11.03.2014 Views

Rahul Dewan - Jacobs University

Rahul Dewan - Jacobs University

Rahul Dewan - Jacobs University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3. COMPUTATIONAL MODELING OF OPTICAL WAVE PROPAGATION<br />

ɛ En+1 x (i, j, k) − Ex n (i, j, k)<br />

∆t<br />

≈<br />

ɛ ∆t<br />

+ σE n+ 1/2<br />

x (i, j, k)<br />

(<br />

E<br />

n+1<br />

x (i, j, k) − Ex n (i, j, k) ) + σ (<br />

E<br />

n+1<br />

x (i, j, k) − Ex n (i, j, k) )<br />

2<br />

= Hn+ 1/2<br />

z (i, j + 1, k) − H n+ 1/2<br />

z (i, j, k)<br />

− Hn+ 1/2<br />

y (i, j, k + 1) − H n+ 1/2<br />

y (i, j, k)<br />

∆y<br />

∆z<br />

Solving for Ex<br />

n+1 (i, j, k), we have<br />

E n+1<br />

x (i, j, k) =<br />

1<br />

( ɛ<br />

∆t + σ 2<br />

)<br />

∆y<br />

(<br />

H<br />

n+1/2<br />

z (i, j + 1, k) − H n+ 1/2<br />

z (i, j, k) )<br />

−<br />

1<br />

( ɛ<br />

∆t + σ 2<br />

)<br />

∆z<br />

(<br />

H<br />

n+1/2<br />

y (i, j, k + 1) − H n+ 1/2<br />

y (i, j, k) )<br />

( ɛ<br />

∆t − σ 2<br />

)<br />

+ ( ɛ + )E σ x n (i, j, k) (3.33)<br />

∆t 2<br />

Similarly, by applying the same procedure to equation (3.28) and (3.29), the explicit<br />

finite difference equations for the other 2 components of E can be derived<br />

E n+1<br />

y (i, j, k) =<br />

1<br />

( ɛ<br />

∆t + σ 2<br />

)<br />

∆z<br />

(<br />

H<br />

n+1/2<br />

x (i, j, k + 1) − H n+ 1/2<br />

x (i, j, k) )<br />

−<br />

1<br />

( ɛ<br />

∆t + σ 2<br />

)<br />

∆x<br />

(<br />

H<br />

n+1/2<br />

z (i + 1, j, k) − H n+ 1/2<br />

z (i, j, k) )<br />

( ɛ<br />

∆t − σ 2<br />

)<br />

+ ( ɛ + )E σ y n (i, j, k) (3.34)<br />

∆t 2<br />

E n+1<br />

z (i, j, k) =<br />

1<br />

( ɛ<br />

∆t + σ 2<br />

)<br />

∆x<br />

(<br />

H<br />

n+1/2<br />

y (i + 1, j, k) − H n+ 1/2<br />

y (i, j, k) )<br />

−<br />

1<br />

( ɛ<br />

∆t + σ 2<br />

)<br />

∆y<br />

(<br />

H<br />

n+1/2<br />

x (i, j + 1, k) − H n+ 1/2<br />

x (i, j, k) )<br />

( ɛ<br />

∆t − σ 2<br />

)<br />

+ ( ɛ + )E σ z n (i, j, k) (3.35)<br />

∆t 2<br />

The six equations (3.30)−(3.35) are the first order difference equations defining<br />

Yee’s algorithm and the foundation of the FDTD method [79, 80]. It can be noted from<br />

equations (3.30) till (3.35) and from Fig. 3.2, that the components of E and H are<br />

interlaced within the unit cell and are evaluated at alternate half-time steps. Thus the<br />

FDTD algorithm is also called leap-frog algorithm. In such a configuration, in order<br />

to update the electric field components (E n ) the magnetic field components (H n− 1/2<br />

)<br />

calculated in the previous step are used, and the updated electric field components<br />

38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!