04.05.2014 Views

Some Biological Activities of Vine Stilbens and New ... - Oiv2010.ge

Some Biological Activities of Vine Stilbens and New ... - Oiv2010.ge

Some Biological Activities of Vine Stilbens and New ... - Oiv2010.ge

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Trans-resveratrol <strong>and</strong> ε-viniferin in red Georgian wines<br />

M. Bezhuashvili, M. Kokhtashvili, T. Kobaidze, N. Vepkhishvili<br />

Institute <strong>of</strong> Horticulture, Viticulture <strong>and</strong> Oenology <strong>of</strong> Georgia<br />

#6, Marshal Gelovani St., 0159, Tbilisi, Georgia<br />

mbezhuashvili@yahoo.com<br />

ABSTRACT<br />

At present, out <strong>of</strong> the rich spectrum <strong>of</strong> the phenol substances <strong>of</strong> Georgian red wines, stilbens<br />

are not thoroughly studied. In 1991-1994, we isolated <strong>and</strong> identified from Rkatsiteli vine<br />

species trans-resveratrol, ε-viniferin <strong>and</strong> two Tetramers <strong>of</strong> resveratrol. The dependence <strong>of</strong><br />

trans-resveratrol concentration in the red Georgian wines on the vine species <strong>and</strong> wine type<br />

has been identified. Of naturally semi-sweet, semi-sweet, dry <strong>and</strong> naturally cleared fortified<br />

wines, trans-resveratrol was found in the greatest concentrations in the fortified wines. 0,78-<br />

3,20 mg/l (in Saperavi); 0,69-2,62 mg/l (Otskhanuri Sapere); 0,65-2,87mg/l (Cabernet<br />

Sauvignon); 0,47-1,92 mg/l (Tavkveri). ε-viniferin in self-cleared dry bulk wine <strong>of</strong> Saperavi<br />

<strong>and</strong> Cabernet Sauvignon amounts to 0,98 mg/l <strong>and</strong> 0,40 mg/l, respectively.<br />

Key words: Red wine, Trans-resveratrol, ε-viniferin.<br />

RESUME<br />

A nos jours parmi le spectre riche de produits phénoliques des vins rouges géorgiens les<br />

stilbènes ne sont pas encore étudiés complètement. En 1991-1994 il a été distingué et identifié<br />

du cépage Rkatsitéli le trans-resvératrol, la ε-viniférine et deux tetramètres de resvératrol. Il<br />

est découvert que dans les vins rouges géorgiens le taux de concentration de trans-resvératrol<br />

dépend des cépages de vignes et des types de vins. Le taux de concentration est élevé dans les<br />

vins naturellement demi-sucré, demi-sucré, sec et les vins fortifiés filtrés naturellement.<br />

Sapéravi 0,78 – 3,20 mg/L ; Otskhanouri Sapéré 0,69 – 2,62 mg/L ; Le taux de ε-viniférine<br />

dans les vins fins de Sapéravi et Cabernet Sauvignon filtrés naturellement, secs est : 0,98<br />

mg/L et 0,40 mg/L.<br />

Mots clés : Vin rouge, Trans-resvératrol, ε-viniférine.<br />

INTRODUCTION. Georgia is the homel<strong>and</strong> <strong>of</strong> vine <strong>and</strong> wine. The gene pool <strong>of</strong> Georgian<br />

vines including approximately 525 unique species <strong>of</strong> white <strong>and</strong> versicolored vine has been<br />

tried by the Georgians for centuries. The diversified technologies to produce different types <strong>of</strong><br />

wine developed as a result <strong>of</strong> the rich experience, have been shifted to one generation to<br />

another <strong>and</strong> as time went, they were perfected <strong>and</strong> new technologies were developed. In this<br />

respect, the merit <strong>of</strong> Georgian scientists as the foundation <strong>of</strong> Georgian viticulture <strong>and</strong><br />

winemaking is worth mentioning. The curative properties <strong>of</strong> grape <strong>and</strong> wine always attracted<br />

a great deal <strong>of</strong> attention <strong>of</strong> different scientific branches. This is particularly true with red<br />

Georgian wines known for their curative properties from the ancient times <strong>and</strong> are a panacea<br />

in Georgian folk medicine, particularly, the bread soaked in red wine. The scientific progress<br />

allowed thoroughly explaining the close connection between the useful properties <strong>of</strong> red wine<br />

<strong>and</strong> its rich chemical content.<br />

1


The search for the fundamentals <strong>of</strong> the phenomenon <strong>of</strong> the “French paradox” was followed by<br />

the intense study <strong>of</strong> the content <strong>of</strong> red wines on an international scale. Numerous experiments<br />

have demonstrated the leading role <strong>of</strong> biologically active phenol substances in the formation<br />

<strong>of</strong> the curative <strong>and</strong> nutritive value <strong>of</strong> red wines. Identification <strong>of</strong> stilbens <strong>and</strong> particularly<br />

resveratrol, which is their monomer representative, <strong>and</strong> their determination in red <strong>and</strong> pink<br />

wines made <strong>of</strong> different vine species in a range <strong>of</strong> countries is associated with these studies.<br />

(Waterhouse,1993; Roggero, Archier, 1994; .Lamuela-Raventos et al.,1995; Romero-<br />

Perez et al.,1996; Lamuela-Rawentos, Waterhouse, 1993; Lamikarna, et al.,1996).The<br />

further studies, besides resveratrol, identified its derivatives: piceids, dimmers: ε-viniferin <strong>and</strong><br />

δ-viniferin; trimer α-viniferin, etc. as well as other stilbens. (Ribeiro de Lima et al.,1999;<br />

Guebailia et al., 2006). Out <strong>of</strong> resveratrol isomers, it is red wines with the higher content <strong>of</strong><br />

trans-resveratrol if compared to cis-resveratrol. At the same time, trans-resveratrol is<br />

biologically more active than cis-resveratrol. The established diversified biological activities<br />

<strong>of</strong> stilbens greatly make for the positive effect <strong>of</strong> red wines against cardiovascular, cancerous,<br />

thrombotic <strong>and</strong> other diseases( Blond et al., 1995; Klatsky et al.,1997; Yang et al., 1997;<br />

Szmitko, Verma, 2005; Balestrieri et al., 2008).<br />

.<br />

We started to study stilbens in 1991-1994, <strong>and</strong> individually isolated <strong>and</strong> identified transresveratrol,<br />

ε-viniferin <strong>and</strong> two tetramers <strong>of</strong> resveratrol from 1-year-old Rkatsiteli (Vitis<br />

vinifera L.) vine shoot (Bezhuashvili et al., 1991; Bezhuashvili et al., 1997; Bezhuashvili,<br />

1994).<br />

Trans-resveratrol<br />

ε-viniferin<br />

2


Tetramer-I<br />

Tetramer-II<br />

Then, we continued studying them in red Georgian wines. It should be noted that a<br />

Georgian scientist Durmishidze S. <strong>and</strong> his colleagues have made a great contribution to the<br />

study <strong>of</strong> the diversified spectrum <strong>of</strong> phenol compounds <strong>of</strong> the vine species spread in Georgia<br />

(Durmishidze, Khachidze, 1979; 1985). Out <strong>of</strong> phenol compounds, proantocyanidines<br />

(oligomeric <strong>and</strong> polymeric), phenolic acids, anthocyanins, catechines, flavonols, etc. have<br />

been identified. Saperavi species growing in different regions <strong>of</strong> Kakheti have been studied<br />

by us, <strong>and</strong> we identified the differences between the chemical compositions <strong>of</strong> bulk wines.<br />

The property <strong>of</strong> an early (9-month-long) stabilization <strong>of</strong> Saperavi growing in Khashmi has<br />

been identified in Kakheti Region. This property is demonstrated by the wine changing for the<br />

coloured complex <strong>of</strong> anthocyanins by preserving its intense ruby color, with the colouring<br />

intensity coefficient T


engaged in an intense study in the direction <strong>of</strong> “Wine <strong>and</strong> health” to identify specifically the<br />

stilben spectrum in red Georgian wines. At present, we have identified <strong>and</strong> determined<br />

resveratrol dimmer ε-viniferin.<br />

MATERIALS AND METHODS. We used the different types <strong>of</strong> naturally cleared red<br />

wines made with Saperavi, Otskhanuri Sapere, Cabernet Sauvignon <strong>and</strong> Tavkveri species as<br />

the objects <strong>of</strong> the study, in particular, dry table, naturally semi-sweet, semi-sweet <strong>and</strong> fortified<br />

wines. For qualitative <strong>and</strong> quantitative analyses <strong>of</strong> trans-resveratrol, we extracted the wines in<br />

advance with ethyl acetate <strong>and</strong> used the gained fraction for analyses. We used thin-layer<br />

chromatography with silufol plates (20 cm x 20 cm), system: chlor<strong>of</strong>orm : methanol (80:20)<br />

<strong>and</strong> denitrated sulfanilic acid as a developer. We defined the quantity <strong>of</strong> trans-resveratrol by<br />

high-efficiency liquid chromatography in terms <strong>of</strong> gradient. The column <strong>of</strong> Nucleosil C 18 ,<br />

eluent A: water + H3PO4; eluent B: acetonitrile+H3PO4, pH=3,5-4,0. Out <strong>of</strong> naturally cleared<br />

dry table bulk wines made with the 2008 harvest <strong>of</strong> Saperavi <strong>and</strong> Cabernet Sauvignon, we<br />

isolated the total stilbens with further treatment <strong>of</strong> their ethyl acetate fractions (Ribeiro de<br />

Lima et al., 1999). We analyzed the gained fraction by high-efficiency liquid chromatography<br />

in terms <strong>of</strong> gradient (the chromatograph made by “Varian”); UV detector/visible spectrum,<br />

column – Microsorb 100 C18, 250X4,6 LxId (mm); 5µm – Particle Size. Eluent A: TF<br />

(trifluoroacetic acid) 0,025% water solution; eluent B: AСN/AA, 80/20 (v/v); (Guebailia, et<br />

al., 2006).<br />

RESULTS AND DISCUSSION. The gained results demonstrate that the concentration <strong>of</strong><br />

trans-resveratrol in bulk wines depends on different factors, one <strong>of</strong> which is the generic factor.<br />

In this respect, Saperavi <strong>and</strong> Otskhanuri Sapere are the most obvious examples. The<br />

concentration <strong>of</strong> trans-resveratrol in bulk wines also changes according to the sugar content <strong>of</strong><br />

the must. In particular, within the range <strong>of</strong> 19,1-26,0%, the content <strong>of</strong> trans-resveratrol in the<br />

red wines made <strong>of</strong> Saperavi with different sugar contents changes from 1,69 mg/l to 2,87<br />

mg/l; for Otskhanuri Sapere (with the sugar content <strong>of</strong> 19,2%-22,4%), it is 1,25 mg/l 1,95<br />

mg/l <strong>and</strong> for Cabernet Sauvignon (with the sugar content <strong>of</strong> 19,3%-22,7%), it is 1,15 mg/l to<br />

2,25 mg/l. At this point, in addition to the generic factor, the factor <strong>of</strong> alcohol-content <strong>of</strong> the<br />

pomace fermented is obviously seen. As for the wine type, it is seen as the factor making the<br />

wines made with the same grape species significantly different from one another with their<br />

concentration <strong>of</strong> trans-resveratrol. This is proved by the diagram in “Fig. 1”.<br />

“Fig. 1”. Change <strong>of</strong> the concentration <strong>of</strong> trans-resveratrol according to the types <strong>of</strong> wine.<br />

I – naturally semi-sweet, II – semi-sweet, III – dry, IV – fortified.<br />

Among the naturally semi-sweet, semi-sweet, dry <strong>and</strong> fortified wines, the concentration <strong>of</strong><br />

trans-resveratrol is the highest in the fortified wine <strong>and</strong> is the least in the naturally semi-sweet<br />

wine. Besides the above-mentioned factors, temperature <strong>and</strong> squeezing <strong>and</strong> mixing <strong>of</strong><br />

4


fermented pomace were also identified as the factors affecting the quantity <strong>of</strong> trans-resveratrol<br />

in bulk wines (Kokhtashvili, Bezhuashvili; 1998, Kokhtashvili et al. 2002; Kokhtashvili,<br />

2006).<br />

The data <strong>of</strong> thin-layer <strong>and</strong> liquid chromatographs <strong>of</strong> the total stilben fraction gained from<br />

dry table bulk wines made <strong>of</strong> Saperavi <strong>and</strong> Cabernet Sauvignon prove their variety. The<br />

stilben spectrum, besides trans-resveratrol <strong>and</strong> ε-viniferin, is presented by some other stilbens<br />

(“Fig. 2”). The concentration <strong>of</strong> ε-viniferin in Saperavi bulk wines is 0.98 mg/l <strong>and</strong> is 0.40<br />

mg/l in Cabernet Sauvignon. At present, an intense research is carried out to study the stilben<br />

spectrum in red Georgian wines.<br />

“Fig. 2”. Liquid chromatogram <strong>of</strong> stilben fractions gained from dry table bulk wines <strong>of</strong><br />

Saperavi.<br />

CONCLUSIONS. The content <strong>of</strong> biologically active high-oxidant trans-resveratrol <strong>and</strong> ε-<br />

viniferin in red Georgian wines rich in phenol substances is a certain pro<strong>of</strong> <strong>of</strong> the useful<br />

properties <strong>of</strong> the given wines. Thoroughly studied stilben spectrum in red Georgian wines as<br />

that <strong>of</strong> the product <strong>of</strong> a functional designation, is an important bio-chemical marker.<br />

ACKNOWLEDGMENTS. We thank the following scientists for their assistance in liquid<br />

chromatography:<br />

Shubladze L., the head <strong>of</strong> the central laboratory <strong>and</strong> Sikharulidze T., the chemical engineer<br />

<strong>of</strong> instrumental analysis <strong>of</strong> the Institute <strong>of</strong> Horticulture, Viticulture <strong>and</strong> Oenology <strong>of</strong> Georgia.<br />

Butkova O. <strong>of</strong> the Institute <strong>of</strong> Beer <strong>and</strong> S<strong>of</strong>t Drinks in Moscow <strong>and</strong> Larionov O. <strong>of</strong> the<br />

Institute <strong>of</strong> Physical Chemistry.<br />

5


Bibliography<br />

1. Balestrieri M., Schiano C., Felice F., Casamassimi A., Balestrieri A., Milone L., Sarvillo<br />

L., Napoli Cl. 2008. Effect <strong>of</strong> low doses <strong>of</strong> red Wine <strong>and</strong> Pure Resveratrol on Circulating<br />

Endothelial Progenitor Cells. Journal <strong>of</strong> Biochemistry, 143 (2): pp. 179-186.<br />

2. Bezhuashvili M., Mujiri L., Kurkin V., Zapesochnaya G. 1991. Resveratrol <strong>of</strong> vine.<br />

Timber chemistry, №6: pp. 75-76.<br />

3. Bezhuashvili M. 1994. Development <strong>of</strong> theoretical basics for vine <strong>and</strong> oak timber lignin<br />

<strong>and</strong> identification <strong>of</strong> the ways to use the gained products. Doctoral thesis, Tbilisi, 260 p.<br />

4. Bezhuashvili M., Mujiri L., Shashkov A., Chzhov O., Stomakhin A. 1997. Stlben<br />

tetramers <strong>of</strong> one-year vine shoots. Bioorganic chemistry, vol. 23, №12: pp. 979-987.<br />

5. Bezhuashvili M., Deisadze I., Kobaidze T. 2008. Correlation <strong>of</strong> proanthocyanins <strong>and</strong><br />

selected sorts <strong>of</strong> red bulk wines made <strong>of</strong> technical sorts <strong>and</strong> hybrids – immediate<br />

producers. Winemaking <strong>and</strong> Viticulture, №3.: pp. 20-22.<br />

6. Bezhuashvili M., Deisadze I., Shubladze L., Sikharulidze T. 2009. Chromatographic<br />

pr<strong>of</strong>ile <strong>of</strong> anthocyanins <strong>of</strong> the grape <strong>of</strong> red technical sorts <strong>and</strong> wines made <strong>of</strong> them.<br />

Magarach Winemaking <strong>and</strong> Viticulture, №3: pp.27-29.<br />

7. Bezhuashvili M., Vepkhishvili N., Kobaidze T. 2010. Identification <strong>and</strong> determination <strong>of</strong><br />

biologically active ε-viniferin in grapes <strong>and</strong> bulk wines <strong>of</strong> Saperavi <strong>and</strong> Cabernet<br />

Savignon sorts. Collection <strong>of</strong> Scientific Works <strong>of</strong> the National Institute <strong>of</strong> Grape <strong>and</strong><br />

Wine “Magarach”, Yalta,pp.71-75.<br />

8. Bezhuashvili M., Vepkhishvili N., Kobaidze T. 2010. Identification <strong>of</strong> resveratrol dimmer<br />

ε-viniferin in versicolored vine species. Georgian National Academy <strong>of</strong> Sciences,<br />

Republican Scientific Conference “<strong>Biological</strong>ly active natural <strong>and</strong> synthetic substances”.<br />

Tbilisi, March 30. The Theses. pp. 25-26.<br />

9. Blond Y., Denis M. Bezard I. 1995. Antioxidant action <strong>of</strong> resveratrol in Lipid<br />

peroxidation. Sciences Aliments, 15,: pp. 347-358.<br />

10. Durmishidze S., Khachidze O. 1979. Chemical composition <strong>of</strong> grape. Metsniereba.<br />

Tbilisi: Editor Lashkhi A.<br />

11. Durmishidze S., Khachidze O. 1985. Biochemistry <strong>of</strong> vine. Metsniereba. Tbilisi: . Editor<br />

Kezeli T.<br />

12. Durmishidze S. 1955, Tannin <strong>and</strong> anthocyanins <strong>of</strong> the vine <strong>and</strong> wine. Publishing house <strong>of</strong><br />

the Academy <strong>of</strong> Sciences <strong>of</strong> the USSR, Moscow: Editor Sisakian H.<br />

13. Guebailia H., Chilra K., Richard T., Mabrouk T., Furiga A., Vitrac X., Monthi Jean-<br />

Pierre, delaunay Yean-Claude, Merillon Yean-Michael. 2006. Hopeaphenol: The first<br />

resveratrol Tetramer in Wines from North Africa. J. Agric. Food Chem., 54: pp. 9559-<br />

9564.<br />

14. Klatsky A., Armstrong M., Friedman G. 1997. Red wine, white wine, liquor, beer <strong>and</strong> risk<br />

for coronary artery disease hospitalization. American Journal <strong>of</strong> Cardiology., 80: pp. 416-<br />

420.<br />

15. Kokhtashvili М., Bezhuashvili М. Identification <strong>of</strong> trans-resveratrol in some red grape<br />

species. Georgian Engineering <strong>New</strong>s. 1998, №4: pp. 104-106.<br />

16. Kokhtashvili М., Bezhuashvili М., Pataraia М. Study <strong>of</strong> trans-resveratrol in dry table red<br />

wines. Collection <strong>of</strong> Works <strong>of</strong> Georgian Agrarian University, Tbilisi, 2002, vol. 19: pp.<br />

79-86<br />

17. Kvlividze D., Bezhuashvili M. 2005-a. Phenol compounds in the wine <strong>of</strong> Saperavi sort<br />

<strong>and</strong> its table bulk wines for wines controlled by origination. Winemaking <strong>and</strong> Viticulture,<br />

№2: pp. 21-22.<br />

6


18. Kvlividze D., Bezhuashvili M. 2005-b.Study <strong>of</strong> anthocyanins <strong>of</strong> the Saperavi sort grape<br />

<strong>and</strong> making dry table bulk wines <strong>of</strong> it according to the place <strong>of</strong> origination. Magarach<br />

Winemaking <strong>and</strong> Viticulture, №1: pp. 25-27.<br />

19. Kvlividze D., Bezhuashvili M. 2005-c. Economic <strong>and</strong> technological properties <strong>of</strong> Saperavi<br />

in Khashmi microzone. The Bulletin <strong>of</strong> the Academy <strong>of</strong> Agricultural Sciences <strong>of</strong> Georgia.<br />

№14: pp. 47-55.<br />

20. Lamikarma O., Grimm C., Rodin B., Lnyang I. 1996. Hydroxylated stilbenes in Selected<br />

American Wines. j.Agric.food Chem., 44: pp. 1111-1115.<br />

21. Lamuela-Raventos, R., romero-Perez, A., Waterhouse, A., Torre-Bornat, M. 1995.Direct<br />

HPLC Analysis <strong>of</strong> cis- <strong>and</strong> trans-resveratrol <strong>and</strong> piceid isomers in Spanish red vitis<br />

vinifera wines. J. Agric. Food Chem., 43: pp.281-283.<br />

22. Lamuela-Rawentos R., Waterhouse A. 1993. Occurrence <strong>of</strong> Resveratrol <strong>and</strong> California<br />

wines by a new HPLQ method. J. Agric. Food Chem. 41: pp. 521-524.<br />

23. Ribeiro de Lima M., Waffo Heguo, P., Tessedre, P., Pujolas, A., Vercauteren, I., Cabanis,<br />

I. C., Merillon, I. 1999. determination <strong>of</strong> stilbenes (trans-astrigin, cis- <strong>and</strong> trans-piceid,<br />

<strong>and</strong> cis- <strong>and</strong> trans-resveratrol) in Portuguese wines. J. Agric. Food Chem., 47: pp.2665-<br />

2670.<br />

24. Roggero, I., Archier, P. 1994. Quantitave determination <strong>of</strong> resveratrol <strong>and</strong> one <strong>of</strong> its<br />

glycosides in wines. Sci. Alimests, 14: pp. 99-107.<br />

25. Romero-Perez A., Lamuela – Raventos R., Waterhouse A., de la Torre-Boronat M. 1996.<br />

Levels <strong>of</strong> cis- <strong>and</strong> trans- rezveratrol <strong>and</strong> their Glucosides in white <strong>and</strong> Rose Vitis vinifera<br />

Wines from Spain. J. Agric. Food Chem., 44: pp. 2124-2128.<br />

26. Szmitko P., Verma S. 2005. Antiatherogenic potential <strong>of</strong> red wine: clinican update. Am<br />

Journal Physiol Heart Circ. Physiol.,288.:pp. 2023-2030.<br />

27. Yang M., Gai L., Udeani G., Slowing K., Thomas C., Beecher C., Fong H., Fansworth N.,<br />

Kinghorn A., Metha R., Moon R., Perruto Y. 1997. Cancer chemopreventive Activity <strong>of</strong><br />

Resveratrol, a natural Product Derived from Grapes. Science, 275: pp. 218-220.<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!