23.05.2014 Views

DVCS at 6/12 GeV, and ideas for the EIC

DVCS at 6/12 GeV, and ideas for the EIC

DVCS at 6/12 GeV, and ideas for the EIC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong>, <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>the</strong> <strong>EIC</strong><br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3 Aubière, France<br />

Electron-Ion Collider Workshop<br />

Mar 14-15, 2010<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 1


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Motiv<strong>at</strong>ion<br />

<strong>DVCS</strong> experimentally: interference with Be<strong>the</strong>-Heitler (BH)<br />

At leading twist:<br />

d 5 → σ −d 5 ← σ = Im (T BH · T DV CS )<br />

d 5 → σ +d 5 ← σ = |BH| 2 + Re (T BH · T DV CS ) + |DV CS| 2<br />

∫ +1<br />

T DV CS =<br />

∫ +1<br />

−1<br />

H(x, ξ, t)<br />

P dx<br />

−1 x − ξ<br />

} {{ }<br />

Access in helicity-independent cross section<br />

Carlos Muñoz Camacho<br />

H(x, ξ, t)<br />

dx<br />

x − ξ + iɛ + · · · =<br />

− iπ H(x = ξ, ξ, t) + . . .<br />

} {{ }<br />

Access in helicity-dependent cross-section<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 2


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Motiv<strong>at</strong>ion<br />

The <strong>DVCS</strong> program “worldwide”<br />

◮ HERMES <strong>at</strong> DESY:<br />

◮ Beam (BSA), charge (BCA) <strong>and</strong> transverse target (TSA)<br />

asymetries published<br />

◮ Several ongoing analysis + recoil detector installed 1 year<br />

be<strong>for</strong>e shutdown: results to come. . .<br />

◮ Hall A <strong>and</strong> Hall B partially overlapping, partially<br />

complementary, active programs:<br />

◮ Hall A: high accuracy, limited kinem<strong>at</strong>ics<br />

◮ Hall B: wide kinem<strong>at</strong>ic range, limited accuracy<br />

◮ Very different system<strong>at</strong>ics<br />

◮ COMPASS <strong>at</strong> CERN? (proposal prepar<strong>at</strong>ion underway)<br />

◮ The roadmap:<br />

◮ Early results (≈ 2001) from non-dedic<strong>at</strong>ed exp. (HERMES+CLAS)<br />

◮ First round of dedic<strong>at</strong>ed experiments in Halls A/B in 2004/5<br />

◮ Second round on 2008–2010<br />

◮ Compeling <strong>DVCS</strong> program in Halls A/B <strong>at</strong> 11 <strong>GeV</strong> (≈2013-15)<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 3


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Non-dedic<strong>at</strong>ed experiments<br />

HERMES<br />

27.5 <strong>GeV</strong> polarised<br />

e + /e − beam of HERA<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 4


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Non-dedic<strong>at</strong>ed experiments<br />

CLAS <strong>and</strong> HERMES (2001): beam spin asymmetries<br />

A LU : PRL 87, 182002 (2001)<br />

A UL : PRL 87, 182001 (2001)<br />

〈Q 2 , x B , −t〉 = 2.6 <strong>GeV</strong> 2 , 0.11, 0.27 <strong>GeV</strong> 2 0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

0 50 100 150 200 250 300 350<br />

φ (deg)<br />

A<br />

〈Q 2 , x B , −t〉 = 1.25 <strong>GeV</strong> 2 , 0.19, 0.19 <strong>GeV</strong> 2<br />

◮ Both results show, with a limited st<strong>at</strong>istics, a sin φ behaviour<br />

◮ Not fully exclusive<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 5


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Non-dedic<strong>at</strong>ed experiments<br />

Beam charge asymmetry (HERMES)<br />

A C<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

Integr<strong>at</strong>ed<br />

0 0.5 1 1.5 2 2.5 3<br />

|φ| (rad)<br />

cosφ<br />

A C<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

As a function of t<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-t (<strong>GeV</strong> 2 )<br />

Phys. Rev. D75, 011103 (2007)<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 6


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

0 0.5 0 0.2<br />

0 5 10<br />

0 0.5 0 0.2 0 5 10<br />

0 0.5 0 0.2 0 5 10<br />

0 0.5<br />

Non-dedic<strong>at</strong>ed experiments<br />

Beam charge asymmetry (2008)<br />

A C<br />

cosφ<br />

0.4<br />

0.2<br />

PRD75, 011103<br />

this work<br />

DD:Fac,D<br />

DD:Fac,no D<br />

DD:Reg,D<br />

DD:Reg,no D<br />

0<br />

A C<br />

cos(0φ)<br />

0<br />

-0.1<br />

A C<br />

cos(2φ)<br />

A C<br />

cos(3φ)<br />

0.1<br />

0<br />

-0.1<br />

0.1<br />

0<br />

-0.1<br />

0 0.2 0.4 0.6 0 0.1 0.2 0.3<br />

overall<br />

-t (<strong>GeV</strong> 2 )<br />

x B<br />

5 0 2 4 6 8 10<br />

Q 2 (<strong>GeV</strong> 2 )<br />

Carlos Muñoz Camacho<br />

JHEP 0806, 066 (2008)<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 7


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

0.2<br />

0<br />

-0.2<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

0 0.5<br />

0 0.2<br />

0 5 10<br />

0 0.5 0 0.2 0 5 10<br />

0 0.5<br />

0 5 10<br />

Non-dedic<strong>at</strong>ed experiments<br />

Transverse target spin asymmetry<br />

sin(φ-φ<br />

A s<br />

)<br />

UT<br />

0.2<br />

0<br />

-0.2<br />

8.1% scale uncertainty<br />

A UT, <strong>DVCS</strong><br />

J u =0.6<br />

0.4<br />

0.2<br />

A UT, I<br />

J u =0.6<br />

0.4<br />

0.2<br />

sin(φ-φ<br />

A s<br />

)cosφ<br />

UT<br />

0.2<br />

0<br />

cos(φ-φ<br />

A s<br />

)sinφ<br />

UT<br />

-0.2<br />

-0.4<br />

0.2<br />

0<br />

-0.2<br />

0 0.2 0.4 0.6<br />

overall<br />

-t (<strong>GeV</strong> 2 0 0.1 0.2 0.3 0 2 4 6 8 10<br />

)<br />

xB Q 2 (<strong>GeV</strong> 2 )<br />

JHEP 0806, 066 (2008)<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 8


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Non-dedic<strong>at</strong>ed experiments<br />

Recoil detector <strong>at</strong> HERMES<br />

Missing mass squared ep → eγX<br />

1000N/N DIS<br />

0.3 e +<br />

d<strong>at</strong>a<br />

-<br />

e d<strong>at</strong>a<br />

0.2<br />

MC sum<br />

elastic BH<br />

associ<strong>at</strong>ed BH<br />

semi-inclusive<br />

0.1<br />

0<br />

0 10 20 30<br />

2<br />

2<br />

M x (<strong>GeV</strong><br />

)<br />

Integr<strong>at</strong>ion window:<br />

−2.25 <strong>GeV</strong> 2 < M 2 x < 2.89 <strong>GeV</strong> 2<br />

◮ Not fully exclusive<br />

◮ Recoil detector oper<strong>at</strong>ed during last year of d<strong>at</strong>a taking<br />

◮ Analysis underway <strong>and</strong> results to come<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 9


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall A E00-110<br />

E00-110 experimental setup<br />

High Resolution Spectrometer<br />

100-channel scintill<strong>at</strong>or array<br />

132-block PbF 2 electromagnetic calorimeter<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 10


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall A E00-110<br />

Exclusivity<br />

Missing mass squared ep → eγX (E00-110)<br />

Raw H(e,e’γ)X Missing Mass 2 (after accidental subtraction).<br />

[ H(e,e’γ)X - H(e,e’γ)γY ]: Missing Mass 2<br />

H(e,e’γ)p<br />

H(e,e’γ)∆…<br />

+H(e,e’γp) sample,<br />

Normalized to H(e,e’γ)<br />

•••H(e,e’γp) simul<strong>at</strong>ion<br />

Exclusivity ensured by missing mass technique<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 11


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

2<br />

|BH+<strong>DVCS</strong>|<br />

2<br />

|BH|<br />

2<br />

|BH+<strong>DVCS</strong>|<br />

2<br />

- |BH|<br />

2<br />

2<br />

2<br />

2<br />

Hall A E00-110<br />

<strong>DVCS</strong> cross section in <strong>the</strong> valence region (Hall A: E00-110)<br />

◮ Helicity-dependent cross<br />

section ( → σ − ← σ ) <strong>at</strong><br />

Q 2 = 1.5, 1.9 <strong>and</strong> 2.3 <strong>GeV</strong> 2 .<br />

)<br />

4<br />

<strong>DVCS</strong> cross section (nb/<strong>GeV</strong><br />

0.04<br />

0.03<br />

0.02<br />

0<br />

0<br />

-0.02<br />

-0.03<br />

-0.04<br />

0.02<br />

0<br />

0<br />

-0.02<br />

< t > = - 0.33 <strong>GeV</strong><br />

E00-110<br />

Total fit<br />

Twist - 2<br />

90 180 270<br />

φ<br />

2<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

0.02<br />

0<br />

-0.02<br />

(deg)<br />

< t > = - 0.28 <strong>GeV</strong><br />

90 180 270<br />

2<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

0.02<br />

0<br />

-0.02<br />

φ (deg)<br />

< t > = - 0.23 <strong>GeV</strong><br />

90 180 270<br />

2<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

0.02<br />

0<br />

-0.02<br />

φ (deg)<br />

< t > = - 0.17 <strong>GeV</strong><br />

90 180 270<br />

2<br />

φ (deg)<br />

= 1.5 <strong>GeV</strong><br />

Q<br />

= 1.9 <strong>GeV</strong><br />

Q<br />

◮ Helicity-independent<br />

cross section ( → σ + ← σ ) <strong>at</strong><br />

Q 2 = 2.3 <strong>GeV</strong> 2 only .<br />

)<br />

4<br />

<strong>DVCS</strong> cross section (nb/<strong>GeV</strong><br />

0.02<br />

0<br />

-0.02<br />

0.1<br />

0.05<br />

0<br />

2<br />

< t > = - 0.33 <strong>GeV</strong><br />

E00-110<br />

Total fit<br />

Twist - 2<br />

E00-110<br />

2<br />

< t > = - 0.28 <strong>GeV</strong><br />

2<br />

< t > = - 0.23 <strong>GeV</strong><br />

2<br />

< t > = - 0.17 <strong>GeV</strong><br />

beam helicity-independent beam helicity-dependent<br />

90 180 270<br />

90 180 270<br />

90 180 270<br />

90 180 270<br />

φ (deg)<br />

φ (deg)<br />

φ (deg)<br />

φ (deg)<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> <strong>12</strong>


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall A E00-110<br />

E00-110 results<br />

)<br />

4<br />

<strong>DVCS</strong> cross section (nb/<strong>GeV</strong><br />

0.02 beam helicity-dependent<br />

0<br />

-0.02<br />

0.1<br />

0.05<br />

beam helicity-independent<br />

2<br />

|BH+<strong>DVCS</strong>|<br />

2<br />

|BH|<br />

0<br />

0 90 180 270 360<br />

φ (deg)<br />

(H, H ~ , E)<br />

I<br />

Im C<br />

5<br />

4<br />

3<br />

2<br />

1<br />

2<br />

2<br />

Q = 1.5 <strong>GeV</strong><br />

2<br />

2<br />

Q = 1.9 <strong>GeV</strong><br />

2<br />

2<br />

Q = 2.3 <strong>GeV</strong><br />

VGG model<br />

0<br />

0.15 0.2 0.25 0.3 0.35<br />

2<br />

-t (<strong>GeV</strong> )<br />

Twist-2: dominant contribution<br />

Contributions from BH 2 , <strong>DVCS</strong> 2<br />

<strong>and</strong> BH-<strong>DVCS</strong> interference<br />

Phys. Rev. Lett. 97, 262002 (2006)<br />

Physics Today, March 2007<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 13


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall A E00-110<br />

E00-110 results<br />

4<br />

3.5<br />

0.02 beam helicity-dependent<br />

3<br />

)<br />

4<br />

<strong>DVCS</strong> cross section (nb/<strong>GeV</strong><br />

0<br />

-0.02<br />

0.1<br />

0.05<br />

beam helicity-independent<br />

2<br />

|BH+<strong>DVCS</strong>|<br />

2<br />

|BH|<br />

0<br />

0 90 180 270 360<br />

φ (deg)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

1.4 1.6 1.8 2 2.2 2.4<br />

2 2<br />

Q (<strong>GeV</strong> )<br />

Twist-2: dominant contribution<br />

Contributions from BH 2 , <strong>DVCS</strong> 2<br />

<strong>and</strong> BH-<strong>DVCS</strong> interference<br />

Phys. Rev. Lett. 97, 262002 (2006)<br />

Physics Today, March 2007<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 13


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall A E03-106<br />

<strong>DVCS</strong> on <strong>the</strong> neutron: experiment E03-106 <strong>at</strong> JLab<br />

I exp<br />

)<br />

n<br />

Im(C<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

LD 2 target (F2 n(t) ≫ F 1 n(t) !) J u=-0.4<br />

J d=-0.6<br />

J u=0.3<br />

J d=0.2<br />

J u=0.6<br />

J d=0.8<br />

2<br />

t (<strong>GeV</strong> )<br />

σ → − σ ← = Γ(A sin ϕ + . . . )<br />

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1<br />

Charged particle veto<br />

in front of scintill<strong>at</strong>or array<br />

A = F 1 (t)H +<br />

Carlos Muñoz Camacho<br />

x B<br />

[F 1 (t) + F 2 (t)]<br />

2 − x ˜H t<br />

−<br />

B 4M 2 · F 2(t) · E<br />

} {{ }<br />

Main contribution <strong>for</strong> neutron<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 14


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall A E03-106<br />

<strong>DVCS</strong> on <strong>the</strong> neutron: experiment E03-106 <strong>at</strong> JLab<br />

LD 2 target (F2 n(t) ≫ F 1 n (t) !)<br />

J d<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

JLab Hall A<br />

n-<strong>DVCS</strong><br />

Charged particle veto<br />

in front of scintill<strong>at</strong>or array<br />

0.2<br />

+ J u<br />

J d = 0.18<br />

5<br />

± 0.14<br />

-0<br />

-0.2<br />

L<strong>at</strong>tice QCDSF<br />

-0.4<br />

-0.6<br />

-0.8<br />

HERMES Preliminary<br />

p-<strong>DVCS</strong><br />

-1<br />

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1<br />

J u<br />

σ → − σ ← = Γ(A sin ϕ + . . . )<br />

A = F 1 (t)H +<br />

Carlos Muñoz Camacho<br />

x B<br />

[F 1 (t) + F 2 (t)]<br />

2 − x ˜H t<br />

−<br />

B 4M 2 · F 2(t) · E<br />

} {{ }<br />

Main contribution <strong>for</strong> neutron<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 14


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall B E1-<strong>DVCS</strong><br />

BSA in a large kinem<strong>at</strong>ic domain (Hall B)<br />

2 2<br />

Q (<strong>GeV</strong> )<br />

0.2<br />

2<br />

-t = 0.28 <strong>GeV</strong><br />

A =<br />

→<br />

σ −<br />

←<br />

σ<br />

→<br />

σ +<br />

←<br />

σ<br />

≈<br />

α sin φ<br />

1 + β cos φ<br />

Simple models do not<br />

reproduce <strong>the</strong> d<strong>at</strong>a<br />

Carlos Muñoz Camacho<br />

4<br />

3<br />

2<br />

1<br />

0.1 0.2 0.3 0.4 0.5<br />

x B<br />

0.0<br />

-0.2<br />

0.2<br />

0.0<br />

-0.2<br />

Analysis of cross sections underway<br />

2<br />

-t = 0.49 <strong>GeV</strong><br />

0 90 180 270 360<br />

φ (deg)<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 15


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.5 1 1.5<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.5 1 1.5<br />

0 0.5 1 1.5<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.5 1 1.5<br />

0 0.5 1 1.5<br />

0 0.5 1 1.5<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.5 1 1.5<br />

0 0.5 1 1.5<br />

0 0.5 1 1.5<br />

0 0.5 1 1.5<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0 0.5 1 1.5<br />

0 0.5 1 1.5<br />

0.1<br />

0<br />

0 0.5 1 1.5<br />

Hall B E1-<strong>DVCS</strong><br />

BSA in a large kinem<strong>at</strong>ic domain (Hall B)<br />

0.3 0.10 < x < 0.15<br />

B<br />

)<br />

2<br />

(<strong>GeV</strong><br />

2<br />

α(t)<br />

0.2<br />

0.1<br />

Q<br />

0<br />

4<br />

0 0.5 1 1.5 2<br />

|t| (<strong>GeV</strong> )<br />

3<br />

A =<br />

→<br />

σ −<br />

←<br />

σ<br />

→<br />

σ +<br />

←<br />

σ<br />

≈<br />

α sin φ<br />

1 + β cos φ<br />

2<br />

Simple models do not<br />

reproduce <strong>the</strong> d<strong>at</strong>a<br />

1<br />

0.1 0.2 0.3 0.4 0.5<br />

x B<br />

Carlos Muñoz Camacho<br />

Analysis of cross sections underway<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 15


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall B<br />

Target spin asymmetry A UL (Hall B)<br />

Not dedic<strong>at</strong>ed result:<br />

0.4<br />

0.2<br />

A UL<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

0 50 100 150 200 250 300 350<br />

φ<br />

Degree<br />

Dedic<strong>at</strong>ed experiment took d<strong>at</strong>a in Hall B earlier this year<br />

Sensitivity to GPD ˜H<br />

O<strong>the</strong>r upcoming experiments (<strong>at</strong> 6 <strong>GeV</strong>):<br />

◮ More <strong>DVCS</strong> on unpolarized proton<br />

◮ <strong>DVCS</strong> on a transversely polarized target (conditionally approved)<br />

◮ <strong>DVCS</strong> on nuclei (He 4 )<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 16


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

E07-007: <strong>DVCS</strong>·BH – <strong>DVCS</strong> 2 separ<strong>at</strong>ion<br />

E07-007 (Hall A)<br />

σ(ep → epγ) = |BH| 2<br />

} {{ }<br />

+ I(BH · DV CS)<br />

} {{ }<br />

+ |DV CS| 2<br />

} {{ }<br />

Known to ∼ 1% Linear combin<strong>at</strong>ion of GPDs Bilinear combin<strong>at</strong>ion of GPDs<br />

<strong>DVCS</strong> cross section has a very rich azimuthal structure:<br />

◮ Azimuthal analysis allows <strong>the</strong> separ<strong>at</strong>ion of <strong>the</strong> different contributions to I<br />

if <strong>DVCS</strong> 2 is negligeble.<br />

◮ If <strong>DVCS</strong> 2 is important, I <strong>and</strong> <strong>DVCS</strong> 2 terms MIX in an azimuthal analysis.<br />

◮ The different energy dependence of I <strong>and</strong> <strong>DVCS</strong> 2 allow a full separ<strong>at</strong>ion.<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 17


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

E07-007: <strong>DVCS</strong>·BH – <strong>DVCS</strong> 2 separ<strong>at</strong>ion<br />

E07-007 (Hall A)<br />

σ(ep → epγ) = |BH| 2<br />

} {{ }<br />

+ I(BH · DV CS)<br />

} {{ }<br />

+ |DV CS| 2<br />

} {{ }<br />

Known to ∼ 1% Linear combin<strong>at</strong>ion of GPDs Bilinear combin<strong>at</strong>ion of GPDs<br />

<strong>DVCS</strong> cross section has a very rich azimuthal structure:<br />

◮ Azimuthal analysis allows <strong>the</strong> separ<strong>at</strong>ion of <strong>the</strong> different contributions to I<br />

if <strong>DVCS</strong> 2 is negligeble.<br />

◮ If <strong>DVCS</strong> 2 is important, I <strong>and</strong> <strong>DVCS</strong> 2 terms MIX in an azimuthal analysis.<br />

◮ The different energy dependence of I <strong>and</strong> <strong>DVCS</strong> 2 allow a full separ<strong>at</strong>ion.<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 17


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

E07-007: <strong>DVCS</strong>·BH – <strong>DVCS</strong> 2 separ<strong>at</strong>ion<br />

E07-007: Rosenbluth-like <strong>DVCS</strong> 2 –I separ<strong>at</strong>ion in Hall A<br />

E b =6.0 <strong>GeV</strong><br />

E b =3.64 <strong>GeV</strong><br />

◮ Clean separ<strong>at</strong>ion of BH-<strong>DVCS</strong> intereference term from pure <strong>DVCS</strong> 2<br />

◮ Scaling test on <strong>the</strong> real part of <strong>the</strong> <strong>DVCS</strong> amplitude<br />

◮ Rosenbluth separ<strong>at</strong>ion of σ L /σ T <strong>for</strong> ep → epπ 0<br />

BH<br />

4<br />

Simul<strong>at</strong>ed d<strong>at</strong>a<br />

D<br />

d σ<br />

4<br />

BH<br />

C<br />

(nb/<strong>GeV</strong> ) Simul<strong>at</strong>ed d<strong>at</strong>a<br />

<strong>DVCS</strong><br />

4 2<br />

C (F,F*)<br />

Re<br />

(nb/<strong>GeV</strong> )<br />

Fit<br />

dQ dx B<br />

dtdϕ<br />

I<br />

γγ<br />

Re<br />

1-σ<br />

Re<br />

d 4 σ (nb/<strong>GeV</strong> 4 Fit<br />

Re (C )<br />

I<br />

)<br />

Re (C I I<br />

I I<br />

γγ<br />

Re C<br />

+ ∆C )<br />

Re (C +∆ C )<br />

0.5<br />

I<br />

1-σ<br />

Re (C ) 3<br />

0<br />

eff 2.5<br />

2<br />

2<br />

2<br />

2<br />

=-0.33 <strong>GeV</strong> 2<br />

=-0.28 <strong>GeV</strong><br />

=-0.23 <strong>GeV</strong><br />

=-0.17 <strong>GeV</strong><br />

0.14 =-0.28 <strong>GeV</strong><br />

-0.5<br />

2<br />

=-0.23 0.14 I<br />

<strong>GeV</strong><br />

I<br />

2 2<br />

0.14<br />

0.14<br />

0.14<br />

0.14 Re (C +∆ C )<br />

=-0.17 <strong>GeV</strong><br />

-1<br />

0.14<br />

1.5<br />

0.<strong>12</strong> 0.<strong>12</strong> 3<br />

0.<strong>12</strong><br />

0.<strong>12</strong> 1<br />

0.<strong>12</strong> -1.5<br />

0.<strong>12</strong><br />

0.<strong>12</strong><br />

0.5<br />

0.1 2.5<br />

0.1<br />

0.1-2<br />

0.1<br />

0.1 0.1 0<br />

0.1<br />

2<br />

-2.5<br />

0.08<br />

0.08 0.08<br />

0.08 0.08 -0.5<br />

0.08<br />

1.5<br />

-3<br />

0.06<br />

0.06<br />

-0.35 -0.3 -0.25 -0.2<br />

0.06<br />

0.06<br />

-0.15<br />

-1<br />

-0.35 -0.3 -0.25 -0.2 -0.15<br />

0.06<br />

0.06<br />

1<br />

2<br />

2<br />

t (<strong>GeV</strong> )<br />

t (<strong>GeV</strong> )<br />

0.04 0.04<br />

0.04 0.04<br />

0.04<br />

0.5<br />

0.04<br />

0.04<br />

0.02<br />

0.02<br />

eff<br />

0.02<br />

<strong>DVCS</strong><br />

0.02 0<br />

0.02<br />

Re C<br />

0.02<br />

C<br />

0.02<br />

0<br />

0 5<br />

0<br />

40<br />

0 -0.5<br />

4 0<br />

0<br />

0<br />

270 ϕ (deg)<br />

360 -0.02<br />

-0.02<br />

0 0 90 90 180 180 270 ϕ (deg) 270 360 -0.02<br />

ϕ (deg)<br />

360<br />

0 -0.02<br />

0 90 90 180 270 180 ϕ (deg)<br />

360 -0.02<br />

3<br />

270 ϕ (deg)<br />

360<br />

0 90 -0.02<br />

0 180 30<br />

-0.2 -0.15<br />

-1<br />

-0.35 -0.3 -0.25 -0.2 -0.15<br />

90 270 ϕ (deg) 180 360<br />

270 ϕ (deg)<br />

360 -0.02<br />

γγ<br />

γ γ<br />

2<br />

γ γ<br />

γ γ<br />

0 90<br />

20<br />

2<br />

γγ<br />

1<br />

2<br />

t (<strong>GeV</strong> )<br />

t (<strong>GeV</strong> ) γ γ<br />

γ γ<br />

0.5 2<br />

=-0.28 <strong>GeV</strong><br />

0.5 2<br />

=-0.23 0 <strong>GeV</strong><br />

0.5 2 10<br />

=-0.17 <strong>GeV</strong><br />

0.5 2<br />

-1<br />

=-0.33 <strong>GeV</strong><br />

0.5 2<br />

=-0.28 <strong>GeV</strong><br />

0.5 2<br />

=-0.23 <strong>GeV</strong><br />

0.5 2<br />

<strong>DVCS</strong><br />

<strong>DVCS</strong><br />

0<br />

=-0.17 <strong>GeV</strong><br />

Simul<strong>at</strong>ed d<strong>at</strong>a 0.4<br />

C (F,F*)<br />

0.4-2C<br />

0.4<br />

I<br />

0.4 40Re (C)<br />

-3<br />

-0.35 0.4 -0.3 -0.25 -0.2 -0.15<br />

-10<br />

0.4 -0.35 -0.3 -0.25 -0.20.4<br />

-0.15<br />

Fit<br />

0.3<br />

I I<br />

0.3<br />

0.3 2<br />

2<br />

I Re (C+ ∆C )<br />

I I<br />

t (<strong>GeV</strong> )<br />

t (<strong>GeV</strong> )<br />

I<br />

1-σ Re C 30<br />

0.3<br />

Re (C )<br />

Re (C +∆ C )<br />

0.3<br />

I I<br />

0.3<br />

0.3<br />

0.2<br />

eff<br />

30.2<br />

Re (C +∆ C )<br />

0.2<br />

2<br />

<strong>GeV</strong><br />

0.1 2<br />

=-0.17 20 <strong>GeV</strong> 3<br />

2.5 E07-007 System<strong>at</strong>ic uncertainty<br />

0.1 0.2 0.08<br />

0.1 0.2<br />

0.1 0.2<br />

0.2<br />

0.06 102.5<br />

2<br />

1.5<br />

0.04 2<br />

0.1<br />

1<br />

0.02<br />

0 0.1<br />

0 0.1<br />

0.1<br />

0<br />

270 ϕ (deg)<br />

360 0 0 90 1.5<br />

180 270 ϕ (deg)<br />

360 0.5 E00-110: assuming <strong>DVCS</strong> 2 =0<br />

0 90 180 270 ϕ (deg)<br />

360 0 90 180 270 ϕ (deg)<br />

360<br />

-0.02<br />

γγ<br />

1<br />

0<br />

γ γ<br />

0<br />

0<br />

γ γ<br />

0<br />

γ γ<br />

0<br />

-0.2 -0.15<br />

-0.04 -10<br />

0 -0.06 90 -0.35 0.5<br />

180 270 -0.3<br />

ϕ (deg)<br />

360 -0.5 -0.25 0 90 -0.2 180 -0.15<br />

270 ϕ (deg)<br />

360 0 90 180 270 ϕ (deg)<br />

360 0 90<br />

-0.3 2<br />

2<br />

t (<strong>GeV</strong> ) -0.25-0.08<br />

-0.20<br />

-0.15<br />

-1<br />

-0.35 -0.3 -0.25<br />

γγ<br />

t (<strong>GeV</strong> ) -0.2 -0.15<br />

γ γ<br />

γ γ<br />

90 180 270 360<br />

-0.1<br />

ϕ (deg)<br />

0 90 180 270 2<br />

t (<strong>GeV</strong>ϕ<br />

) (deg)<br />

360<br />

2<br />

-0.5<br />

t (<strong>GeV</strong> )<br />

γ γ<br />

γ γ<br />

-0.2 -0.15<br />

-1<br />

eff -0.35 -0.3 -0.25 -0.2 <strong>DVCS</strong> -0.15<br />

2<br />

<strong>GeV</strong><br />

Re C 0.1 2<br />

Carlos Muñoz =-0.17 <strong>GeV</strong><br />

C<br />

2 Camacho<br />

2<br />

t (<strong>GeV</strong> ) 0.08<br />

40<br />

t (<strong>GeV</strong><br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

)<br />

0.06 Co-spokespersons: C.M.C., J. Roche, C. Hyde-Wright, P. Bertin<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> 0.04 <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 30<br />

18<br />

<strong>DVCS</strong>


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-A program<br />

JLab Hall A <strong>at</strong> 11 <strong>GeV</strong><br />

)<br />

2<br />

(<strong>GeV</strong><br />

2<br />

Q<br />

JLab<strong>12</strong> with 3, 4, 5 pass beam<br />

(6.6, 8.8, 11.0 <strong>GeV</strong> beam energy)<br />

<strong>DVCS</strong> measurements in Hall A/JLab<br />

10<br />

5<br />

0<br />

Carlos Muñoz Camacho<br />

2<br />

2<br />

W


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-A program<br />

Future possibilities<br />

◮ <strong>DVCS</strong> on <strong>the</strong> neutron <strong>at</strong> <strong>12</strong> <strong>GeV</strong><br />

◮ Extention to <strong>the</strong> full kinem<strong>at</strong>ic domain available with JLab <strong>at</strong> <strong>12</strong><strong>GeV</strong><br />

◮<br />

System<strong>at</strong>ic uncertainties improved<br />

◮ Recoil polarimetry (R+D)<br />

◮ A full <strong>DVCS</strong> program requires proton polariz<strong>at</strong>ion measurements<br />

◮<br />

◮<br />

Observables of proton recoil polariz<strong>at</strong>ion in ⃗ep → e⃗pγ<br />

are functionally equivalent to <strong>the</strong><br />

observables ⃗e⃗p → epγ <strong>for</strong> polarized targets<br />

Conceptual design of a large acceptance recoil polarimeter<br />

(longitudinal <strong>and</strong> transverse proton polariz<strong>at</strong>ion) under development<br />

◮ High luminosity (> 10 37 cm −2 s −1 ) 3 He target<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 20


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-A program<br />

Polarized 3 He target in JLab/Hall A<br />

◮ n lum. of 10 36 /cm 2 /s (14 <strong>at</strong>m × 40 cm)<br />

◮ ”Background” luminosity:<br />

◮ p in 3 He+entrance/exit windows<br />

◮ 10 37 /cm 2 /s total luminosity<br />

◮ Polariz<strong>at</strong>ion: 50%<br />

◮ Nuclear physics dilution factor 0.86 (d-st<strong>at</strong>e)<br />

◮ -2.8% p polariz<strong>at</strong>ion<br />

◮ Long. & Trans.<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 21


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-A program<br />

3 He target upgrade conjecture<br />

◮ Separ<strong>at</strong>e polariz<strong>at</strong>ion <strong>and</strong> target volumes<br />

◮ Increase throughput by a factor of 10 to 100<br />

◮ Cool <strong>and</strong>/or compress 3 He in target area by a factor of 10<br />

(10K <strong>at</strong> 10 <strong>at</strong>m × 20 cm)<br />

◮<br />

Rapid cycling of 3 He through target<br />

◮ Reduce depolariz<strong>at</strong>ion effect of target density, beam current,<br />

target walls<br />

◮ Replace thick glass with thin metallic walls<br />

◮ Neutron luminosity of 10 37 /cm 2 /s<br />

◮ Proton luminosity 2 · 10 37 cm 2 /s<br />

◮ Endcaps ≤ 10 37 /cm 2 /s<br />

◮ Target polariz<strong>at</strong>ion: 0.5 · (0.86 n − 0.028 p)<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 22


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-A program<br />

Neutron <strong>DVCS</strong> off a 3 He target<br />

⃗n(⃗e, e ′ γ)n via 3 ⃗ He(⃗e, e)X<br />

◮ Long or Trans normal polariz<strong>at</strong>ion<br />

◮ Target single spin cross sections<br />

◮ dσ ∼ sin ϕ (twist-2): Im[BH·<strong>DVCS</strong>]<br />

◮ Unpolarized protons in 3 He cancel<br />

◮ Target double spin<br />

◮ dσ ∼ c0 + c 1 cos ϕ: Re[BH 2 +(BH·<strong>DVCS</strong>)+<strong>DVCS</strong> 2 ]<br />

◮ Unpolarized protons cancel<br />

◮ Transverse sideways: sin ϕ → cos ϕ<br />

◮ All o<strong>the</strong>r “neutron” observables (total σ, beam-spin) have<br />

large incoherent proton contributions<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 23


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-A program<br />

Cross section projections (VGG <strong>at</strong> 10 37 cm −2 s −1 )<br />

Q 2 = 4 <strong>GeV</strong> 2 , x B = 0.36, k = 8.8 <strong>GeV</strong>,<br />

t min − t = 0.15 <strong>GeV</strong> 2 , 20 days<br />

Q 2 = 2.3 <strong>GeV</strong> 2 , x B = 0.36, k = 8.8 <strong>GeV</strong>, t = −0.26 <strong>GeV</strong> 2 , 10 days<br />

Polariz<strong>at</strong>ion sideways (‖) to (e, e ′ ) plane<br />

◮ 50%×80% polariz<strong>at</strong>ion<br />

Polariz<strong>at</strong>ion normal (⊥) to (e, e ′ ) plane<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 24


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-B program<br />

E<strong>12</strong>-06-119: <strong>DVCS</strong> with CLAS <strong>at</strong> 11 <strong>GeV</strong><br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 25


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-B program<br />

Beam spin asymmetry<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 26


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-B program<br />

Target spin asymmetry<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 27


½ººÆÊÄÁÈÊÌÇÆÁËÌÊÁÍÌÁÇÆË ¾<br />

Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Advantages<br />

<strong>DVCS</strong> with <strong>EIC</strong>: small x <strong>at</strong> high Q 2<br />

◮ Gluon GPDs<br />

­£ ­<br />

Ü· Ü <br />

Ô Ô¼<br />

ÙÖ½ºÐÙÓÒÒÖÑÓÖÔÐÝÎÖØÙÐÓÑÔØÓÒËØØÖÒ´Î˵º Ø<br />

ÒÓØ×Ò×ÐØÓÐÙÓÒÈ×ÒØÝÛÐÐÒÓØÙÖØÖ×ÖºÅÓÖØÐ×Ò ÓØÒØÖØÓÒÖÓÒÓÚÖܸÒØÓÒØÖÙØÓÒÒÐÖÒÓÙØÓÓÑÔÒ×Ø Ø«××ÙÔÔÖ××ÓÒºÌÎËÜÔÖÑÒØ×ÖÒØ×Ø×׸ÛÖܼ¿¸× ÏÒÜ×ÚÖÝ×ÑÐиØÑÓÑÒØÙÑÖØÓÒ×Ü ÒÜ·ÖÚÖÝ×ÑÐÐÒ×ÓÑÔÖØ<br />

ÓÙÒÒØÖÚÛÔÔÖ׸½¾℄º<br />

ÏÐÈ×ÖÐØØÓÐÖÝÒÓÛÒÕÙÒØØ××ÓÖÑØÓÖ×ÒÔÖØÓÒ×ØÖÙØÓÒ׸ ½ºº¾ ØÝÓÒØÒÛÐØÓÒÛÒÓÖÑØÓÒºÌÒÛØÙÖÓÈ××ÚÒÝØÖ ÈÝ××ÒØØÖÒ×ÚÖ×ÔÐÒ<br />

ØÔÒÒ¸ÛÒØÖÓÙ×ÒÛÑÓÑÒØÙÑ×кÌØÖØ×Ö×ÓÐÚÝØ<br />

ÛÖØÚÖØÙÐÔÓØÓÒ×ØØÖÒÚÒØÓÙÖ׺Ì×ÒØÖÔÖØØÓÒÓØÚÖÐظ ÒØÑÓÑÒØÙÑØÖÒ×ÖØ×ÒÔÒÒظÒÓÙÖÖ¹ÓÒÙØØÓØ×ÔØÐÐÓØÓÒ ÚÖØÙÐØÝɾ×ÐØ××ÓÖع×ØÒÖÓÒÓØØÖءɺÅÒÛÐØ ÚÖØÙÐÔÓØÓÒÓÒ×ÔØÐ×Ð×ÑÐÐÓÑÔÖØÓØØÖØ×ÞÔÓØÓÒÓ<br />

ÔÓÒÖÝÙÖÖؽ¿¸½℄ÒÒÖÐÞÝн℄¸×ÐÐÙ×ØÖØÒº½ºº<br />

[ 1<br />

dxH(x, x)<br />

◮ Sum rules (ex: orbital angular momentum)<br />

∫ 1<br />

−1<br />

◮ Dispersion rel<strong>at</strong>ions<br />

Carlos Muñoz Camacho<br />

Re H(ξ) = PV<br />

dx x [H(x, ξ, 0) + E(x, ξ, 0)] = J<br />

∫ 1<br />

−1<br />

ξ − x − 1<br />

ξ + x<br />

]<br />

+ C<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 28


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Kinem<strong>at</strong>ics<br />

Collider vs fixed target kinem<strong>at</strong>ics<br />

◮ Fixed target: q ∗ , q <strong>and</strong> p ′ are all co-linear <strong>at</strong> t min<br />

◮ Collider: Boost γ P ≫ 1 along <strong>the</strong> beam direction<br />

(into collider frame)<br />

Non-parallel boost to q, q ′ <strong>and</strong> p ′<br />

Recoil proton <strong>at</strong> very small angles: t = −(4ξ 2 M 2 + t ⊥ )/(1 − 2ξ)<br />

tan θ p ′ ≃<br />

√ t⊥<br />

P (1−2ξ)<br />

Typically, we need to detect protons <strong>at</strong><br />

a few mrad (∼ 5) from <strong>the</strong> beamlines<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 29


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Projections<br />

Projections (Q 2 = 10 <strong>GeV</strong> 2 , x B = 0.05)<br />

◮ Projections using VGG model <strong>for</strong><br />

GPDs <strong>and</strong> L = 10 34 Hz/cm 2<br />

◮ Total cross-section larger than BH<br />

Plots by C. Hyde<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 30


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Projections<br />

Projections (Q 2 = 5 <strong>GeV</strong> 2 , x B = 0.02)<br />

◮ Total cross-section domin<strong>at</strong>ed by BH in this kinem<strong>at</strong>ics<br />

◮ Electron spin asymmetry particularly sensitive<br />

Plots by C. Hyde<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 31


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Summary <strong>and</strong> conclusions<br />

JLab results:<br />

◮ Twist-2 dominance <strong>at</strong> rel<strong>at</strong>ive low Q 2 (a few <strong>GeV</strong> 2 )<br />

◮ Many polariz<strong>at</strong>ion observables needed: both target <strong>and</strong> beam<br />

◮ Different beam/collision energies needed<br />

◮ Absolute cross-sections better than asymmetries<br />

Opportunities with <strong>EIC</strong>:<br />

◮ Lower x <strong>at</strong> sufficiently high Q 2<br />

◮ Higher Q 2 lever arm to better underst<strong>and</strong>/h<strong>and</strong>le higher twists<br />

Challenges of <strong>EIC</strong>:<br />

◮ Luminosity (small cross-sections)<br />

◮ Very <strong>for</strong>ward recoil detection needed<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!