26.05.2014 Views

What are Sediments? - ICBM

What are Sediments? - ICBM

What are Sediments? - ICBM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>What</strong> <strong>are</strong> <strong>Sediments</strong>?<br />

Residues of<br />

algae and<br />

mussels<br />

Sulfur<br />

Diatoms<br />

(brown)<br />

Sand<br />

FeS<br />

WS 2009/10<br />

Practical course<br />

Feb 8-Mar 8<br />

5<br />

1


Recommended books<br />

- Brock. Biology of Microorganisms<br />

- Ehrlich H. L. (1996) Geomicrobiology, Marcel Dekker, New York<br />

- Richard Y. Morita (1997) Bacteria in Oligotrophic Environments, Chapman & Hall<br />

- L.A. Meyer-Reil, M. Köster (1993) Mikrobiologie des Meeresbodens. Fischer<br />

- Daniel M. Alongi (1998) Coastal Ecosystem Processes. CRC Press<br />

- Susan M. Libes (1992) An Introduction to marine biogeochemistry, John Wiley<br />

- Tom Fenchel and Bland J. Finlay (1995) Ecology and Evolution in Anoxic Worlds,<br />

Oxford University Press<br />

- Jame K. Fredrickson, Madilyn Fletcher (ed. 2001) Subsurface Microbiology and<br />

Biogeochemistry, Wiley<br />

- Amy P.S., Haldeman D.L (ed., 1997) The Microbiology of the Terrestrial Deep<br />

Subsurface, Lewis Publ. New York<br />

-Schulz HD, Zabel M (ed., 2000) Marine Geochemistry. Springer, Berlin<br />

Literature on the web<br />

- http://www.icbm.de/pmbio/litlinks.htm (many (<br />

journals!)<br />

- http://portal.isiknowledge.com (Web (<br />

of Science - from University IP)<br />

- http://scholar.google.com (Science (<br />

at Google)<br />

2


<strong>What</strong> <strong>are</strong> sediments?<br />

latin: sedere = sit sedimentum = what has settled down<br />

• Particulate material accumulated on the floor<br />

- of lakes (lacustrine, limnic)<br />

- of rivers (riverine, fluvial)<br />

- of the sea (marine, tidal, coastal...)<br />

Sedimentation rates in aquatic systems<br />

Which factors govern sediment formation rates?<br />

- Productivity (primary production)<br />

- Input of allochthoneous material (rivers, shore; e.g. leaves)<br />

- Settling time (depth, degradation while sedimentation)<br />

- Water chemistry (e.g. carbonates)<br />

Annual sedimentation rates [mm]<br />

Oligotrophic lakes<br />

Eutrophic lakes<br />

Marine upwelling <strong>are</strong>as<br />

Deep sea<br />

0.1 – 2<br />

1 – 5<br />

0.05 – 0.3<br />

0.001 – 0.02<br />

3


<strong>What</strong> is the origin of marine sedimentary material?<br />

- aeolian = via the air<br />

- terrigenous = from the land<br />

- marine, autochthonous = from water column<br />

Aeolian input to sediments<br />

Sahara sand coming across<br />

the alpes<br />

Sahara sand above the<br />

Atlantic Ocean<br />

• Input of minerals, especially Fe as an important limiting factor<br />

4


Ash eruptions from vulcanoes<br />

Ash layer in<br />

Mediterranean sediment<br />

Lena river delta (Sibiria)<br />

5


From the mountains to the sea and back<br />

Erosion and destruction<br />

- Night frost results in cracking of rocks<br />

- Rocks break during landslides<br />

- Destruction of destabilized minerals via dew formation and rainfall<br />

Night frost<br />

Rock<br />

fan<br />

Tarbuck & Lutgens:<br />

Allgemeine Geol ogie, mod.<br />

Rock<br />

fan<br />

6


From the mountains to the sea and back<br />

Erosion and destruction<br />

- Night frost results in cracking of rocks<br />

- Rocks break during landslides<br />

- Destruction of destabilized minerals via dew formation and rainfall<br />

Transport of fragments and single minerals<br />

- Water (creeks, rivers, ocean currents)<br />

- Wind<br />

- Ice (glaciers)<br />

Sedimentation<br />

= Accumulation and consolidation of weathering products<br />

- Formation of porous sediments<br />

- Overlay with further sediments lead to<br />

→ Enhanced temperatures and pressure<br />

- Squeezing of porewater from porous sediments<br />

- Consolidation and cementation by recristallisation to sedimentary rocks<br />

10 cm<br />

Tidal-flat sediment „Neuharlingersieler Nacken“<br />

20 cm<br />

30 cm<br />

40 cm<br />

50 cm<br />

60 cm<br />

70 cm<br />

80 cm<br />

90 cm<br />

Swartberg-Pass (South africa)<br />

100 cm<br />

7


Deformation of sedimentary rocks<br />

Deformation<br />

Laminated<br />

sediments<br />

Tarbuck & Lutgens:<br />

Allgemeine Geol ogie, mod.<br />

Swartberg-Pass (South africa)<br />

8


Disturbed sediment<br />

Mediterranean sediment<br />

disturbed by hang slip<br />

Disturbed sediment: Turbidites<br />

Submarine<br />

canyons<br />

Turbidite deposition<br />

Turbidite<br />

Turbidites<br />

Deep sea<br />

fans<br />

Graduated layers<br />

Tarbuck & Lutgens:<br />

Allgemeine Geol ogie, mod.<br />

9


Distribution of chlorophyll in the ocean<br />

How fast do sediments accumulate?<br />

Euphotic zone


Varves<br />

Sandy sediments<br />

North Sea<br />

tidal flat<br />

Puerto Rico<br />

11


Sediment-forming organisms<br />

Carbonates<br />

• biogic in sheats of algae (Coccolithophorides), Foraminifera, ...<br />

• precipiatated via enhanced temperature or photosynthesis<br />

Silikates<br />

• biogeic in sheats of Diatoms or Radiolarians<br />

• chemical as clay minerals via inflow<br />

Coccolithophorides Foraminifera Radiolarians Diatoms<br />

www.unibas .ch/z mb/ caliban.mpiz-koel n.mpg.<br />

www.unibas .ch/z mb/ www.reclot.de/bilddat/geolog/<br />

de/~stueber/haeckel/k unstformen/<br />

d44mik/mikro03.htm<br />

Tafel_002.html<br />

Coccolithophorids<br />

Cell size: 2-20 mm<br />

Cell wall: CaCO 3<br />

coccoliths or<br />

scales<br />

Chloroplasts: none, single<br />

thylakoid membrane<br />

Photo-pigments:<br />

chlorophyll a<br />

& c, carotenoids<br />

Reproduction: simple cell<br />

division, r<strong>are</strong>ly sexual<br />

reproduction<br />

Ecological roles: biflagellated,<br />

produce chalk deposits<br />

Common genus:<br />

Emiliania<br />

Emiliania huxleyi<br />

Botanical Bulletin of Academia Sinica,<br />

Vol. 42, 2001<br />

lat. coccus = round, gr. lithos = stone, gr. pherein = carry<br />

12


Foraminifera<br />

... a paleoclimate proxy?<br />

lat. foramen = hole, lat. ferre = carry<br />

Deutsch: Foraminiferen, Kammerlinge,<br />

Klasse der Rhizopoda (Wurzelfüßer)<br />

Foraminifera<br />

"Sand" at the Bight of Alcudia, Mallorca<br />

13


Diatoms (Kieselalgen)<br />

Pacific sediment (Peru margin)<br />

Pacific diatoms<br />

North Sea diatoms (tidal flat)<br />

Radiolarians (Strahlentierchen)<br />

From Haeckel:<br />

"Kunstformen der Natur"<br />

14


Oxygen isotope fractionation as proxy for the ocean water<br />

temperature<br />

-> Natural 18 O: 16 O ratio about 1:500<br />

determined in microfossils, that use oxygen for shell formation<br />

(benthic and planktonic foraminifers, coccolithophorids)<br />

-> Variation of delta 18 O values controlled by temperature:<br />

preferred evaporation of light H 2 16 O molecules<br />

comp<strong>are</strong>d to heavier H 2 18 O.<br />

-> Cold air carries relatively less H 2 18 O,<br />

which remains enriched in the water.<br />

-> 1% increase of delta 18 O corresponds to<br />

about 1 °C temperature decrease.<br />

Sediment Temperature<br />

-> Seafloor mostly around 0 - 2 °C<br />

-> Temperature increase with depth,<br />

depending on geological parameters<br />

-> Hydrothermal vents with temperatures<br />

above 300 °C<br />

15


How old <strong>are</strong> sediments?<br />

Only 200 Mio. years before<br />

present there was only one<br />

continent, Pangaea<br />

Online Biology Book<br />

Mike Farabee<br />

www.emc.maricopa.edu/faculty/far<br />

abee/BIOBK/BioBookTOC.html<br />

Plate tectonics<br />

16


Plate tectonics govern sediment age<br />

http://www.ngdc.noaa.gov<br />

Mid-oceanic ridges (spreading centers)<br />

• Form the longest mountain chain on earth<br />

Inorganic reduced compounds <strong>are</strong> released, e.g., 30 Mio t H 2<br />

S per year<br />

(Ocean water moves through the earth crust on average in 8 Mio a)<br />

• Hydrothermal vent production, 0.02 % of total primary production<br />

= 10 % of the sea-floor production<br />

• Rich communities based of bacterial chemosynthesis<br />

e.g. Riftia pachyptila: huge worm without mouth and after<br />

living from symbiotic autotrophic H 2<br />

S oxidizers<br />

• Energy from the oxidation of H 2<br />

S, H 2<br />

, Fe 2+ etc. with oxygen (from photosynthesis!)<br />

17


Life at Mid-oceanic ridges<br />

By which properties <strong>are</strong> sediments characterized?<br />

- TOC (total organic carbon): 0.2 - 2 %, sapropels up to 30 %<br />

- 50% carbonaceous <strong>Sediments</strong> (50 - 90 % TIC), less with silicates (Diatoms etc.)<br />

- Water: porosity and permeability decreasing with depth and age<br />

- Varying particle size: mud, silt 63 - 200 µm, sand > 63 µm,<br />

- Varying density: ~1.5 to ~2.5 g/cm 3<br />

- Oxygen: upper mm to meters<br />

- Nitrate: slightly below oxygen<br />

- Ammonia as a product of degradation<br />

- Fe 3+ , Mn 4+ -> Fe 2+ , Mn 2+ with increasing depth<br />

- Sulfides<br />

- Methane hydrates<br />

18


How can we detect processes inside the sediment column?<br />

Gradients!<br />

Janssand<br />

Neuharlingersieler Nacken<br />

19


Oxygen profile<br />

Seawater<br />

Diffusive boundary<br />

layer<br />

Oxygen<br />

Sandkorn<br />

Sediment<br />

20


Sulfate-methane interfaces<br />

ODP Site 1229<br />

- Methanogenesis and sulfate reduction as dominant terminal processes<br />

- Anaerobic methane oxidation as important process<br />

Methane-bearing<br />

deep-sea sediment<br />

1 bar pressure increase per 10 m<br />

water depth<br />

21


Methane hydrate<br />

(ODP Site 1230)<br />

The most important reservoir of<br />

reduced carbon on earth<br />

2407-2410<br />

2410<br />

Meteor Leg M40-4 (1998)<br />

Sapropel layers with up to 30 % organic carbon and<br />

increased microbial activity<br />

22


Swamps<br />

Biogenic sediments:<br />

From peat to coal<br />

Coverage<br />

Peat<br />

(plant material)<br />

Consolidation<br />

Enhanced<br />

Coverage<br />

Lignite<br />

(brown coal)<br />

Consolidation<br />

Metamorphosis<br />

Pitch coal<br />

(soft black coal)<br />

Tension<br />

Peat in the backbarrier tidal flat of<br />

Spiekeroog, a former moor<br />

Tarbuck & Lutgens:<br />

Allgemeine Geol ogie, mod.<br />

Anthracite<br />

(hard coal)<br />

Microbial mats<br />

Farbstreifen-Sandwatt<br />

Saltmarsh pond (South africa)<br />

23


Stromatolite<br />

(pillow stone)<br />

1.3 Ga<br />

Ga = Giga years or<br />

billion years<br />

Attention:<br />

Engl. Billion = german Milliarde<br />

Undisturbed<br />

development in the<br />

absence of grazers<br />

Shark Bay,<br />

Australia<br />

Banded Iron Formations (BIF's,<br />

gebänderte Eisensteine)<br />

without microfossils, but<br />

showing isotope fractionation<br />

of 12 C/ 13 C as indicator for<br />

biological activity<br />

Periodic changes between reducing and oxidizing conditions<br />

Oxidation of Fe 2+ to Fe 3+ by<br />

(oxygenic?) photosynthesis,<br />

Precipitation of oxidized iron salts<br />

Ditch, Oldenburg University<br />

24


Sediment slurries at ODP Site 1231<br />

Oxidized iron and manganese as important electron<br />

accptors in low-carbon sediments<br />

Age<br />

Productivity and external input<br />

Thickness<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!