We can provide custom-prepared materials too.<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.456; Fax/Tel.: (+48 22) 834 90 03,<br />

Fax: (+48 22) 864 54 96,<br />

Contact person: Ryszard Stępień, Ph.D.<br />

e-mail:stepie_r@itme.edu.pl


Institute of Electronic Materials Technology<br />

ul. Wólczyńska 133, 01-919 Warszawa<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

GLASS FIBERS OPTIC PRODUCTS FOR<br />

SENSOR SYSTEMS<br />

Glass Laboratory of <strong>ITME</strong> offers many different glassy fiber products, which can<br />

be used as active components in sensor systems. Among these are:<br />

Polymer clad silica (PCS) optical fibers<br />

Their technical characteristics is as follows:<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

core: high purity silica glass,<br />

primary coating: polymer (silicon),<br />

secondary coating: polymer (acryl),<br />

step index profile,<br />

core diameter: 200÷1100μm (according to<br />

customer request),<br />

fiber diameter: 350÷1500μm,<br />

maximum length: 2000m. (for 200μm core<br />

diameter),<br />

spectral transmission: 250÷2600nm,<br />

numerical aperture (NA): 0,10÷0,35,<br />

attenuation: ~15dB/km,<br />

Light guide multifiber bundles<br />

Light guide multifiber bundles made of silica<br />

glass (PCS) or multicomponent silicate<br />

glasses (PCG):<br />

‣<br />

‣<br />

‣<br />

‣<br />

diameter of individual fibers: 100÷1000μm,<br />

number of fibers and bundle diameter (on<br />

request): typical diameter 1÷10mm,<br />

length: 0,5÷50m,<br />

spectral transmission:<br />

250÷2600nm (PCS),<br />

400÷2500nm (PCG).


Institute of Electronic Materials Technology<br />

ul. Wólczyńska 133, 01-919 Warszawa<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

Integrated fiber optic light- and imageguide structures<br />

Tabele 1. Rigid light and image guides<br />

Outer<br />

diameter<br />

[mm]<br />

1,5<br />

1,7<br />

2,5<br />

3,0<br />

6,0<br />

Pixel diameter<br />

min. [μm]<br />

15<br />

20<br />

20<br />

25<br />

50<br />

Length<br />

max. [mm]<br />

Numerical<br />

Aperture (NA)<br />

Active<br />

area<br />

[%]<br />

1000 0,5÷0,6 50÷80<br />

Tabele 2. Semi-flexible image guides<br />

Outer diameter<br />

with jacket [mm]<br />

Image guide Pixel diameter<br />

diameter [mm] [μm]<br />

Bending<br />

radius [mm]<br />

Length<br />

max. [mm]<br />

NA<br />

Active<br />

area [%]<br />

1,25 1,0 10÷20 200 1500 0,5÷0,6 50÷80<br />

Special purpose mosaic optical fibers<br />

Special purpose mosaic optical fibers manufactured by our new developed fiber<br />

assembling technology from high purity multicomponent glasses.<br />

We propose the following types of this fibers: multicore; with shaped noncircular<br />

cores; with segmented cores; attenuation and/or modulating possibilities, active<br />

amplifying, with nonhomogeneous cores and claddings; with air holes (capillaries)<br />

frozen into the fiber structure, made of highly specialized glasses, etc.<br />

This fibers are the optimum candidates for system design to meet devices and<br />

sensors needs of optoelectronic systems working in any kind of hostile<br />

environments.<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.456; Fax/Tel.: (+48 22) 834 90 03,<br />

Fax: (+48 22) 864 54 96,<br />

Contact person: Ryszard Stępień, Ph.D.<br />

e-mail:stepie_r@itme.edu.pl


Institute of Electronic Materials Technology<br />

ul. Wólczyńska 133, 01-919 Warszawa<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

GLASS FILTERS FOR DENTIST<br />

POLYMERIZATION LAMPS<br />

MATERIAL:<br />

Heat absorbing multicomponent phosphate glass<br />

BASIC PROPERTIES:<br />

Light transmission T=80÷85% for the range 400÷500nm and 2mm of thickness<br />

(see Figure); light corrective layers deposited on one side and heat reflecting<br />

layers on the other; minimized heat transmission; high thermal shock resistant<br />

(tempered glass)<br />

DELIVERY FORM:<br />

Round disks 16,5, 15 or 12mm in diameter; thickness 2mm; other dimensions on<br />

customer′s request<br />

APPLICATIONS:<br />

For light correction and heat absorption in dentist polymerization lamps<br />

Filter′s spectral characteristics<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.456; Fax/Tel.: (+48 22) 834 90 03,<br />

Fax: (+48 22) 864 54 96,<br />

Contact person: Ryszard Stępień, Ph.D.<br />

e-mail:stepie_r@itme.edu.pl


Institute of Electronic Materials Technology<br />

ul. Wólczyńska 133, 01-919 Warszawa<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

BASIC PROPERTIES:<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

‣<br />

FIBER OPTIC LIGHT GUIDE RODS<br />

MATERIAL:<br />

Lead and cadmium free multicomponent silicate glasses<br />

white light transmission T=80÷85% for length 80mm;<br />

numerical aperture NA=0,55;<br />

glass optical protective layer on the side surface of the rod made of black Extra<br />

Mural Absorption (EMA) glass;<br />

diameter Φ=3÷10mm;<br />

length L=30÷200mm;<br />

bending radius α=0; 15; 30; 45; 60; 90; 180 grad;<br />

rod tip tapering 2÷3x on the length 20÷30mm;<br />

quick-change holder: material, shape and dimensions – according to the<br />

requirement customer;<br />

ability to repeated sterilization without optical and mechanical properties<br />

degradation<br />

DELIVERY FORM -RODS:<br />

‣ with/without bending or tapering;<br />

‣ with/without holder;<br />

‣ with polishing endfaces<br />

APPLICATIONS:<br />

‣ as light guide applicators in different type<br />

dentistry polymerization lamps and laser<br />

devices for biostimulation (λ=400÷2300nm);<br />

‣ as light concentrators<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.456; Fax/Tel.: (+48 22) 834 90 03,<br />

Fax: (+48 22) 864 54 96,<br />

Contact person: Ryszard Stępień, Ph.D.<br />

e-mail:stepie_r@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str, 01-919 Warsaw, Poland<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

LIGHT GUIDE APPLICATORS FOR SURGICAL<br />

PHOTON COAGULATOR<br />

Photon coagulators enable so called „coagulation welding” of surgery cuts as well as accelerates healing<br />

of wounds, reduces the output of noxious healing products, reduces probability of cancer metastasis.<br />

1. Electronic power supply unit with special<br />

timer; pulse duration 1 up to 9 seconds or<br />

continuous work<br />

2. Coagulator light head with tungsten-halogen<br />

bulb with a gold-plated reflector (OSRAM<br />

XENOPHOT HLX 150W); maximum spectral<br />

power density at about 1100nm<br />

3. Light guide rod/applicator: glass rod in a<br />

metal housing, 70÷350mm long and 5÷15mm<br />

in diameter, depending on a specific<br />

application. Min. light power measured at the<br />

output end of applicator′s rod (250mm long<br />

and 10mm in diameter): 28W.<br />

4. Foot switch<br />

Outer Length Applicator′s<br />

diameter<br />

type<br />

[mm]<br />

[mm]<br />

φ 8 φ 10 350 straight 14<br />

Light guide<br />

active area<br />

[mm]<br />

φ 8 φ10 250<br />

φ 10 φ 13 250<br />

φ 15 φ 18 250<br />

Light power<br />

transmission<br />

min. [W]<br />

straight 15<br />

bent 30 0 13<br />

bent 60 0 11<br />

straight 28<br />

bent 30 0 25<br />

bent 60 0 20<br />

straight 45<br />

bent 30 0 40<br />

bent 60 0 32<br />

APPLICATIONS: therapeutical treatment and surgery, for instance to close blood vessels and to staunch<br />

blood from surgery cuts, in gynecology, proctology, dermatology, soft-surgery, dentistry, laryngology.<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.456; Fax/Tel.: (+48 22) 834 90 03,<br />

Fax: (+48 22) 864 54 96,<br />

Contact person: Ryszard Stępień, Ph.D. e-mail:stepie_r@itme.edu.pl;


Institute of Electronic Materials Technology<br />

ul. Wólczyńska 133, 01-919 Warszawa<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

ACTIVE FLUORIDE GLASSES (1/2)<br />

Luminescence intensity [a.u.]<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

0,3 0,6 0,9 1 1,2 2 5<br />

Dopant concentration [mol%]<br />

Nd<br />

Er<br />

Life time [us]<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.3 0.6 0.9 1 1.2 2 5<br />

NdF3 concentration [mol%]<br />

Life time [ms]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.3 0.6 0.9 1 1.2 2<br />

ErF3 concentration [mol%]<br />

APPLICATIONS<br />

• in telecommunication, optoelectronics,<br />

medicine, and environment protection<br />

• fiber lasers, upconversion laser systems,<br />

amplifiers operating mainly at 1064 nm and<br />

1550 nm<br />

• in telecommunication to obtain amplification<br />

of radiation for wavelengths of 0.8 μm<br />

1.06 μm, 1.3 μm, and 1.54 μm<br />

(telecommunication windows of minimal<br />

attenuation for silica being the most<br />

frequently used as fibre transmitting medium)<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.456; Fax/Tel.: (+48 22) 834 90 03,<br />

Fax: (+48 22) 864 54 96,<br />

Contact person: Ryszard Stępień, Ph.D.<br />

e-mail:stepie_r@itme.edu.pl


Institute of Electronic Materials Technology<br />

ul. Wólczyńska 133, 01-919 Warszawa<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

ACTIVE FLUORIDE GLASSES (2/2)<br />

No<br />

Dopant<br />

concentration<br />

[mol %]<br />

Luminescence<br />

intensity<br />

[a.u.]<br />

Luminescence<br />

life time<br />

1 2 3 4<br />

ZBLAN+NdF 3<br />

1. 0,3 400 493 μs<br />

2. 0,6 650 483<br />

3. 0,9 830 479<br />

4. 1,0 920 482<br />

5. 1,2 1000 460<br />

6. 2,0 830 387<br />

7. 5,0 340 181<br />

ZBLAN+ErF 3<br />

1. 0,3 350 6,54ms<br />

2. 0,6 560 6,85<br />

3. 0,9 720 7,07<br />

4. 0,9 750 7,00<br />

5. 1,0 780 6,90<br />

6. 1,2 850 7,13<br />

7. 2,0 1000 7,20<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.456; Fax/Tel.: (+48 22) 834 90 03,<br />

Fax: (+48 22) 864 54 96,<br />

Contact person: Ryszard Stępień, Ph.D.<br />

e-mail:stepie_r@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

HIGH NON-LINEAR REFRACTIVE INDEX GLASS<br />

APPLICATIONS<br />

For the manufacturing of: *photonic microstructures PCF (Photonic Crystal Fiber) type with nonlinear properties;<br />

*nonlinear photonic fi bers with supercontinuum generation possibility<br />

MATERIALS<br />

PBG-08 lead-bismuth-silicate glass, synthesized in SiO 2 -Ga 2 O 3 -Bi 2 O 3 -PbO-CdO oxide system, with high resistance<br />

against recrystallization during repeated thermal treatment<br />

PROPERTIES<br />

- spectral transmission (as show in figures below)<br />

PBG-08 glass, d=2mm<br />

PBG-08 glass, d=2mm<br />

TRANSMISSION T [%]<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

TRANSMISSION<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

2,5 3 3,5 4 4,5 5 5,5<br />

WAVELENGTH λ [µm]<br />

0<br />

200 700 1200 1700 2200 2700 3200<br />

WAVELENGTH λ [nm]<br />

- transmission T in the range 0,6÷2,75µm 75÷85%<br />

- transmission T in the range 2,75÷4,4µm 65÷75% for 2mm of thickness (see figures)<br />

- refractive index n d 1,94±0,005<br />

- nonlinear component of refractive index n 2 >4,1·10 -19 m 2 /W<br />

- low threshold of absorption LTA 390±10nm<br />

- upper threshold of absorption UTA 5,3±0,1µm<br />

- linear thermal expansion coefficient α 81,5±1*10 -7 K -1 (for 20÷300 o C)<br />

- low temperature of annealing t d 435±10 o C<br />

- transformation temperature T g 470±10 o C<br />

- upper temperature of annealing t g 480±10 o C<br />

- dilatometer softening temperature DST 500±10 o C<br />

- density ρ 5,80±0,1g/cm 3<br />

- micro hardness HV 4,6±0,3Gpa<br />

- water resistance WR 5,2±0,1mg/100cm 2 (H 2 O 100 o C, 6h)<br />

DELIVERY FORM<br />

Glass blocks with dimensions max 300x60x30mm; rods max. 300x28x28mm; round rods with Φ max =28mm; tubes<br />

L=300mm, Φ outer =40mm, Φ inner =26mm; small rods, tubes and capillaries with dimensions on customer request<br />

DELIVERY TERM<br />

2÷3 weeks from order date<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.456; Fax/Tel.: (+48 22) 834 90 03,<br />

Fax: (+48 22) 864 54 96,<br />

Contact person: Ryszard Stępień, Ph.D.<br />

e-mail:stepie_r@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

MULTICAPILLARY GLASS PLATES<br />

APPLICATIONS<br />

• gas and liquid filtration,<br />

• flow control, laminar flow,<br />

• construction of velves with ultraslow flow,<br />

• liquids nebulization,<br />

• focusing / collimating components,<br />

• particle channeling components,<br />

• biotechnology micro pore components,<br />

Scheme of micro capillary structure<br />

MATERIALS<br />

Borosilicate glass Multicomponent Glassem<br />

TECHNICAL PARAMETERS<br />

Outside diameter<br />

Thickness<br />

Holes diameter<br />

5-18mm<br />

1-5mm<br />

4-20µm<br />

Quantity of holes up to 5000<br />

Shape of working zone hexagon, square, rectangular (max 4:1)<br />

Thermal resistance 400°C<br />

SHAPE OF PRODUCT<br />

1. Glass rods with multicapillary structure<br />

2. Multicapillary plates cut to ordered thickness<br />

DELIVERY TERM<br />

4-6 weeks from order date<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.456; Fax/Tel.: (+48 22) 834 90 03,<br />

Fax: (+48 22) 864 54 96,<br />

Contact person: Dariusz Pysz, M.Sc.<br />

e-mail:dariusz.pysz@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

All-solid PCF<br />

A photonic crystal fiber can be developed with two thermally matched glasses where one glass<br />

forms the background, and the others create a lattice of inclusions (Fig.1). Optical properties of<br />

all-solid holey fibers (SOHO) are sensitive to the photonic cladding configuration, as typical<br />

PCFs with air holes, and strongly depend on dispersion properties of used materials. When a<br />

high index contrast between the glasses is assured photonic crystal fiber can effectively guide<br />

light with photonic band gap (PBG) mechanism.<br />

Fig.1 Guidance mechanisms in solid-all PCFs: if micro rods have lower refractive index than matrix<br />

glass – guidance with effective total internal reflection mechanism (TIR) and also photonic band gap<br />

guidance mechanism is possible (PBG); if micro rods have higher refractive index than matrix glass –<br />

only photonic band gap guidance mechanism is possible (PBG).<br />

Two examples of fibres fabricated in <strong>ITME</strong> are presented in Fig.2 and Fig.3.<br />

Fig.2 All-solid PCF with low index core - fiber diameter ~130μm, lattice pitch Λ=1.06μm,<br />

microrods diameter d≈0.67μm, filling factor d/Λ ≈ 0.63, core diameter d core ≈3.4μm.<br />

Fig.3 All-solid PCF with low index core - fiber diameter ~100μm, lattice pitch Λ=0.81μm,<br />

microrods diameter d≈0.58μm, filling factor d/Λ≈0.71, core diameter d core ≈2.1μm<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.456; Fax/Tel.: (+48 22) 834 90 03,<br />

Fax: (+48 22) 864 54 96,<br />

Contact person: Ryszard Stępień, Ph.D.<br />

e-mail:stepie_r@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

All-solid PCF<br />

1200<br />

120<br />

1000<br />

100<br />

800<br />

80<br />

600<br />

60<br />

400<br />

40<br />

200<br />

20<br />

0<br />

0<br />

-200<br />

350 400 450 500 550 600 650 700<br />

-20<br />

350 400 450 500 550 600 650 700<br />

Fig.4 Spectral characteristic of light source and measured transmission through core of<br />

sample of all-solid PCF with diameter ~130μm in bend gap<br />

Another example of fabricated fiber:<br />

SOHO3/J 1 (1) SOHO3/ J 1 (3) SOHO3/ J 1 (5)<br />

Fig.5 End faces of several samples of fabricated all-solid fiber (SOHO3/J1) - visible<br />

geometrical stability of microstructure along the fiber on length 100m<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.456; Fax/Tel.: (+48 22) 834 90 03,<br />

Fax: (+48 22) 864 54 96,<br />

Contact person: Ryszard Stępień, Ph.D.<br />

e-mail:stepie_r@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: (+48 22) 835 30 41, Tel.:(+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

e-mail: itme@itme.edu.pl<br />

THICK – FILM TECHNOLOGY<br />

THICK – FILM COMPOSITIONS<br />

Institute of Electronic Materials Technology (<strong>ITME</strong>) is the main polish<br />

producer of thick-film materials applied in thick film technology for more than<br />

twenty years.<br />

Thick-Film Materials Division offers the wide range of:<br />

‣ conductive, resistive, crossovers pasts,<br />

‣ overglazes and other compositions for producers of microcircuits,<br />

‣ polymers and thick film materials,<br />

which could be applied not only in electronics.<br />

Table on page 2 shows the main offer of thick film materials produced by <strong>ITME</strong>.<br />

Also new versions of thick-film compositions, due to individual customers<br />

requirements could be offered. Small amounts of experimental material samples<br />

and conduction of application experiments concerning thick film technology due to<br />

customer’s request could be offered, as well.<br />

More information is available from <strong>ITME</strong><br />

Thick-Film Materials Division<br />

Tel.: (+48 22) 835 30 41 ext. 457<br />

Fax: (+48 22) 864 54 96; Fax: (+48 22) 834 90 03<br />

Contact person: Małgorzata Jakubowska, Ph.D.<br />

e-mail: maljakub@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: (+48 22) 835 30 41, Tel.:(+48 22) 834 90 03, Fax: (+48 22) 864 54 96 e-mail: itme@itme.edu.pl<br />

Table 1. Thick-Film materials produced by <strong>ITME</strong><br />

Symbol of the paste Examples of application<br />

Firing/Curing<br />

temperature Parameters<br />

Resistive pastes series R-320 resistors and potentiometers 850 o C<br />

R/ - 30÷10 6 Ω/<br />

TCR – 250 ppm/ o C<br />

Resistive pastes series R-340 resistors and potentiometers 850 o C<br />

R/ - 10÷10 6 Ω/<br />

TCR – 100 ppm/ o C<br />

Palladium-silver conductive paste conductive layers,<br />

850 o C<br />

R/ - 20÷35 mΩ/<br />

P-202<br />

resistors terminations<br />

solder SnPb - 220-270 o C<br />

Platinum-silver conductive paste<br />

conductive layers,<br />

850 o C<br />

R/ - 3÷5 mΩ/<br />

P-401<br />

resistors terminations<br />

solderable, bondable<br />

Silver conductive paste P-120 conductive layers 650÷850 o C R/ - 3÷5 mΩ/<br />

Gold conductive paste P-303<br />

conductive layers,<br />

850 o C<br />

R/ - 5÷10 mΩ/<br />

bondable pads<br />

bondable<br />

Platinum conductive paste P-321 heating elements in sensors 850÷1050 o C<br />

R/ - 40÷100 mΩ/<br />

TCR - 3600÷4000 ppm/ o C<br />

Dielectric paste D-421 crossovers 850 o C compatible with P-303 and P-202<br />

Protective paste D-202 protection of resistors 540÷560 o C compatible with R-320 and R-340<br />

Nickel conductive paste P-727 conductive layers, displays, sensors 570÷700 o C R/ - 20÷30 mΩ/<br />

Silver polymer paste L-121 conductive layers on organic substrates 100÷150 o C R/ - 25÷50 mΩ/<br />

Graphite polymer paste L-950 protection of silver layers 100÷150 o C protection from sulphur compounds<br />

More information is available from <strong>ITME</strong>, Thick-Film Materials Division:<br />

Tel.: (+48 22) 835 30 41 ext. 457; Fax: (+48 22) 864 54 96; Fax: (+48 22) 834 90 03<br />

Contact person: Małgorzata Jakubowska, Ph.D.; e-mail: maljakub@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: (+48 22) 835 30 41, Tel.:(+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

e-mail: itme@itme.edu.pl<br />

Ultraviolet detectors built on GaN/AlGaN (1 of 2)<br />

UV photo-detector is built on gallium nitride (GaN). Absorption edge for this semiconductor, corresponds to the<br />

wavelength of 365 nm. Detector exhibits high sensitivity only in the UV range without applying expensive optical<br />

filters. Sensitivity is 3 orders of magnitude lower for the visible light.<br />

GaN detector can be applied in many fields due to its unique properties.<br />

Applications:<br />

Characteristics:<br />

‣ flammability tests – combustion process analysis<br />

‣ the sky radiation analysis<br />

‣ “ozone hole” detection<br />

‣ environmental contaminations monitoring<br />

‣ missile launch detection<br />

‣ gun fire detection<br />

‣ antiaircraft missile guidance systems<br />

‣ UV sources tests for sterilization monitoring.<br />

‣ research applications<br />

Type:<br />

Spectrum range 1) Responsivity 2)<br />

Contrast 3) Dark current 4)<br />

[nm]<br />

[A/W]<br />

[nA]<br />

Diode p-i-n UVA 320-365 0,15(λ 0 =350nm) >10 3 10 3 1.5x10 12 cm Hz 1/2 W -1<br />

Package TS-60<br />

(plastic type with a window made of sapphire)<br />

For more information please contact:<br />

Tel.: (+48 22) 834 97 14, (+48 22); 835 30 41 ext. 403<br />

Fax: (+48 22 ) 864 54 96; Fax/: (+48 22) 834 90 03,<br />

Contact person: Lech Dobrzański, Ph.D.<br />

e-mail:dobrza_l@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: (+48 22) 835 30 41, Tel.:(+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

e-mail: itme@itme.edu.pl<br />

Ultraviolet detectors built on GaN/AlGaN (2 of 2)<br />

UV photo-detector is built on gallium nitride (GaN). Absorption edge for this semiconductor, corresponds to the<br />

wavelength of 365 nm. Detector exhibits high sensitivity only in the UV range without applying expensive optical<br />

filters. Sensitivity is 3 orders of magnitude lower for the visible light.<br />

GaN detector can be applied in many fields due to its unique properties.<br />

Applications:<br />

Characteristics:<br />

‣ flammability tests – combustion process analysis<br />

‣ the sky radiation analysis<br />

‣ “ozone hole” detection<br />

‣ environmental contaminations monitoring<br />

‣ missile launch detection<br />

‣ gun fire detection<br />

‣ antiaircraft missile guidance systems<br />

‣ UV sources tests for sterilization monitoring.<br />

‣ research applications<br />

Typ:<br />

Spectrum range 1) Responsivity 2)<br />

Contrast 3) Dark current 4)<br />

[nm]<br />

[A/W]<br />

[nA]<br />

Dioda Schottky UVB 200-320 0,1(λ 0 =285nm) >10 3 10 2 10 3 2x10 11 cm Hz 1/2 W -1<br />

Package T34<br />

(metal cup with a quartz window)<br />

For more information please contact:<br />

Tel.: (+48 22) 834 97 14, (+48 22); 835 30 41 ext. 403<br />

Fax: (+48 22 ) 864 54 96; Fax/: (+48 22) 834 90 03,<br />

Contact person: Lech Dobrzański, Ph.D.


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

Technology<br />

X-rays and α - particles detectors on GaAs<br />

We build volume type of devices whitch are fully depleted Schottky diode chips. Diode<br />

material is semiinsulating GaAs with terminals made of Au/Ge/Ni/Au and Cr/Au metallization.<br />

Design and operation<br />

Diode is not planar. Terminals are on the oposite side of chip which is 100 μm thick. Chip<br />

size is 1,32 x 1,32 mm. At ~ 500V bias, chip is fully depleted.<br />

Pulse height spectrum taken in vacuum at room<br />

temperature for triple source 239 Pu, 241 Am, 244 Cm of<br />

α-particles with energies 5,155 MeV, 5,486 MeV and<br />

5,805 MeV. Detector irradiated from the back contact.<br />

X-rays room temperature measurment. Low energy<br />

peak corresponds to 16,2 keV average energy, which<br />

was obtained by superposition of 241 Am X-rays with<br />

energies 18,8 keV and 13,9 keV. High energy peak<br />

corresponds to 241 Am γ - rays of energy 59,5 keV.<br />

Performance<br />

Dark current<br />

Charge collection efficiency<br />

Energy resolution (α - particles)<br />

Energy resolution (γ 59,5 keV )<br />

I R (U R = 500 V) ≈ 10 nA<br />

CCE ( 241 Am 5,86 MeV) = 94% ; U R = 500V<br />

< 1,8 % at FWHM<br />

10,3 % at FWHM<br />

For more information please contact:<br />

Tel.: (+48 22) 834 99 46; (+48 22) 835 30 41 ext. 111, 112, 412,<br />

Fax: (+48 22 ) 864 54 96; Fax/Tel.: (+48 22) 834 90 03<br />

Contact person: Lech Dobrzański, Ph.D.<br />

e-mail: dobrza_l@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

LASER DIODE 810 nm 1.5W<br />

Characteristics:<br />

DBSCH SQW gain guiding structure<br />

GaAsP/AlGaAs/GaAs<br />

Emission wavelength: 800 - 815 nm<br />

Nominal optical power: 1.5 W CW<br />

Max. reverse voltage: 2V<br />

Polarization: TM<br />

Operating temperature (CW): 5 to 55°C<br />

Storage temperature: 0 to 75°C<br />

R 0.5<br />

0.7<br />

1<br />

2<br />

3<br />

Ø 9.0 ±0.025<br />

2.54<br />

1.27<br />

Ø 6.2 ±0.1<br />

Ø 3.0 ±0.1 3.4 3.65.1<br />

8 ±0.8<br />

Ø 0.48<br />

1. laser diode cathode<br />

2. laser diode anode<br />

3. ----------------<br />

Optical and electrical properties (T=20°C)<br />

normalized optical power<br />

optical power P [W]<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

0.0 0.5 1.0 1.5<br />

spectral<br />

characteristics<br />

I = 1.6 A<br />

T = 16 o C<br />

I = 1.6 A<br />

T = 18 o C<br />

U<br />

P<br />

diode current<br />

805 806 807 808 809 810 811<br />

λ [nm]<br />

normalized intensity<br />

T case = 18 o C<br />

[A]<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

directional<br />

characteristics<br />

P = 1 W<br />

FWHM<br />

voltage U [V]<br />

Θ II<br />

= 6 o<br />

0.0<br />

-30 -20 -10 0 10 20 30<br />

angle from normal<br />

Θ ⊥<br />

= 16 o<br />

[deg]<br />

symbol min. typical max. meas. conditions<br />

laser emission wavelength [nm] λ 800 815 P 0 = 1.5 W<br />

threshold current [A] I th 0.35 0.4 0.42<br />

operating current [A] I op 1.7 P 0 = 1.5 W<br />

nominal voltage [V] U op 2.1 P 0 = 1.5 W<br />

slope efficiency [W/A] η 0.9 1.1<br />

emitting surface [μm × μm]<br />

1 (⊥) × 100 (II)<br />

beam divergence || [°] θ || 5 6 7 P 0 = 1.5 W<br />

beam divergence ⊥ [°] θ ⊥ 15 16 17 P 0 = 1.5 W<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.104; Fax (+48 22) 864 54 96,<br />

Contact person: Andrzej Maląg, Ph.D.<br />

e-mail:amalag@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

LASER DIODE 810 nm 3W<br />

Characteristics:<br />

DBSCH SQW gain guiding structure<br />

GaAsP/AlGaAs/GaAs<br />

Emission wavelength: 800 - 815 nm<br />

Nominal optical power: 3 W CW<br />

Max. reverse voltage: 2V<br />

Polarization: TM<br />

Operating temperature (CW): 5 to 55°C<br />

Storage temperature: 0 to 75°C<br />

optical power P [W]<br />

3<br />

2<br />

U<br />

1<br />

P<br />

T case = 18 o C<br />

0<br />

0<br />

0 1 2 3 4<br />

diode current [A]<br />

3<br />

2<br />

1<br />

voltage U [V]<br />

1.0<br />

0.8<br />

P = 2 W<br />

I = 1 A<br />

I = 2 A<br />

I = 3 A<br />

normalized intensity<br />

0.6<br />

0.4<br />

0.2<br />

FWHM<br />

Θ ⊥<br />

= 16 o<br />

Θ II<br />

= 11 o<br />

normalized intensity<br />

T=18 o C<br />

spectral<br />

characteristics<br />

0.0<br />

-30 -20 -10 0 10 20 30<br />

Θ (from normal) [deg]<br />

directional<br />

characteristics<br />

802 803 804 805 806 807 808 809 810<br />

λ [nm]<br />

Optical and electrical properties (T=20°C)<br />

symbol min. typical max. meas. conditions<br />

laser emission wavelength [nm] λ 805 815 P 0 = 2.5 W<br />

threshold current [A] I th 0.7 0.8 0.9<br />

nominal current [A] I op 3.5 4 P 0 = 3 W<br />

nominal voltage [V] U op 2 2.1 P 0 = 3 W<br />

slope efficiency [W/A] η 0.9 1.1<br />

emitting surface [μm × μm]<br />

1 (⊥) × 200 (II)<br />

beam divergence || [°] θ || 10 11 13 P 0 = 2 W<br />

beam divergence ⊥ [°] θ ⊥ 15 16 17 P 0 = 2 W<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.104; Fax (+48 22) 864 54 96,<br />

Contact person: Andrzej Maląg, Ph.D.<br />

e-mail:amalag@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

InGaAs/InP PIN photodiode for 1.5μm band<br />

The photodiode has a planar structure made of InGaAs/InP, which<br />

is encapsulated in a glass windowed TO-18 package. The PIN<br />

junction is passivated with a silicon nitride film and the<br />

photosensitive area is coated with a selective antireflection film,<br />

which narrows spectral response to the 1.5 μm band.<br />

The devices are intended for use in conjunction with 1.5 μm lasers,<br />

for example in laser rangefinder systems.<br />

Absolute maximum ratings<br />

Parameter Symbol Value Unit<br />

Reverse voltage V R 20 V<br />

Reverse current I R 100 μA<br />

Operating temperature T opr -40 ÷+50 ºC<br />

Storage temperature T stg -40 ÷+70 ºC<br />

Electrical and optical characteristics (T =25ºC)<br />

Value<br />

Parameter Symbol<br />

Unit<br />

Min. Typ. Max.<br />

Active area (diameter) Φ 0.3 mm<br />

Test<br />

conditions<br />

Spectral response range Δλ 1.3 to 1.7 μm 10 % of max. value<br />

Responsivity R 0.8 A/W λ = 1.5 μm, U R = 5 V<br />

Dark current I R0 2 nA U R = 5 V<br />

Detectivity D* 1.4·10 12 cm·Hz 1/2 /W λ = 1.5 μm, U R = 5 V<br />

Capacitance C t 6 pF U R = 5 V<br />

Rise and fall times<br />

t r<br />

2<br />

t f 2<br />

ns<br />

ns<br />

λ = 1.5 μm,<br />

U R = 5 V, R L =50Ω<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.465; Fax (+48 22) 864 54 96,<br />

Contact person: Zynek Jadwiga, Ph.D.<br />

e-mail: jadwiga.zynek@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

InGaAs/InP RCE photodiodes for 1.94μm and 2.06μm band<br />

These resonant cavity enhanced (RCE) photodiodes contain inside the<br />

resonant cavity an InP based PIN junction with a strained InGaAs<br />

quantum well as the absorbing region. The planar photodiode<br />

structures are passivated with silicon nitride films and are<br />

encapsulated in glass windowed TO-18 packages. Due to very low<br />

dark currents they achieve high detectivity values.<br />

The photodiodes designed for detection at 1.94 μm are intended for<br />

use in conjunction with 1.94 μm lasers, for example in moisture<br />

content meters, the photodiodes designed for detection at 2.06 μm are<br />

intended for use in conjunction with holmium doped 2.06 μm lasers,<br />

for example in laser rangefinder systems operating at eye safe<br />

wavelengths.<br />

Photodiodes detecting in other bands over the 1.8 ÷ 2.06 μm range are<br />

also available.<br />

Electrical and optical characteristics (T =25ºC)<br />

Parameter Band Symbol<br />

Value<br />

Typ. Max.<br />

Unit<br />

Active area (diameter) Φ 0.3 mm<br />

Test<br />

conditions<br />

Spectral response range<br />

Responsivity<br />

1.94 μm<br />

Δλ<br />

1.87 to 1.97<br />

μm 10 % of max. value<br />

2.06 μm<br />

1.99 to 2.1<br />

1.94 μm 0.3 λ = 1.94 μm, U R = 2 V<br />

R<br />

A/W<br />

2.06 μm<br />

0.2<br />

λ = 2.06 μm, U R = 2 V<br />

Dark current<br />

1.94 μm<br />

I R0<br />

40 200<br />

2.06 μm<br />

150 400<br />

pA<br />

U R = 2 V<br />

Detectivity<br />

1.94 μm 2·10 12 λ = 1.94 μm, U R = 2 V<br />

D*<br />

cm·Hz 1/2 /W<br />

2.06 μm<br />

8·10 11 λ = 2.06 μm, U R = 2 V<br />

Capacitance<br />

Rise and fall times<br />

1.94 μm<br />

2.06 μm<br />

1.94 μm<br />

2.06 μm<br />

C t 6 pF U R = 2 V<br />

t r<br />

t f<br />

2<br />

2<br />

ns<br />

λ = 1.94 μm, U R = 2 V,<br />

R L = 50 Ω<br />

λ = 2.06 μm, U R = 2 V,<br />

R L = 50 Ω<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.465; Fax (+48 22) 864 54 96,<br />

Contact person: Zynek Jadwiga, Ph.D.<br />

e-mail: jadwiga.zynek@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel/ (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

Mask shop at <strong>ITME</strong><br />

Since 1991, <strong>ITME</strong> offers the advanced technology of submicron<br />

lithography. We use the electron-beam exposure system ZBA-20 (from<br />

Zeiss Jena) for generation of the mask pattern. ZBA-20 operation is<br />

founded on the variable-shape beam and the vector-scan principle and this<br />

concept compared to the gaussian round beam yields higher productivity.<br />

Due to this advantage we use successfully ZBA-20 in the two fields of<br />

applications:<br />

‣ production of master masks and reticles for contact, proximity and<br />

projection lithography, especially for the large-area structures, like<br />

detectors of the nuclear radiation or the SAW devices,<br />

‣ direct exposition of semiconductor wafers, especially for use in the<br />

sub-micrometer range (for the microwave integrated circuits).<br />

We have experience in the micro-strip detectors of very large area that are<br />

needed in high-energy physics. Sometimes we recommend our customers<br />

the direct writing on the detector substrates to avoid problems during the<br />

transfer of pattern from mask to the substrate as the large areas of exactly<br />

contacting surfaces are hard to separate after the exposition.<br />

Using e-beam technology we provide chromium masks with<br />

critical dimension (minimum linewidth) of 0,5μm. Pattern with minimum<br />

feature size of 0,2μm can be fabricated by the method of direct writing.<br />

The detailed specification of our services is presented in Table 1.<br />

Table 1. The specification of products and services.<br />

Fig.1. A sensor of the infrared radiation<br />

– structure of the surface machined<br />

silicon bolometer.<br />

Fig.2. Split gate 0,07μm. lift-off<br />

metallization Au/Cr 0,1μm.<br />

CHROMIUM MASKS<br />

DIRECT WRITING ON WAFERS<br />

substrate size 4"x4",5"x5",6"x6",7”x7” diameters 2", 2.5", 3", 4", 5", 6"<br />

chip size<br />

any size up to 150 mm x 150 mm<br />

position resolution 0.1 μm 0.1μm<br />

minimum linewidth 0.5 μm 0.2μm<br />

overlay accuracy<br />

data format<br />

≤ 0.3 μm<br />

(all levels of one set)<br />

0.15 μm<br />

(wafers with alignment marks)<br />

DASY, CIF, D. MANN 3000, D. MANN 3600, DXF (AutoCAD)<br />

High resolution, short exposition time and low cost of prototyping<br />

process make direct writing method the most suitable tool for R&D works.<br />

This technique in combination with multilayer resist systems and lift-off<br />

process enables produtien of special kind of structures, like T-shaped<br />

FET’s gates, diffraction gratings or computer generated holograms.<br />

Fig.3. Standard rectangular FET’s gate<br />

0,5μm. lift-off metallization Au/Cr<br />

0,4μm.<br />

For more information please contact:<br />

Tel.: (+48 22) 834 97 14, (+48 22); 835 30 41 ext. 403<br />

Fax: (+48 22 ) 864 54 96; Fax/: (+48 22) 834 90 03,<br />

Contact person: Lech Dobrzański, Ph.D.<br />

e-mail:dobrza_l@itme.edu.pl<br />

Fig.4. The 0,2μm. foot-print T-shaped gate<br />

formed by double-layer resist system.


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

Diffractive Optical Elements obtained using electron-beam<br />

writer and reactive ion etching<br />

Among various kinds of micro-optical elements, diffractive optical elements are<br />

especially attractive because of their functional flexibility in handling wave-front conversion.<br />

They are suitable for wide range of research, industrial and comercial applications, because of<br />

their planar, compact and lightweight nature.<br />

We offer fabrication of 8-level Diffractive Optical Elements (DOEs) with submicrometer<br />

feature sizes in the 3-step lithographic process. In each step a variable-shape e-beam<br />

exposure system is used for writing the pattern that is transferred into substrate by reactive ion<br />

etching and forms the phase profile. Using this technology different kind of DOEs, including<br />

rectangular-aperture micro-Fresnel lens arrays and diffraction gratings were realized on quartz,<br />

GaAs and Si wafers. The diffraction efficiencies of these elements were up to 92%. The lens<br />

arrays showed uniform focusing characteristics, and each lens exhibited a good quality of the<br />

focused wave front.<br />

SEM photographs of the 8-level Fresnel microlenses<br />

a) b)<br />

Fragment of the rectangular-aperture Central part of the microlens f / 5.1 (quartz)<br />

microlens array f / 3 (GaAs)<br />

Cross section of the microlens f / 3 (GaAs)<br />

c)<br />

We succeded in fabrication of holograms using e-beam direct writing technique. Patterns<br />

of holograms were digitally generated. This aproach enables production of secure marks which<br />

cannot be replicated using optical methods.<br />

For more information please contact:<br />

Tel.: (+48 22) 834 99 46; (+48 22) 835 30 41 ext. 417, 132<br />

Fax: (+48 22 ) 864 54 96; Fax/Tel.: (+48 22) 834 90 03<br />

Contact person: Andrzej Kowalik Ph.D.<br />

e-mail: akowalik@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

Double-Sided Diffractive Optical Elements<br />

Diffractive optical elements offer an interesting alternative in comparison with more conventional optical<br />

elements because they can perform more complex transfer functions and, thanks to their planar, compact<br />

and lightweight nature, better fulfill requirements of miniaturization and integration with micro-electromechanical<br />

devices. However, elements of high optical performance, i.e. large angle aperture (or<br />

numerical aperture NA) and high diffraction efficiency, demand multilevel phase profiles with an<br />

extremely high spatial frequency. That involves complicated design methods based on a rigorous<br />

diffraction theory and fabricating technology with sub-wavelength resolution and nanometer accuracy. To<br />

overcome these difficulties we propose a transmission DOE, which optical function is divided between<br />

two diffractive surfaces fabricated at the opposite sides of a substrate (2SDOE). The main advantage of<br />

such a solution lies in the fact that each of the diffractive patterns has smaller spatial frequency and,<br />

therefore, can be made with more phase levels. In result, a monolithic diffractive system can be achieved<br />

with a higher diffraction efficiency or larger NA using the microlithographic technology of the same<br />

minimal feature size.<br />

General principle<br />

− optical function divided between 2 diffractive<br />

profiles placed on both sides of the substrate<br />

− each profile with variable number of phase<br />

levels<br />

Focusing characteristic<br />

of the eight-phase-level DOEs with<br />

the same minimal feature size cd<br />

(microlenses fabricated on quartz<br />

substrate)<br />

Standard DOE 2SDOE<br />

CCD camera image of the focal spot pattern<br />

A scheme of the double-sided diffractive optical<br />

element with variable number of the phase steps;<br />

cd denotes the critical dimension of the element,<br />

i.e. width of the smallest detail possible to obtain.<br />

light intensity distribution<br />

For more information please contact:<br />

Tel. (+48 22) 835 30 41 ext. 417, Fax: (+48 22 ) 864 54 96;<br />

Contact person: Andrzej Kowalik Ph.D.<br />

e-mail: akowalik@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

DIFFRACTIVE BEAM CONCENTRATOR<br />

FOR LASER DIODE BARS<br />

Type of optical element:<br />

lens array<br />

array of multilevel rectangular-apertured elliptical diffractive<br />

microlenses<br />

Characteristics:<br />

laser diode bar<br />

− compact and lightweight optical element suitable for<br />

integration with a laser-diode bar,<br />

− regular (square or rectangular) cross-section of the spot,<br />

− uniform light distribution due to the collective character of beams<br />

transformation,<br />

− efficiency up to 85% (depending on laser-diodes properties).<br />

10 mm<br />

Laser-diode bar in a standard<br />

package equipped with the<br />

diffractive beam concentrator<br />

laser diode bar<br />

lens array<br />

scheme of laser diode bar beams transformation<br />

outer fragment of the binary rectangularapertured<br />

elliptical lens array [32x1]<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.417; Fax (+48 22) 864 54 96,<br />

Contact person: Andrzej Kowalik, Ph.D.<br />

e-mail:akowalik@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

Kinoform Sampling Filter<br />

Kinoform sampling filter is a new optical element which has the same optical properties as those of<br />

the amplitude sampling filter but can use theoretically all the incident light for multiple image formation.<br />

Generally the filter corresponds to a square array of high ‘compressed’ lenses, i.e. lenses with effective<br />

apertures much greater than the period of the array (effect not available in classical arrangements with<br />

real lenses). Therefore the kinoform filter seems to be an excellent tool for a simple method of fabrication<br />

of two-dimensional arrays of periodical objects.<br />

Advantages:<br />

− compact optical element allowing to generate large arrays of periodical objects (e.g. 100x100),<br />

− high diffraction efficiency (over 90%),<br />

− much higher resolution than in case of an equivalent array of classical elements,<br />

− high uniformity of multiple images,<br />

− immaterial influence of local defects on the quality of output images due to the complex, diffractiveinterferometric<br />

formation of images.<br />

Microscope image (x1000) of the fragment<br />

of the quartz kinoform sampling filter<br />

basic data<br />

aperture 40x40 mm2,<br />

spatial period d=0.2 mm,<br />

minimal element 2x2 μm 2 ,<br />

8 phase levels,<br />

wavelength of light λ=632.8 nm.<br />

Magnified fragment of the image of periodical objects<br />

formed by the kinoform sampling filter (λ=632.8 nm)<br />

optical properties<br />

optical element equivalent to an array of 200x200<br />

lenses with the aperture 39.6 mm and the focal length<br />

62.6 mm<br />

resolution 2 μm (for a classical lens array 198 μm),<br />

diffraction efficiency 91%,<br />

uniformity of multiple images better than 5%<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext.417; Fax (+48 22) 864 54 96,<br />

Contact person: Andrzej Kowalik, Ph.D.<br />

e-mail:akowalik@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

SAW FILTERS and COMPONENTS<br />

for SENSORS<br />

Surface acoustic wave (SAW) filters are manufactured by <strong>ITME</strong> for TV receivers<br />

(tables 1 and 2).<br />

We offer also: - SAW filters for cable TV modulators (table 3),<br />

- professional SAW filters (table 4),<br />

- SAW notch filters (table 5),<br />

- SAW, pseudo SAW (PSAW) and surface transverse wave (STW)<br />

components for sensors: delay line (table 6), resonators (table 7).<br />

<strong>ITME</strong> offers high quality SAW filters and components for sensors in the frequency range<br />

20÷500 MHz designed according to customers requirements.<br />

SAW FILTER CHARACTERISTICS :<br />

‣ center frequency *<br />

- 20 ÷ 500 MHz,<br />

‣ fractional badwidth - 1 ÷ 50 %,<br />

‣ insertion loss<br />

- ≥ 2 dB,<br />

‣ relative out-of-band rejection - as much as 60 dB,<br />

‣ minimum shape factor - 1.05,<br />

‣ minimum bandpass ripple - ± 0.1 dB,<br />

‣ phase response * *<br />

- linear / nonlinear.<br />

NOTES :<br />

* Design of multiple passband filters with various passband shapes is possible.<br />

** Filters can be designed according to phase or group delay specification.<br />

WE OFFER THE FOLLOWING SERVICES CONCERNING SAW SENSORS :<br />

⎣ design and manufacturing of SAW delay lines and resonators on quartz and<br />

lithium niobate and lithium tantalate substrates of any cut,<br />

⎣ preparation copper phthalocyanine layers as the chemical interface for sensors.<br />

OUR CUSTOMERS ARE ASKED TO SPECIFY:<br />

‣ desired frequency response,<br />

‣ max. insertion loss,<br />

‣ source and load impedance,<br />

‣ package type,<br />

‣ temperature range of operation,<br />

‣ max. permitted temperature coefficient of the frequency response,<br />

‣ expected quantity.


Filter type<br />

Table 1. SAW filters for TV receivers with differential sound carrier system.<br />

Picture carrier<br />

[ MHz ]<br />

Insertion loss<br />

[dB]<br />

Sound carrier<br />

[ MHz ]<br />

TV Standard *)<br />

Replecement to<br />

(Siemens - Matsushita)<br />

FT-383 38.0 20 31.5 / 32.5<br />

D/K-OIRT,<br />

B/G-CCIR OFWK-1950<br />

FT-389 38.9 20 32.4 / 33.4<br />

D/K-OIRT,<br />

B/G-CCIR OFWK-2950<br />

FT-3893 38.9 19 33.4 B/G-CCIR OFWG-1968<br />

FT-3895 38.9 18,5 32.4 / 33.4<br />

D/K-OIRT,<br />

B/G-CCIR OFWK-2960<br />

FT-3896 38.9 18,5 32.4 / 33.4<br />

D/K-OIRT,<br />

B/G-CCIR OFWK-2960<br />

FT-3897 38.9 17 32.4 / 33.4 B/G-CCIR OFWG-1963<br />

FT-3899 38.9 17 33.4 B/G-CCIR OFWG-1984<br />

FT-3951 39.5 18 33.5 I-CCIR OFWJ-1951<br />

FT-3955 39.5 16 33.5 I-CCIR OFWJ-1951<br />

Table 2. SAW filters for TV receivers with quasiparallel sound carrier system.<br />

Filter type<br />

Picture carrier<br />

[ MHz ]<br />

Insertion loss<br />

[dB]<br />

Sound carrier<br />

[ MHz ]<br />

FTQW-384 38.0 20 31.5 / 32.5<br />

FTQW-3801 38.0 20 31.5<br />

FTQW-3805 38.0 17 31.5 / 32.5<br />

FTQW-3806 38.0 17 31.5 / 32.5<br />

FTQW-3891 38.9 20 32.4 / 33.4<br />

FTQW-3893 38.9 17 33.4<br />

FTQF-384 38.0 26 31.5 / 32.5<br />

FTQF-3801 - 15,5 31.5 / 32.5<br />

FTQF-3804 - 15,5 31.5 / 32.5<br />

FTQF-3806 38.0 22 31.5 / 32.5<br />

FTQF-3891 - 15,5 32.4 / 33.4<br />

FTQF-3894 - 21 32.4 / 33.4<br />

FTQF-3895 38.9 26 32.4 / 33.4<br />

FTQF-3897 38.9 22<br />

FTQF-3899 38.9 22<br />

FTQW-384,<br />

FTQF-384<br />

FTQW-3801,<br />

FTQF-384<br />

FTQW-3801,<br />

FTQF-3801<br />

FTQW-3806,<br />

FTQF-3804<br />

FTQW-3806,<br />

FTQF-3806<br />

FTQW-3891,<br />

FTQF-3891<br />

FTQW-3891,<br />

FTQF-3895<br />

32.9 / 33.05 /<br />

33.4<br />

32.35 / 32.9 /<br />

33.4<br />

38.0 - 31.5 / 32.5<br />

38.0 - 31.5 / 32.5<br />

38.0 - 31.5 / 32.5<br />

38.0 - 31.5 / 32.5<br />

38.0 - 31.5 / 32.5<br />

38.9 - 32.4 / 33.4<br />

38.9 - 32.4 / 33.4<br />

TV Standard *) Replecement to<br />

(Siemens - Matsushita)<br />

D/K-OIRT,<br />

B/G-CCIR OFWK-3955<br />

D/K-OIRT,<br />

B/G-CCIR -<br />

D/K-OIRT,<br />

B/G-CCIR OFWK-3955<br />

D/K-OIRT,<br />

B/G-CCIR -<br />

D/K-OIRT,<br />

B/G-CCIR OFWG-3956<br />

B/G-CCIR<br />

OFWG-3962<br />

D/K-OIRT,<br />

B/G-CCIR OFWK-9201<br />

D/K-OIRT,<br />

B/G-CCIR -<br />

D/K-OIRT,<br />

B/G-CCIR -<br />

D/K-OIRT,<br />

B/G-CCIR OFWK-9201<br />

D/K-OIRT,<br />

B/G-CCIR OFWK-9350<br />

B/G-CCIR,<br />

D/K-OIRT OFWK-3258<br />

D/K-OIRT,<br />

B/G-CCIR OFWK-9260<br />

B/G-CCIR,<br />

NICAM OFWG-9251<br />

D/K-OIRT,<br />

B/G-CCIR, I<br />

D/K-OIRT,<br />

B/G-CCIR<br />

D/K-OIRT,<br />

B/G-CCIR<br />

D/K-OIRT,<br />

B/G-CCIR<br />

D/K-OIRT,<br />

B/G-CCIR<br />

D/K-OIRT,<br />

B/G-CCIR<br />

D/K-OIRT,<br />

B/G-CCIR<br />

D/K-OIRT,<br />

B/G-CCIR<br />

OFWK-9260<br />

OFWK-3254<br />

OFWK-3264<br />

OFWK-3351<br />

OFWK-3351<br />

OFWK-3264<br />

OFWK-3350<br />

OFWK-3258


Type<br />

FP-3507<br />

FP-3606<br />

FTP-3801<br />

FP-3607<br />

FP-3608<br />

FP-4001<br />

FP-4002<br />

Table 3. SAW filters for cable TV modulators.<br />

Center<br />

frequency<br />

[MHz]<br />

35,0<br />

35,4<br />

35,0<br />

36,0<br />

Insertion<br />

loss [dB]<br />

26<br />

26<br />

33,5<br />

34<br />

32<br />

13<br />

20<br />

1 dB<br />

bandwidth<br />

[MHz]<br />

6,5<br />

6,0<br />

33,5<br />

7,5<br />

8,0<br />

0,8<br />

-<br />

3 dB<br />

bandwidth<br />

[MHz]<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

0,45<br />

40,0<br />

39,8<br />

*) B/G: CCIR, Germany, Europe<br />

D/K: OIRT, eastern standard<br />

L: France<br />

I: Great Britain<br />

Table 4. Professional SAW filters.<br />

Standard* )<br />

D/K<br />

D/K<br />

D/K<br />

L<br />

I<br />

B/G<br />

Package<br />

TS-58<br />

TS-58<br />

PCZ-24<br />

PCZ-14<br />

TS-59<br />

TS-59<br />

TS-58<br />

Type<br />

Center<br />

frequency<br />

[MHz]<br />

Insertion<br />

loss [dB]<br />

1 dB<br />

bandwidth<br />

[MHz]<br />

3 dB<br />

bandwidth<br />

[MHz]<br />

Package<br />

FP-3557 35,7 22 7,5 - TS-59M<br />

FT-3892 36,5 21 6,5 - TS-59M<br />

FP-4301 43,2 21 - min. 1,8 TS-59M<br />

FP-6008 60,0 18 - min. 8,0 DIL-14<br />

FP-7005<br />

FP-7010A1<br />

FP-7010A2<br />

FP-7010A3<br />

FP-7014<br />

FP-7030C<br />

FP-7030E<br />

70,0<br />

26<br />

20<br />

20<br />

20<br />

26<br />

30<br />

33<br />

5<br />

10<br />

10<br />

12<br />

14<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

30<br />

30<br />

PCZ-14<br />

PCZ-14<br />

PCZ-14<br />

DIL -14<br />

PCZ-14<br />

PCZ-14<br />

PCZ-14<br />

FA-1647 164,465 1,5 - 0,14 DIL-14<br />

Frequency f p<br />

[MHz]<br />

Attenuation at<br />

frequency f p [dB]<br />

Table 5. Notch filters<br />

Bandwith<br />

[kHz]<br />

Metal package<br />

[mm]<br />

100÷500 ≥ 40dB ≥ 35 60x27x19<br />

Table 6. SAW, PSAW and STW delay lines<br />

Type<br />

Center<br />

frequency<br />

[MHz]<br />

DL165 DL267 DL313 DL506 DL701 DL702 DL741 DL742 DL801 DL802<br />

~165 ~267 ~313 ~506 ~70 ~70 ~74,5 ~74,5 ~80 ~80<br />

Table 7. SAW and PSAW resonators<br />

Type RS164 RS303 RS357 RS423 RS434 RS512 RS701 RS702<br />

Center<br />

frequency<br />

[MHz]<br />

~164 ~303 ~357 ~423 ~434 ~512,5 ~70,3 ~70,3<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41; Fax: (+48 22) 834 90 03; Fax: (48 22 ) 864 54 96<br />

Contact person:<br />

Waldemar Soluch, Prof.DSc. Tel.: (+48 22) 835 30 41 ext. 121<br />

e-mail: soluch_w@itme.edu.pl


Institute of Electronic Materials Technology<br />

APPLICATION<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: (+48 22) 835 30 41, Tel.:(+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

e-mail: itme@itme.edu.pl<br />

ITS-90 Fixed–Point Sealed Cells of metals<br />

as temperature standards<br />

<strong>ITME</strong>’s Metal Fixed- Point Sealed Cells frequent use, are designed for realizing ITS – 90 temperature scale.<br />

Metal freeze – point cells are very close to the theoretical freezing temperature and provide plateaus that<br />

are both stable and long lasting.<br />

Fixed-Point Cells are used by national temperature labs, by owners of a reference thermometers to<br />

comparison – calibrate industrial thermometers and testing devices for temperature measurements.<br />

SPECIFICATION<br />

A – Graphite crucible<br />

B – High-Purity metal<br />

C – Sealed quartz envelope<br />

D – Measurement cavity<br />

Metal<br />

Nominal Temperature<br />

Values [ o C]<br />

Freezing time – “plateau”<br />

[hour]<br />

Downgrade of “plateau”<br />

(15% ÷ 85% freezing<br />

time range) [mK]<br />

Cell uncertainty<br />

[mK]<br />

Indium (In) 156,5985 4,5 0,12 0,2<br />

Tin (Sn) 231,928 6,0 0,15 0,2<br />

Zinc (Zn) 419,527 7,0 0,20 0,2<br />

Aluminum (Al) 660,323 10,0 0,20 0,5<br />

Silver (Ag) 961,78 10,0 1,00 1,0<br />

CHARACTERISTIC<br />

<strong>ITME</strong>’s cells are carefully constructed in our state-of the-art lab, using high density, high-purity graphite<br />

crucibles containing high purity metal samples. The crucible is enclosed within a sealed quartz glass<br />

envelope that is evacuated and back-filled with high-purity argon gas under pressure 1013,25hPa.<br />

Metal Fixed – Point Cells datas are attestated by Polish Central Office of Measures in document called a<br />

calibration certifciate.<br />

For more information please contact:<br />

Tel.: (+48 22) 834 91 86; (+48 22) 835 30 41 ext. 170, 430<br />

Fax: (+48 22 ) 864 54 96; Fax: (+48 22) 834 90 03<br />

Contact person: Andrzej Hruban, Ph.D.<br />

e-mail: hruban_a@itme.edu.pl


Institute of Electronic Materials Technology<br />

133 Wólczyńska str., 01-919 Warsaw, POLAND<br />

Tel.: centr. (+48 22) 835 30 41÷ 49, Tel: (+48 22) 834 90 03, Fax: (+48 22 ) 864 54 96<br />

http://www.itme.edu.pl<br />

e-mail: itme@itme.edu.pl<br />

LABORATORY OF CHARACTERISATION<br />

OF HIGH PURITY MATERIALS<br />

SCOPE OF OPERATION:<br />

• Design and elaboration of analytical methods (also wellsuited to<br />

environmental protection needs)<br />

• Analysis of chemical composition of inorganic materials,<br />

• Trace analysis of high purity materials, semiconductor materials, ceramics, optical and technical glasses,<br />

complex alloys, composits<br />

• Environmental analysis<br />

• Improvement well-known and practical application new instrumental techniques<br />

SCOPE OF ACCREDITATION<br />

Material:<br />

* Water and<br />

Wastewater<br />

* Air on the work<br />

place<br />

Trace elements:<br />

Cr, Cu, Pb, Zn, Cd, Fe, Na, K, As, Mn, Ni, Mg, (0,1÷1000 ppm)<br />

AsH 3 , PH 3 , NO x<br />

The LABORATORY is providing services covering:<br />

• trace analysis of high purity materials ( metals, oxides, nitrides)<br />

• analysis of materials for<br />

optoelectronic:GaN, SiC<br />

piezoelectronics: LiNbO 3 , LiTaO 3 , LiB 4 O 7 , quartz; GdCa 4 O(BO 3 ) 3, NdCa 4 O(BO 3 ) 3<br />

laser techniques: YAG: Nd,Er,Ho,Tm,Pr; Yb; Yb 3 Al 5 O 12 : (YbAG):Er; YVO 4 :Ho,Yb,Er,Tm; La 3 La 2 Ga 3 O 12 :Cr;<br />

Sr 3 Y(BO) 3 (BOYS):Yb; Sr x Ba 1-x Nb 2 O 6 (SBN):Ce<br />

aluminate scintillators: LuAlO 3 (LuAP):Pr,Cr,Mo<br />

optics: CaF 2 , BaF 2 , LiF, LiYF 4 : Pr,Ho,Tm,Pr;<br />

superconductivity materials: SrLaAlO 4 , SrLaGaO 4 , SrLaGa 3 O 7 :Ho;<br />

different kinds of optical and technical glasses;<br />

• analysis of ceramics;<br />

• analysis of rare earth elements<br />

• analysis water and wastewater; environmental materials; air<br />

Laboratory carries out analysis using modern instrumental techniques (FAAS, GFAAS, ICP-AES, UV-VIS)<br />

and classical chemistry<br />

LABORATORY has CERTYFICATE OF TESTING LABORATORY ACCREDITATION Nr AB 267 issued by<br />

Polish Centre for Accreditation. Laboratory is in conformance with the standard PN-EN ISO/IEC 17025:2005<br />

Scope of accreditation: determination of impurities in water and wastewater, AsH 3 , PH 3 , NO x in air at work place<br />

For more information please contact:<br />

Tel.: (+48 22) 835 30 41 ext. 140, 481,<br />

Fax.: (+48 22) 834 90 03, fax.: (48 22 ) 864 54 96<br />

Contact person: Wanda Sokołowska,<br />

Ph.D./Eng. / e-mail: sokolo_w@itme.edu.pl

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!