23.05.2014 Views

DVCS at 6/12 GeV, and ideas for the EIC

DVCS at 6/12 GeV, and ideas for the EIC

DVCS at 6/12 GeV, and ideas for the EIC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong>, <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>the</strong> <strong>EIC</strong><br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3 Aubière, France<br />

Electron-Ion Collider Workshop<br />

Mar 14-15, 2010<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 1


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Motiv<strong>at</strong>ion<br />

<strong>DVCS</strong> experimentally: interference with Be<strong>the</strong>-Heitler (BH)<br />

At leading twist:<br />

d 5 → σ −d 5 ← σ = Im (T BH · T DV CS )<br />

d 5 → σ +d 5 ← σ = |BH| 2 + Re (T BH · T DV CS ) + |DV CS| 2<br />

∫ +1<br />

T DV CS =<br />

∫ +1<br />

−1<br />

H(x, ξ, t)<br />

P dx<br />

−1 x − ξ<br />

} {{ }<br />

Access in helicity-independent cross section<br />

Carlos Muñoz Camacho<br />

H(x, ξ, t)<br />

dx<br />

x − ξ + iɛ + · · · =<br />

− iπ H(x = ξ, ξ, t) + . . .<br />

} {{ }<br />

Access in helicity-dependent cross-section<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 2


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Motiv<strong>at</strong>ion<br />

The <strong>DVCS</strong> program “worldwide”<br />

◮ HERMES <strong>at</strong> DESY:<br />

◮ Beam (BSA), charge (BCA) <strong>and</strong> transverse target (TSA)<br />

asymetries published<br />

◮ Several ongoing analysis + recoil detector installed 1 year<br />

be<strong>for</strong>e shutdown: results to come. . .<br />

◮ Hall A <strong>and</strong> Hall B partially overlapping, partially<br />

complementary, active programs:<br />

◮ Hall A: high accuracy, limited kinem<strong>at</strong>ics<br />

◮ Hall B: wide kinem<strong>at</strong>ic range, limited accuracy<br />

◮ Very different system<strong>at</strong>ics<br />

◮ COMPASS <strong>at</strong> CERN? (proposal prepar<strong>at</strong>ion underway)<br />

◮ The roadmap:<br />

◮ Early results (≈ 2001) from non-dedic<strong>at</strong>ed exp. (HERMES+CLAS)<br />

◮ First round of dedic<strong>at</strong>ed experiments in Halls A/B in 2004/5<br />

◮ Second round on 2008–2010<br />

◮ Compeling <strong>DVCS</strong> program in Halls A/B <strong>at</strong> 11 <strong>GeV</strong> (≈2013-15)<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 3


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Non-dedic<strong>at</strong>ed experiments<br />

HERMES<br />

27.5 <strong>GeV</strong> polarised<br />

e + /e − beam of HERA<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 4


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Non-dedic<strong>at</strong>ed experiments<br />

CLAS <strong>and</strong> HERMES (2001): beam spin asymmetries<br />

A LU : PRL 87, 182002 (2001)<br />

A UL : PRL 87, 182001 (2001)<br />

〈Q 2 , x B , −t〉 = 2.6 <strong>GeV</strong> 2 , 0.11, 0.27 <strong>GeV</strong> 2 0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

0 50 100 150 200 250 300 350<br />

φ (deg)<br />

A<br />

〈Q 2 , x B , −t〉 = 1.25 <strong>GeV</strong> 2 , 0.19, 0.19 <strong>GeV</strong> 2<br />

◮ Both results show, with a limited st<strong>at</strong>istics, a sin φ behaviour<br />

◮ Not fully exclusive<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 5


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Non-dedic<strong>at</strong>ed experiments<br />

Beam charge asymmetry (HERMES)<br />

A C<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

Integr<strong>at</strong>ed<br />

0 0.5 1 1.5 2 2.5 3<br />

|φ| (rad)<br />

cosφ<br />

A C<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

As a function of t<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

-t (<strong>GeV</strong> 2 )<br />

Phys. Rev. D75, 011103 (2007)<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 6


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

0 0.5 0 0.2<br />

0 5 10<br />

0 0.5 0 0.2 0 5 10<br />

0 0.5 0 0.2 0 5 10<br />

0 0.5<br />

Non-dedic<strong>at</strong>ed experiments<br />

Beam charge asymmetry (2008)<br />

A C<br />

cosφ<br />

0.4<br />

0.2<br />

PRD75, 011103<br />

this work<br />

DD:Fac,D<br />

DD:Fac,no D<br />

DD:Reg,D<br />

DD:Reg,no D<br />

0<br />

A C<br />

cos(0φ)<br />

0<br />

-0.1<br />

A C<br />

cos(2φ)<br />

A C<br />

cos(3φ)<br />

0.1<br />

0<br />

-0.1<br />

0.1<br />

0<br />

-0.1<br />

0 0.2 0.4 0.6 0 0.1 0.2 0.3<br />

overall<br />

-t (<strong>GeV</strong> 2 )<br />

x B<br />

5 0 2 4 6 8 10<br />

Q 2 (<strong>GeV</strong> 2 )<br />

Carlos Muñoz Camacho<br />

JHEP 0806, 066 (2008)<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 7


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

0.2<br />

0<br />

-0.2<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

0 0.5<br />

0 0.2<br />

0 5 10<br />

0 0.5 0 0.2 0 5 10<br />

0 0.5<br />

0 5 10<br />

Non-dedic<strong>at</strong>ed experiments<br />

Transverse target spin asymmetry<br />

sin(φ-φ<br />

A s<br />

)<br />

UT<br />

0.2<br />

0<br />

-0.2<br />

8.1% scale uncertainty<br />

A UT, <strong>DVCS</strong><br />

J u =0.6<br />

0.4<br />

0.2<br />

A UT, I<br />

J u =0.6<br />

0.4<br />

0.2<br />

sin(φ-φ<br />

A s<br />

)cosφ<br />

UT<br />

0.2<br />

0<br />

cos(φ-φ<br />

A s<br />

)sinφ<br />

UT<br />

-0.2<br />

-0.4<br />

0.2<br />

0<br />

-0.2<br />

0 0.2 0.4 0.6<br />

overall<br />

-t (<strong>GeV</strong> 2 0 0.1 0.2 0.3 0 2 4 6 8 10<br />

)<br />

xB Q 2 (<strong>GeV</strong> 2 )<br />

JHEP 0806, 066 (2008)<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 8


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Non-dedic<strong>at</strong>ed experiments<br />

Recoil detector <strong>at</strong> HERMES<br />

Missing mass squared ep → eγX<br />

1000N/N DIS<br />

0.3 e +<br />

d<strong>at</strong>a<br />

-<br />

e d<strong>at</strong>a<br />

0.2<br />

MC sum<br />

elastic BH<br />

associ<strong>at</strong>ed BH<br />

semi-inclusive<br />

0.1<br />

0<br />

0 10 20 30<br />

2<br />

2<br />

M x (<strong>GeV</strong><br />

)<br />

Integr<strong>at</strong>ion window:<br />

−2.25 <strong>GeV</strong> 2 < M 2 x < 2.89 <strong>GeV</strong> 2<br />

◮ Not fully exclusive<br />

◮ Recoil detector oper<strong>at</strong>ed during last year of d<strong>at</strong>a taking<br />

◮ Analysis underway <strong>and</strong> results to come<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 9


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall A E00-110<br />

E00-110 experimental setup<br />

High Resolution Spectrometer<br />

100-channel scintill<strong>at</strong>or array<br />

132-block PbF 2 electromagnetic calorimeter<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 10


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall A E00-110<br />

Exclusivity<br />

Missing mass squared ep → eγX (E00-110)<br />

Raw H(e,e’γ)X Missing Mass 2 (after accidental subtraction).<br />

[ H(e,e’γ)X - H(e,e’γ)γY ]: Missing Mass 2<br />

H(e,e’γ)p<br />

H(e,e’γ)∆…<br />

+H(e,e’γp) sample,<br />

Normalized to H(e,e’γ)<br />

•••H(e,e’γp) simul<strong>at</strong>ion<br />

Exclusivity ensured by missing mass technique<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 11


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

2<br />

|BH+<strong>DVCS</strong>|<br />

2<br />

|BH|<br />

2<br />

|BH+<strong>DVCS</strong>|<br />

2<br />

- |BH|<br />

2<br />

2<br />

2<br />

2<br />

Hall A E00-110<br />

<strong>DVCS</strong> cross section in <strong>the</strong> valence region (Hall A: E00-110)<br />

◮ Helicity-dependent cross<br />

section ( → σ − ← σ ) <strong>at</strong><br />

Q 2 = 1.5, 1.9 <strong>and</strong> 2.3 <strong>GeV</strong> 2 .<br />

)<br />

4<br />

<strong>DVCS</strong> cross section (nb/<strong>GeV</strong><br />

0.04<br />

0.03<br />

0.02<br />

0<br />

0<br />

-0.02<br />

-0.03<br />

-0.04<br />

0.02<br />

0<br />

0<br />

-0.02<br />

< t > = - 0.33 <strong>GeV</strong><br />

E00-110<br />

Total fit<br />

Twist - 2<br />

90 180 270<br />

φ<br />

2<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

0.02<br />

0<br />

-0.02<br />

(deg)<br />

< t > = - 0.28 <strong>GeV</strong><br />

90 180 270<br />

2<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

0.02<br />

0<br />

-0.02<br />

φ (deg)<br />

< t > = - 0.23 <strong>GeV</strong><br />

90 180 270<br />

2<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

0.02<br />

0<br />

-0.02<br />

φ (deg)<br />

< t > = - 0.17 <strong>GeV</strong><br />

90 180 270<br />

2<br />

φ (deg)<br />

= 1.5 <strong>GeV</strong><br />

Q<br />

= 1.9 <strong>GeV</strong><br />

Q<br />

◮ Helicity-independent<br />

cross section ( → σ + ← σ ) <strong>at</strong><br />

Q 2 = 2.3 <strong>GeV</strong> 2 only .<br />

)<br />

4<br />

<strong>DVCS</strong> cross section (nb/<strong>GeV</strong><br />

0.02<br />

0<br />

-0.02<br />

0.1<br />

0.05<br />

0<br />

2<br />

< t > = - 0.33 <strong>GeV</strong><br />

E00-110<br />

Total fit<br />

Twist - 2<br />

E00-110<br />

2<br />

< t > = - 0.28 <strong>GeV</strong><br />

2<br />

< t > = - 0.23 <strong>GeV</strong><br />

2<br />

< t > = - 0.17 <strong>GeV</strong><br />

beam helicity-independent beam helicity-dependent<br />

90 180 270<br />

90 180 270<br />

90 180 270<br />

90 180 270<br />

φ (deg)<br />

φ (deg)<br />

φ (deg)<br />

φ (deg)<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> <strong>12</strong>


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall A E00-110<br />

E00-110 results<br />

)<br />

4<br />

<strong>DVCS</strong> cross section (nb/<strong>GeV</strong><br />

0.02 beam helicity-dependent<br />

0<br />

-0.02<br />

0.1<br />

0.05<br />

beam helicity-independent<br />

2<br />

|BH+<strong>DVCS</strong>|<br />

2<br />

|BH|<br />

0<br />

0 90 180 270 360<br />

φ (deg)<br />

(H, H ~ , E)<br />

I<br />

Im C<br />

5<br />

4<br />

3<br />

2<br />

1<br />

2<br />

2<br />

Q = 1.5 <strong>GeV</strong><br />

2<br />

2<br />

Q = 1.9 <strong>GeV</strong><br />

2<br />

2<br />

Q = 2.3 <strong>GeV</strong><br />

VGG model<br />

0<br />

0.15 0.2 0.25 0.3 0.35<br />

2<br />

-t (<strong>GeV</strong> )<br />

Twist-2: dominant contribution<br />

Contributions from BH 2 , <strong>DVCS</strong> 2<br />

<strong>and</strong> BH-<strong>DVCS</strong> interference<br />

Phys. Rev. Lett. 97, 262002 (2006)<br />

Physics Today, March 2007<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 13


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall A E00-110<br />

E00-110 results<br />

4<br />

3.5<br />

0.02 beam helicity-dependent<br />

3<br />

)<br />

4<br />

<strong>DVCS</strong> cross section (nb/<strong>GeV</strong><br />

0<br />

-0.02<br />

0.1<br />

0.05<br />

beam helicity-independent<br />

2<br />

|BH+<strong>DVCS</strong>|<br />

2<br />

|BH|<br />

0<br />

0 90 180 270 360<br />

φ (deg)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

1.4 1.6 1.8 2 2.2 2.4<br />

2 2<br />

Q (<strong>GeV</strong> )<br />

Twist-2: dominant contribution<br />

Contributions from BH 2 , <strong>DVCS</strong> 2<br />

<strong>and</strong> BH-<strong>DVCS</strong> interference<br />

Phys. Rev. Lett. 97, 262002 (2006)<br />

Physics Today, March 2007<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 13


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall A E03-106<br />

<strong>DVCS</strong> on <strong>the</strong> neutron: experiment E03-106 <strong>at</strong> JLab<br />

I exp<br />

)<br />

n<br />

Im(C<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

LD 2 target (F2 n(t) ≫ F 1 n(t) !) J u=-0.4<br />

J d=-0.6<br />

J u=0.3<br />

J d=0.2<br />

J u=0.6<br />

J d=0.8<br />

2<br />

t (<strong>GeV</strong> )<br />

σ → − σ ← = Γ(A sin ϕ + . . . )<br />

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1<br />

Charged particle veto<br />

in front of scintill<strong>at</strong>or array<br />

A = F 1 (t)H +<br />

Carlos Muñoz Camacho<br />

x B<br />

[F 1 (t) + F 2 (t)]<br />

2 − x ˜H t<br />

−<br />

B 4M 2 · F 2(t) · E<br />

} {{ }<br />

Main contribution <strong>for</strong> neutron<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 14


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall A E03-106<br />

<strong>DVCS</strong> on <strong>the</strong> neutron: experiment E03-106 <strong>at</strong> JLab<br />

LD 2 target (F2 n(t) ≫ F 1 n (t) !)<br />

J d<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

JLab Hall A<br />

n-<strong>DVCS</strong><br />

Charged particle veto<br />

in front of scintill<strong>at</strong>or array<br />

0.2<br />

+ J u<br />

J d = 0.18<br />

5<br />

± 0.14<br />

-0<br />

-0.2<br />

L<strong>at</strong>tice QCDSF<br />

-0.4<br />

-0.6<br />

-0.8<br />

HERMES Preliminary<br />

p-<strong>DVCS</strong><br />

-1<br />

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1<br />

J u<br />

σ → − σ ← = Γ(A sin ϕ + . . . )<br />

A = F 1 (t)H +<br />

Carlos Muñoz Camacho<br />

x B<br />

[F 1 (t) + F 2 (t)]<br />

2 − x ˜H t<br />

−<br />

B 4M 2 · F 2(t) · E<br />

} {{ }<br />

Main contribution <strong>for</strong> neutron<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 14


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall B E1-<strong>DVCS</strong><br />

BSA in a large kinem<strong>at</strong>ic domain (Hall B)<br />

2 2<br />

Q (<strong>GeV</strong> )<br />

0.2<br />

2<br />

-t = 0.28 <strong>GeV</strong><br />

A =<br />

→<br />

σ −<br />

←<br />

σ<br />

→<br />

σ +<br />

←<br />

σ<br />

≈<br />

α sin φ<br />

1 + β cos φ<br />

Simple models do not<br />

reproduce <strong>the</strong> d<strong>at</strong>a<br />

Carlos Muñoz Camacho<br />

4<br />

3<br />

2<br />

1<br />

0.1 0.2 0.3 0.4 0.5<br />

x B<br />

0.0<br />

-0.2<br />

0.2<br />

0.0<br />

-0.2<br />

Analysis of cross sections underway<br />

2<br />

-t = 0.49 <strong>GeV</strong><br />

0 90 180 270 360<br />

φ (deg)<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 15


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.5 1 1.5<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.5 1 1.5<br />

0 0.5 1 1.5<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.5 1 1.5<br />

0 0.5 1 1.5<br />

0 0.5 1 1.5<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.5 1 1.5<br />

0 0.5 1 1.5<br />

0 0.5 1 1.5<br />

0 0.5 1 1.5<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.3<br />

0.2<br />

0 0.5 1 1.5<br />

0 0.5 1 1.5<br />

0.1<br />

0<br />

0 0.5 1 1.5<br />

Hall B E1-<strong>DVCS</strong><br />

BSA in a large kinem<strong>at</strong>ic domain (Hall B)<br />

0.3 0.10 < x < 0.15<br />

B<br />

)<br />

2<br />

(<strong>GeV</strong><br />

2<br />

α(t)<br />

0.2<br />

0.1<br />

Q<br />

0<br />

4<br />

0 0.5 1 1.5 2<br />

|t| (<strong>GeV</strong> )<br />

3<br />

A =<br />

→<br />

σ −<br />

←<br />

σ<br />

→<br />

σ +<br />

←<br />

σ<br />

≈<br />

α sin φ<br />

1 + β cos φ<br />

2<br />

Simple models do not<br />

reproduce <strong>the</strong> d<strong>at</strong>a<br />

1<br />

0.1 0.2 0.3 0.4 0.5<br />

x B<br />

Carlos Muñoz Camacho<br />

Analysis of cross sections underway<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 15


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall B<br />

Target spin asymmetry A UL (Hall B)<br />

Not dedic<strong>at</strong>ed result:<br />

0.4<br />

0.2<br />

A UL<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

0 50 100 150 200 250 300 350<br />

φ<br />

Degree<br />

Dedic<strong>at</strong>ed experiment took d<strong>at</strong>a in Hall B earlier this year<br />

Sensitivity to GPD ˜H<br />

O<strong>the</strong>r upcoming experiments (<strong>at</strong> 6 <strong>GeV</strong>):<br />

◮ More <strong>DVCS</strong> on unpolarized proton<br />

◮ <strong>DVCS</strong> on a transversely polarized target (conditionally approved)<br />

◮ <strong>DVCS</strong> on nuclei (He 4 )<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 16


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

E07-007: <strong>DVCS</strong>·BH – <strong>DVCS</strong> 2 separ<strong>at</strong>ion<br />

E07-007 (Hall A)<br />

σ(ep → epγ) = |BH| 2<br />

} {{ }<br />

+ I(BH · DV CS)<br />

} {{ }<br />

+ |DV CS| 2<br />

} {{ }<br />

Known to ∼ 1% Linear combin<strong>at</strong>ion of GPDs Bilinear combin<strong>at</strong>ion of GPDs<br />

<strong>DVCS</strong> cross section has a very rich azimuthal structure:<br />

◮ Azimuthal analysis allows <strong>the</strong> separ<strong>at</strong>ion of <strong>the</strong> different contributions to I<br />

if <strong>DVCS</strong> 2 is negligeble.<br />

◮ If <strong>DVCS</strong> 2 is important, I <strong>and</strong> <strong>DVCS</strong> 2 terms MIX in an azimuthal analysis.<br />

◮ The different energy dependence of I <strong>and</strong> <strong>DVCS</strong> 2 allow a full separ<strong>at</strong>ion.<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 17


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

E07-007: <strong>DVCS</strong>·BH – <strong>DVCS</strong> 2 separ<strong>at</strong>ion<br />

E07-007 (Hall A)<br />

σ(ep → epγ) = |BH| 2<br />

} {{ }<br />

+ I(BH · DV CS)<br />

} {{ }<br />

+ |DV CS| 2<br />

} {{ }<br />

Known to ∼ 1% Linear combin<strong>at</strong>ion of GPDs Bilinear combin<strong>at</strong>ion of GPDs<br />

<strong>DVCS</strong> cross section has a very rich azimuthal structure:<br />

◮ Azimuthal analysis allows <strong>the</strong> separ<strong>at</strong>ion of <strong>the</strong> different contributions to I<br />

if <strong>DVCS</strong> 2 is negligeble.<br />

◮ If <strong>DVCS</strong> 2 is important, I <strong>and</strong> <strong>DVCS</strong> 2 terms MIX in an azimuthal analysis.<br />

◮ The different energy dependence of I <strong>and</strong> <strong>DVCS</strong> 2 allow a full separ<strong>at</strong>ion.<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 17


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

E07-007: <strong>DVCS</strong>·BH – <strong>DVCS</strong> 2 separ<strong>at</strong>ion<br />

E07-007: Rosenbluth-like <strong>DVCS</strong> 2 –I separ<strong>at</strong>ion in Hall A<br />

E b =6.0 <strong>GeV</strong><br />

E b =3.64 <strong>GeV</strong><br />

◮ Clean separ<strong>at</strong>ion of BH-<strong>DVCS</strong> intereference term from pure <strong>DVCS</strong> 2<br />

◮ Scaling test on <strong>the</strong> real part of <strong>the</strong> <strong>DVCS</strong> amplitude<br />

◮ Rosenbluth separ<strong>at</strong>ion of σ L /σ T <strong>for</strong> ep → epπ 0<br />

BH<br />

4<br />

Simul<strong>at</strong>ed d<strong>at</strong>a<br />

D<br />

d σ<br />

4<br />

BH<br />

C<br />

(nb/<strong>GeV</strong> ) Simul<strong>at</strong>ed d<strong>at</strong>a<br />

<strong>DVCS</strong><br />

4 2<br />

C (F,F*)<br />

Re<br />

(nb/<strong>GeV</strong> )<br />

Fit<br />

dQ dx B<br />

dtdϕ<br />

I<br />

γγ<br />

Re<br />

1-σ<br />

Re<br />

d 4 σ (nb/<strong>GeV</strong> 4 Fit<br />

Re (C )<br />

I<br />

)<br />

Re (C I I<br />

I I<br />

γγ<br />

Re C<br />

+ ∆C )<br />

Re (C +∆ C )<br />

0.5<br />

I<br />

1-σ<br />

Re (C ) 3<br />

0<br />

eff 2.5<br />

2<br />

2<br />

2<br />

2<br />

=-0.33 <strong>GeV</strong> 2<br />

=-0.28 <strong>GeV</strong><br />

=-0.23 <strong>GeV</strong><br />

=-0.17 <strong>GeV</strong><br />

0.14 =-0.28 <strong>GeV</strong><br />

-0.5<br />

2<br />

=-0.23 0.14 I<br />

<strong>GeV</strong><br />

I<br />

2 2<br />

0.14<br />

0.14<br />

0.14<br />

0.14 Re (C +∆ C )<br />

=-0.17 <strong>GeV</strong><br />

-1<br />

0.14<br />

1.5<br />

0.<strong>12</strong> 0.<strong>12</strong> 3<br />

0.<strong>12</strong><br />

0.<strong>12</strong> 1<br />

0.<strong>12</strong> -1.5<br />

0.<strong>12</strong><br />

0.<strong>12</strong><br />

0.5<br />

0.1 2.5<br />

0.1<br />

0.1-2<br />

0.1<br />

0.1 0.1 0<br />

0.1<br />

2<br />

-2.5<br />

0.08<br />

0.08 0.08<br />

0.08 0.08 -0.5<br />

0.08<br />

1.5<br />

-3<br />

0.06<br />

0.06<br />

-0.35 -0.3 -0.25 -0.2<br />

0.06<br />

0.06<br />

-0.15<br />

-1<br />

-0.35 -0.3 -0.25 -0.2 -0.15<br />

0.06<br />

0.06<br />

1<br />

2<br />

2<br />

t (<strong>GeV</strong> )<br />

t (<strong>GeV</strong> )<br />

0.04 0.04<br />

0.04 0.04<br />

0.04<br />

0.5<br />

0.04<br />

0.04<br />

0.02<br />

0.02<br />

eff<br />

0.02<br />

<strong>DVCS</strong><br />

0.02 0<br />

0.02<br />

Re C<br />

0.02<br />

C<br />

0.02<br />

0<br />

0 5<br />

0<br />

40<br />

0 -0.5<br />

4 0<br />

0<br />

0<br />

270 ϕ (deg)<br />

360 -0.02<br />

-0.02<br />

0 0 90 90 180 180 270 ϕ (deg) 270 360 -0.02<br />

ϕ (deg)<br />

360<br />

0 -0.02<br />

0 90 90 180 270 180 ϕ (deg)<br />

360 -0.02<br />

3<br />

270 ϕ (deg)<br />

360<br />

0 90 -0.02<br />

0 180 30<br />

-0.2 -0.15<br />

-1<br />

-0.35 -0.3 -0.25 -0.2 -0.15<br />

90 270 ϕ (deg) 180 360<br />

270 ϕ (deg)<br />

360 -0.02<br />

γγ<br />

γ γ<br />

2<br />

γ γ<br />

γ γ<br />

0 90<br />

20<br />

2<br />

γγ<br />

1<br />

2<br />

t (<strong>GeV</strong> )<br />

t (<strong>GeV</strong> ) γ γ<br />

γ γ<br />

0.5 2<br />

=-0.28 <strong>GeV</strong><br />

0.5 2<br />

=-0.23 0 <strong>GeV</strong><br />

0.5 2 10<br />

=-0.17 <strong>GeV</strong><br />

0.5 2<br />

-1<br />

=-0.33 <strong>GeV</strong><br />

0.5 2<br />

=-0.28 <strong>GeV</strong><br />

0.5 2<br />

=-0.23 <strong>GeV</strong><br />

0.5 2<br />

<strong>DVCS</strong><br />

<strong>DVCS</strong><br />

0<br />

=-0.17 <strong>GeV</strong><br />

Simul<strong>at</strong>ed d<strong>at</strong>a 0.4<br />

C (F,F*)<br />

0.4-2C<br />

0.4<br />

I<br />

0.4 40Re (C)<br />

-3<br />

-0.35 0.4 -0.3 -0.25 -0.2 -0.15<br />

-10<br />

0.4 -0.35 -0.3 -0.25 -0.20.4<br />

-0.15<br />

Fit<br />

0.3<br />

I I<br />

0.3<br />

0.3 2<br />

2<br />

I Re (C+ ∆C )<br />

I I<br />

t (<strong>GeV</strong> )<br />

t (<strong>GeV</strong> )<br />

I<br />

1-σ Re C 30<br />

0.3<br />

Re (C )<br />

Re (C +∆ C )<br />

0.3<br />

I I<br />

0.3<br />

0.3<br />

0.2<br />

eff<br />

30.2<br />

Re (C +∆ C )<br />

0.2<br />

2<br />

<strong>GeV</strong><br />

0.1 2<br />

=-0.17 20 <strong>GeV</strong> 3<br />

2.5 E07-007 System<strong>at</strong>ic uncertainty<br />

0.1 0.2 0.08<br />

0.1 0.2<br />

0.1 0.2<br />

0.2<br />

0.06 102.5<br />

2<br />

1.5<br />

0.04 2<br />

0.1<br />

1<br />

0.02<br />

0 0.1<br />

0 0.1<br />

0.1<br />

0<br />

270 ϕ (deg)<br />

360 0 0 90 1.5<br />

180 270 ϕ (deg)<br />

360 0.5 E00-110: assuming <strong>DVCS</strong> 2 =0<br />

0 90 180 270 ϕ (deg)<br />

360 0 90 180 270 ϕ (deg)<br />

360<br />

-0.02<br />

γγ<br />

1<br />

0<br />

γ γ<br />

0<br />

0<br />

γ γ<br />

0<br />

γ γ<br />

0<br />

-0.2 -0.15<br />

-0.04 -10<br />

0 -0.06 90 -0.35 0.5<br />

180 270 -0.3<br />

ϕ (deg)<br />

360 -0.5 -0.25 0 90 -0.2 180 -0.15<br />

270 ϕ (deg)<br />

360 0 90 180 270 ϕ (deg)<br />

360 0 90<br />

-0.3 2<br />

2<br />

t (<strong>GeV</strong> ) -0.25-0.08<br />

-0.20<br />

-0.15<br />

-1<br />

-0.35 -0.3 -0.25<br />

γγ<br />

t (<strong>GeV</strong> ) -0.2 -0.15<br />

γ γ<br />

γ γ<br />

90 180 270 360<br />

-0.1<br />

ϕ (deg)<br />

0 90 180 270 2<br />

t (<strong>GeV</strong>ϕ<br />

) (deg)<br />

360<br />

2<br />

-0.5<br />

t (<strong>GeV</strong> )<br />

γ γ<br />

γ γ<br />

-0.2 -0.15<br />

-1<br />

eff -0.35 -0.3 -0.25 -0.2 <strong>DVCS</strong> -0.15<br />

2<br />

<strong>GeV</strong><br />

Re C 0.1 2<br />

Carlos Muñoz =-0.17 <strong>GeV</strong><br />

C<br />

2 Camacho<br />

2<br />

t (<strong>GeV</strong> ) 0.08<br />

40<br />

t (<strong>GeV</strong><br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

)<br />

0.06 Co-spokespersons: C.M.C., J. Roche, C. Hyde-Wright, P. Bertin<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> 0.04 <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 30<br />

18<br />

<strong>DVCS</strong>


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-A program<br />

JLab Hall A <strong>at</strong> 11 <strong>GeV</strong><br />

)<br />

2<br />

(<strong>GeV</strong><br />

2<br />

Q<br />

JLab<strong>12</strong> with 3, 4, 5 pass beam<br />

(6.6, 8.8, 11.0 <strong>GeV</strong> beam energy)<br />

<strong>DVCS</strong> measurements in Hall A/JLab<br />

10<br />

5<br />

0<br />

Carlos Muñoz Camacho<br />

2<br />

2<br />

W


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-A program<br />

Future possibilities<br />

◮ <strong>DVCS</strong> on <strong>the</strong> neutron <strong>at</strong> <strong>12</strong> <strong>GeV</strong><br />

◮ Extention to <strong>the</strong> full kinem<strong>at</strong>ic domain available with JLab <strong>at</strong> <strong>12</strong><strong>GeV</strong><br />

◮<br />

System<strong>at</strong>ic uncertainties improved<br />

◮ Recoil polarimetry (R+D)<br />

◮ A full <strong>DVCS</strong> program requires proton polariz<strong>at</strong>ion measurements<br />

◮<br />

◮<br />

Observables of proton recoil polariz<strong>at</strong>ion in ⃗ep → e⃗pγ<br />

are functionally equivalent to <strong>the</strong><br />

observables ⃗e⃗p → epγ <strong>for</strong> polarized targets<br />

Conceptual design of a large acceptance recoil polarimeter<br />

(longitudinal <strong>and</strong> transverse proton polariz<strong>at</strong>ion) under development<br />

◮ High luminosity (> 10 37 cm −2 s −1 ) 3 He target<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 20


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-A program<br />

Polarized 3 He target in JLab/Hall A<br />

◮ n lum. of 10 36 /cm 2 /s (14 <strong>at</strong>m × 40 cm)<br />

◮ ”Background” luminosity:<br />

◮ p in 3 He+entrance/exit windows<br />

◮ 10 37 /cm 2 /s total luminosity<br />

◮ Polariz<strong>at</strong>ion: 50%<br />

◮ Nuclear physics dilution factor 0.86 (d-st<strong>at</strong>e)<br />

◮ -2.8% p polariz<strong>at</strong>ion<br />

◮ Long. & Trans.<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 21


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-A program<br />

3 He target upgrade conjecture<br />

◮ Separ<strong>at</strong>e polariz<strong>at</strong>ion <strong>and</strong> target volumes<br />

◮ Increase throughput by a factor of 10 to 100<br />

◮ Cool <strong>and</strong>/or compress 3 He in target area by a factor of 10<br />

(10K <strong>at</strong> 10 <strong>at</strong>m × 20 cm)<br />

◮<br />

Rapid cycling of 3 He through target<br />

◮ Reduce depolariz<strong>at</strong>ion effect of target density, beam current,<br />

target walls<br />

◮ Replace thick glass with thin metallic walls<br />

◮ Neutron luminosity of 10 37 /cm 2 /s<br />

◮ Proton luminosity 2 · 10 37 cm 2 /s<br />

◮ Endcaps ≤ 10 37 /cm 2 /s<br />

◮ Target polariz<strong>at</strong>ion: 0.5 · (0.86 n − 0.028 p)<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 22


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-A program<br />

Neutron <strong>DVCS</strong> off a 3 He target<br />

⃗n(⃗e, e ′ γ)n via 3 ⃗ He(⃗e, e)X<br />

◮ Long or Trans normal polariz<strong>at</strong>ion<br />

◮ Target single spin cross sections<br />

◮ dσ ∼ sin ϕ (twist-2): Im[BH·<strong>DVCS</strong>]<br />

◮ Unpolarized protons in 3 He cancel<br />

◮ Target double spin<br />

◮ dσ ∼ c0 + c 1 cos ϕ: Re[BH 2 +(BH·<strong>DVCS</strong>)+<strong>DVCS</strong> 2 ]<br />

◮ Unpolarized protons cancel<br />

◮ Transverse sideways: sin ϕ → cos ϕ<br />

◮ All o<strong>the</strong>r “neutron” observables (total σ, beam-spin) have<br />

large incoherent proton contributions<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 23


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-A program<br />

Cross section projections (VGG <strong>at</strong> 10 37 cm −2 s −1 )<br />

Q 2 = 4 <strong>GeV</strong> 2 , x B = 0.36, k = 8.8 <strong>GeV</strong>,<br />

t min − t = 0.15 <strong>GeV</strong> 2 , 20 days<br />

Q 2 = 2.3 <strong>GeV</strong> 2 , x B = 0.36, k = 8.8 <strong>GeV</strong>, t = −0.26 <strong>GeV</strong> 2 , 10 days<br />

Polariz<strong>at</strong>ion sideways (‖) to (e, e ′ ) plane<br />

◮ 50%×80% polariz<strong>at</strong>ion<br />

Polariz<strong>at</strong>ion normal (⊥) to (e, e ′ ) plane<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 24


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-B program<br />

E<strong>12</strong>-06-119: <strong>DVCS</strong> with CLAS <strong>at</strong> 11 <strong>GeV</strong><br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 25


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-B program<br />

Beam spin asymmetry<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 26


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Hall-B program<br />

Target spin asymmetry<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 27


½ººÆÊÄÁÈÊÌÇÆÁËÌÊÁÍÌÁÇÆË ¾<br />

Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Advantages<br />

<strong>DVCS</strong> with <strong>EIC</strong>: small x <strong>at</strong> high Q 2<br />

◮ Gluon GPDs<br />

­£ ­<br />

Ü· Ü <br />

Ô Ô¼<br />

ÙÖ½ºÐÙÓÒÒÖÑÓÖÔÐÝÎÖØÙÐÓÑÔØÓÒËØØÖÒ´Î˵º Ø<br />

ÒÓØ×Ò×ÐØÓÐÙÓÒÈ×ÒØÝÛÐÐÒÓØÙÖØÖ×ÖºÅÓÖØÐ×Ò ÓØÒØÖØÓÒÖÓÒÓÚÖܸÒØÓÒØÖÙØÓÒÒÐÖÒÓÙØÓÓÑÔÒ×Ø Ø«××ÙÔÔÖ××ÓÒºÌÎËÜÔÖÑÒØ×ÖÒØ×Ø×׸ÛÖܼ¿¸× ÏÒÜ×ÚÖÝ×ÑÐиØÑÓÑÒØÙÑÖØÓÒ×Ü ÒÜ·ÖÚÖÝ×ÑÐÐÒ×ÓÑÔÖØ<br />

ÓÙÒÒØÖÚÛÔÔÖ׸½¾℄º<br />

ÏÐÈ×ÖÐØØÓÐÖÝÒÓÛÒÕÙÒØØ××ÓÖÑØÓÖ×ÒÔÖØÓÒ×ØÖÙØÓÒ׸ ½ºº¾ ØÝÓÒØÒÛÐØÓÒÛÒÓÖÑØÓÒºÌÒÛØÙÖÓÈ××ÚÒÝØÖ ÈÝ××ÒØØÖÒ×ÚÖ×ÔÐÒ<br />

ØÔÒÒ¸ÛÒØÖÓÙ×ÒÛÑÓÑÒØÙÑ×кÌØÖØ×Ö×ÓÐÚÝØ<br />

ÛÖØÚÖØÙÐÔÓØÓÒ×ØØÖÒÚÒØÓÙÖ׺Ì×ÒØÖÔÖØØÓÒÓØÚÖÐظ ÒØÑÓÑÒØÙÑØÖÒ×ÖØ×ÒÔÒÒظÒÓÙÖÖ¹ÓÒÙØØÓØ×ÔØÐÐÓØÓÒ ÚÖØÙÐØÝɾ×ÐØ××ÓÖع×ØÒÖÓÒÓØØÖءɺÅÒÛÐØ ÚÖØÙÐÔÓØÓÒÓÒ×ÔØÐ×Ð×ÑÐÐÓÑÔÖØÓØØÖØ×ÞÔÓØÓÒÓ<br />

ÔÓÒÖÝÙÖÖؽ¿¸½℄ÒÒÖÐÞÝн℄¸×ÐÐÙ×ØÖØÒº½ºº<br />

[ 1<br />

dxH(x, x)<br />

◮ Sum rules (ex: orbital angular momentum)<br />

∫ 1<br />

−1<br />

◮ Dispersion rel<strong>at</strong>ions<br />

Carlos Muñoz Camacho<br />

Re H(ξ) = PV<br />

dx x [H(x, ξ, 0) + E(x, ξ, 0)] = J<br />

∫ 1<br />

−1<br />

ξ − x − 1<br />

ξ + x<br />

]<br />

+ C<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 28


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Kinem<strong>at</strong>ics<br />

Collider vs fixed target kinem<strong>at</strong>ics<br />

◮ Fixed target: q ∗ , q <strong>and</strong> p ′ are all co-linear <strong>at</strong> t min<br />

◮ Collider: Boost γ P ≫ 1 along <strong>the</strong> beam direction<br />

(into collider frame)<br />

Non-parallel boost to q, q ′ <strong>and</strong> p ′<br />

Recoil proton <strong>at</strong> very small angles: t = −(4ξ 2 M 2 + t ⊥ )/(1 − 2ξ)<br />

tan θ p ′ ≃<br />

√ t⊥<br />

P (1−2ξ)<br />

Typically, we need to detect protons <strong>at</strong><br />

a few mrad (∼ 5) from <strong>the</strong> beamlines<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 29


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Projections<br />

Projections (Q 2 = 10 <strong>GeV</strong> 2 , x B = 0.05)<br />

◮ Projections using VGG model <strong>for</strong><br />

GPDs <strong>and</strong> L = 10 34 Hz/cm 2<br />

◮ Total cross-section larger than BH<br />

Plots by C. Hyde<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 30


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Projections<br />

Projections (Q 2 = 5 <strong>GeV</strong> 2 , x B = 0.02)<br />

◮ Total cross-section domin<strong>at</strong>ed by BH in this kinem<strong>at</strong>ics<br />

◮ Electron spin asymmetry particularly sensitive<br />

Plots by C. Hyde<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 31


Introduction Initial results Dedic<strong>at</strong>ed experiments Future 6 <strong>GeV</strong> <strong>12</strong> <strong>GeV</strong> <strong>EIC</strong> Conclusion<br />

Summary <strong>and</strong> conclusions<br />

JLab results:<br />

◮ Twist-2 dominance <strong>at</strong> rel<strong>at</strong>ive low Q 2 (a few <strong>GeV</strong> 2 )<br />

◮ Many polariz<strong>at</strong>ion observables needed: both target <strong>and</strong> beam<br />

◮ Different beam/collision energies needed<br />

◮ Absolute cross-sections better than asymmetries<br />

Opportunities with <strong>EIC</strong>:<br />

◮ Lower x <strong>at</strong> sufficiently high Q 2<br />

◮ Higher Q 2 lever arm to better underst<strong>and</strong>/h<strong>and</strong>le higher twists<br />

Challenges of <strong>EIC</strong>:<br />

◮ Luminosity (small cross-sections)<br />

◮ Very <strong>for</strong>ward recoil detection needed<br />

Carlos Muñoz Camacho<br />

LPC Clermont-Ferr<strong>and</strong>, CNRS/IN2P3<br />

<strong>DVCS</strong> <strong>at</strong> 6/<strong>12</strong> <strong>GeV</strong> <strong>and</strong> <strong>ideas</strong> <strong>for</strong> <strong>EIC</strong> 32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!