13.06.2014 Views

Chapter 12 Sequences; Induction; the Binomial Theorem

Chapter 12 Sequences; Induction; the Binomial Theorem

Chapter 12 Sequences; Induction; the Binomial Theorem

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chapter</strong> <strong>12</strong><br />

<strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

Section <strong>12</strong>.1<br />

2−1 1<br />

2 2<br />

1. f ( 2)<br />

= = ; f ( 3)<br />

2. True<br />

3.<br />

4.<br />

nt ⋅<br />

3−1 2<br />

= =<br />

3 3<br />

⎛ r ⎞<br />

A= P⎜1+<br />

⎟<br />

⎝ n ⎠<br />

22 ⋅<br />

⎛ 0.04 ⎞<br />

= 1000⎜1+<br />

⎟<br />

⎝ 2 ⎠<br />

4<br />

= 1000( 1.02)<br />

= 1082.43<br />

After two years, <strong>the</strong> account will contain<br />

$1082.43.<br />

nt ⋅<br />

⎛ r ⎞<br />

A= P⎜1+<br />

⎟<br />

⎝ n ⎠<br />

⎛ 0.05 ⎞<br />

10,000 = P ⎜1+<br />

⎟<br />

⎝ <strong>12</strong> ⎠<br />

<strong>12</strong>⋅1<br />

⎛ 0.05 ⎞<br />

10,000 = P⎜1+<br />

⎟<br />

⎝ <strong>12</strong> ⎠<br />

10,000 = P( 1.051162)<br />

10,000<br />

= P<br />

1.051162<br />

9513.28 = P<br />

To have $10,000 at <strong>the</strong> end of one year, you need<br />

to invest $9513.28 now.<br />

5. sequence<br />

<strong>12</strong><br />

6. s 1 = 41 () − 1= 3; ( )<br />

4 4<br />

7. ∑( k)<br />

∑<br />

k= 1 k=<br />

1<br />

8. True<br />

s 4 = 4 4 − 1=<br />

15<br />

( + )<br />

4 4 1<br />

2 = 2 k = 2⋅ = 4( 5)<br />

= 20<br />

2<br />

9. True; a sequence is a function whose domain is<br />

<strong>the</strong> set of positive integers.<br />

11. 10! = 10987654321 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = 3,628,800<br />

<strong>12</strong>. 9! = 987654321 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = 362,880<br />

13.<br />

14.<br />

15.<br />

16.<br />

9! 9⋅8⋅7⋅6!<br />

= = 987 ⋅ ⋅ = 504<br />

6! 6!<br />

<strong>12</strong>! <strong>12</strong>⋅11⋅10!<br />

= = <strong>12</strong>⋅ 11 = 132<br />

10! 10!<br />

3!7! ⋅ 3217654!<br />

⋅ ⋅ ⋅ ⋅ ⋅ ⋅<br />

= = 321765 ⋅ ⋅ ⋅ ⋅ ⋅ = <strong>12</strong>60<br />

4! 4!<br />

5! ⋅8! 5⋅4⋅3! ⋅8!<br />

=<br />

3! 3!<br />

= 5487654321<br />

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅<br />

= 806,400<br />

17. s1 s2 s3 s4 s5<br />

18.<br />

= 1, = 2, = 3, = 4, = 5<br />

2 2 2<br />

1 2 3<br />

2 2<br />

4 = 4 + 1= 17, s5<br />

= 5 + 1=<br />

26<br />

s = 1 + 1= 2, s = 2 + 1= 5, s = 3 + 1=<br />

10,<br />

s<br />

1 1 2 2 1<br />

19. a1 = = , a2<br />

= = = ,<br />

1+ 2 3 2+<br />

2 4 2<br />

3 3 4 4 2<br />

a3 = = , a4<br />

= = = ,<br />

3+ 2 5 4+<br />

2 6 3<br />

5 5<br />

a 5 = =<br />

5+<br />

2 7<br />

21 ⋅ + 1 3 22 ⋅ + 1 5<br />

20. b1 = = , b2<br />

= = ,<br />

21 ⋅ 2 22 ⋅ 4<br />

23 ⋅ + 1 7 24 ⋅ + 1 9<br />

b3 = = , b4<br />

= = ,<br />

23 ⋅ 6 24 ⋅ 8<br />

25 ⋅ + 1 11<br />

b5<br />

= =<br />

25 ⋅ 10<br />

21.<br />

11 + 2 21 + 2<br />

1 c2<br />

3+ 1 2 4+<br />

1 2<br />

3 c4<br />

5+<br />

1 2<br />

c = ( − 1) (1 ) = 1, = ( − 1) (2 ) =−4,<br />

c = ( − 1) (3 ) = 9, = ( − 1) (4 ) = −16,<br />

c 5 = ( − 1) (5 ) = 25<br />

10. True;<br />

2<br />

∑<br />

k = 1<br />

( + )<br />

2 2 1<br />

k = = 3<br />

2<br />

<strong>12</strong>35<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

22.<br />

23.<br />

24.<br />

25.<br />

26.<br />

11 − ⎛ 1 ⎞<br />

d1<br />

= ( − 1) ⎜ ⎟=<br />

1,<br />

⎝21 ⋅ −1⎠<br />

2−1⎛<br />

2 ⎞ 2<br />

d2<br />

= ( − 1) ⎜ ⎟= − ,<br />

⎝2⋅2−1⎠<br />

3<br />

3−1⎛<br />

3 ⎞ 3<br />

d3<br />

= ( − 1) ⎜ ⎟=<br />

,<br />

⎝23 ⋅ −1⎠<br />

5<br />

d<br />

d<br />

4<br />

5<br />

4−1⎛<br />

4 ⎞ 4<br />

= ( − 1) ⎜ ⎟= − ,<br />

⎝2⋅4−1⎠<br />

7<br />

5−1⎛<br />

5 ⎞ 5<br />

= ( − 1) ⎜ ⎟=<br />

⎝25 ⋅ −1⎠<br />

9<br />

1 2<br />

2 2 1 2 4 2<br />

s1 = = = , s<br />

1 2 = = = ,<br />

2<br />

3 + 1 4 2 3 + 1 10 5<br />

s<br />

3 4<br />

2 8 2 2 16 8<br />

= = = , s = = = ,<br />

3 + 1 28 7 3 + 1 82 41<br />

3 3 4 4<br />

s<br />

5 5<br />

5<br />

2 32 8<br />

= = =<br />

3 + 1 244 61<br />

1 2<br />

⎛4⎞ 4 ⎛4⎞<br />

16<br />

s1 = ⎜ ⎟ = , s2<br />

= ⎜ ⎟ = ,<br />

⎝3⎠ 3 ⎝3⎠<br />

9<br />

s<br />

s<br />

3 4<br />

3 4<br />

5<br />

⎛4 ⎞ 64 ⎛4 ⎞ 256<br />

= ⎜ ⎟ = , s = ⎜ ⎟ = ,<br />

⎝3⎠ 27 ⎝3⎠<br />

81<br />

5<br />

⎛4⎞<br />

1024<br />

= ⎜ ⎟ =<br />

⎝3⎠<br />

243<br />

1<br />

( −1) −1 1<br />

t1<br />

= = = − ,<br />

(1+ 1)(1 + 2) 2 ⋅3 6<br />

t<br />

t<br />

t<br />

t<br />

2<br />

3<br />

4<br />

5<br />

2<br />

( −1) 1 1<br />

= = = ,<br />

(2 + 1)(2 + 2) 3⋅4 <strong>12</strong><br />

3<br />

( −1) −1 1<br />

= = = − ,<br />

(3 + 1)(3 + 2) 4⋅5 20<br />

4<br />

( −1) 1 1<br />

= = = ,<br />

(4 + 1)(4 + 2) 5⋅6 30<br />

5<br />

( −1) −1 1<br />

= = =−<br />

(5 + 1)(5 + 2) 6⋅7 42<br />

1 2 3<br />

3 3 3 9 3 27<br />

a1 = = = 3, a2 = = , a3<br />

= = = 9,<br />

1 1 2 2 3 3<br />

a<br />

4 5<br />

3 81 3 243<br />

= = , a = =<br />

4 4 5 5<br />

4 5<br />

1 1 2 3 4 5<br />

e e e e e e<br />

27. b1 = = , b<br />

1 2 = , b<br />

2 3 = , b<br />

3 4 = , b<br />

4 5 = 5<br />

28.<br />

2 2 2<br />

1 1 2 2 3 3<br />

1 1 2 3 9<br />

c = = , c = = 1, c = = ,<br />

2 2 2 2 8<br />

2 2<br />

4 16 5 25<br />

c4 = = = 1, c<br />

4 5 = =<br />

5<br />

2 16 2 32<br />

29. Answers may vary. One possibility follows:<br />

Each term is a fraction with <strong>the</strong> numerator equal<br />

to <strong>the</strong> term number and <strong>the</strong> denominator equal to<br />

one more than <strong>the</strong> term number.<br />

n<br />

an<br />

=<br />

n + 1<br />

30. Answers may vary. One possibility follows:<br />

Each term is a fraction with <strong>the</strong> numerator equal<br />

to 1 and <strong>the</strong> denominator equal to <strong>the</strong> product of<br />

<strong>the</strong> term number and one more than <strong>the</strong> term<br />

number.<br />

1<br />

a n =<br />

n n+<br />

1<br />

( )<br />

31. Answers may vary. One possibility follows:<br />

Each term is a fraction with <strong>the</strong> numerator equal<br />

to 1 and <strong>the</strong> denominator equal to a power of 2.<br />

The power is equal to one less than <strong>the</strong> term<br />

number.<br />

1<br />

a n =<br />

n−1<br />

2<br />

32. Answers may vary. One possibility follows:<br />

Each term is equal to a fraction with <strong>the</strong><br />

numerator equal to a power of 2 and <strong>the</strong><br />

denominator equal to a power of 3. Both powers<br />

are equal to <strong>the</strong> term number. Since <strong>the</strong> powers<br />

are <strong>the</strong> same, we can use rules for exponents to<br />

write each term as a power of 2 3 .<br />

a n<br />

⎛2<br />

⎞<br />

= ⎜ ⎟<br />

⎝3<br />

⎠<br />

n<br />

33. Answers may vary. One possibility follows:<br />

The terms form an alternating sequence. Ignoring<br />

<strong>the</strong> sign, each term always contains a 1. The sign<br />

alternates by raising − 1 to a power. Since <strong>the</strong><br />

first term is positive, we use n − 1 as <strong>the</strong> power.<br />

1<br />

1 n −<br />

= −<br />

a n<br />

( )<br />

<strong>12</strong>36<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.1: <strong>Sequences</strong><br />

34. Answers may vary. One possibility follows:<br />

The terms appear to alternate between whole<br />

numbers and fractions. If we write <strong>the</strong> whole<br />

numbers as fractions (e.g. 1 = 1 , 3 = 3 , etc.), we<br />

1 1<br />

see that each term consists of a 1 and <strong>the</strong> term<br />

number. When n is odd, <strong>the</strong> numerator is n and <strong>the</strong><br />

denominator is 1. When n is even, <strong>the</strong> numerator is<br />

1 and <strong>the</strong> denominator is n. This alternating<br />

behavior occurs if we have a power that alternates<br />

sign. The alternating sign is obtained by using<br />

( − )<br />

1 n+1<br />

. Thus, we get<br />

an<br />

( −<br />

= n<br />

)<br />

1<br />

1 n +<br />

35. Answers may vary. One possibility follows:<br />

The terms (ignoring <strong>the</strong> sign) are equal to <strong>the</strong><br />

term number. The alternating sign is obtained by<br />

using ( − 1)<br />

n+1<br />

.<br />

an<br />

( )<br />

1<br />

1 n +<br />

= − ⋅ n<br />

36. Answers may vary. One possibility follows:<br />

Here again we have alternating signs which will<br />

be taken care of by using ( − 1)<br />

n+1<br />

. The rest of <strong>the</strong><br />

term is twice <strong>the</strong> term number.<br />

an<br />

( )<br />

n+<br />

1<br />

= −1 ⋅ 2n<br />

37. a1 a2 a3<br />

= 2, = 3 + 2 = 5, = 3 + 5 = 8,<br />

a = 3 + 8 = 11, a = 3+ 11 = 14<br />

4 5<br />

a = 3, a = 4 − 3 = 1, a = 4 − 1 = 3,<br />

a = 4− 3= 1, a = 4− 1=<br />

3<br />

38. 1 2 3<br />

4 5<br />

39. a1 a2 a3<br />

=− 2, = 2 + ( − 2) = 0, = 3 + 0 = 3,<br />

a = 4+ 3= 7, a = 5+ 7 = <strong>12</strong><br />

4 5<br />

40. a1 a2 a3<br />

= 1, = 2 − 1 = 1, = 3 − 1 = 2,<br />

a = 4− 2= 2, a = 5− 2=<br />

3<br />

4 5<br />

a = 5, a = 2⋅ 5 = 10, a = 2⋅ 10 = 20,<br />

a = 220 ⋅ = 40, a = 240 ⋅ = 80<br />

41. 1 2 3<br />

4 5<br />

42. a1 a2 a3<br />

= 2, = − 2, = −( − 2) = 2,<br />

a =− 2, a =−− ( 2) = 2<br />

4 5<br />

3 1 1<br />

3<br />

43. 2 1 2 1 8 1<br />

a1= 3, a2 = , a3 = = , a4<br />

= = , a5<br />

= =<br />

2 3 2 4 8 5 40<br />

44. a1 = − 2, a2<br />

= 2 + 3( − 2) =−4,<br />

a3 = 3 + 3( − 4) = − 9, a4<br />

= 4 + 3( − 9) =−23,<br />

a 5 = 5+ 3( − 23) =− 64<br />

= 1, = 2, = 2⋅ 1 = 2, = 2⋅ 2 = 4,<br />

a = 42 ⋅ = 8<br />

45. a1 a2 a3 a4<br />

5<br />

46. a1 a2 a3<br />

= − 1, = 1, =− 1+ 3⋅ 1 = 2,<br />

a = 1+ 4⋅ 2= 9, a = 2+ 5⋅ 9=<br />

47<br />

4 5<br />

a = A, a = A+ d, a = ( A+ d) + d = A+<br />

2 d,<br />

a4<br />

= ( A+ 2 d) + d = A+<br />

3 d,<br />

a = ( A+ 3 d) + d = A+<br />

4d<br />

47. 1 2 3<br />

48.<br />

5<br />

2<br />

1 = , 2 = , 3 = ( ) = ,<br />

2 3 3 4<br />

4 = = 5 = =<br />

a A a rA a r rA r A<br />

( ) , ( )<br />

a r r A r A a r r A r A<br />

49. a1 a2 a3<br />

a<br />

4<br />

= 2, = 2+ 2, = 2+ 2+<br />

2,<br />

= 2+ 2+ 2+<br />

2 ,<br />

a 5 = 2+ 2+ 2+ 2+<br />

2<br />

2<br />

2<br />

= 2, = , =<br />

2<br />

,<br />

2 2<br />

50. a1 a2 a3<br />

n<br />

a<br />

2<br />

2 2<br />

2 2<br />

=<br />

2<br />

, a =<br />

2<br />

2 2<br />

4 5<br />

51. ∑ ( k+ 2) = 3+ 4+ 5+ 6+ 7+⋅⋅⋅+ ( n+<br />

2)<br />

k = 1<br />

n<br />

52. ∑ (2k<br />

+ 1) = 3+ 5 + 7 + 9 +⋅⋅⋅+ ( 2n+<br />

1)<br />

53.<br />

k = 1<br />

n<br />

∑<br />

k = 1<br />

n<br />

2 2<br />

k 1 9 25 49 n<br />

= + 2 + + 8 + + 18 + + 32 +⋅⋅⋅+<br />

2 2 2 2 2 2<br />

2 2<br />

54. ∑ ( k+ 1) = 4+ 9+ 16+ 25+ 36+⋅⋅⋅+ ( n+<br />

1)<br />

k = 1<br />

<strong>12</strong>37<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

55.<br />

56.<br />

57.<br />

n<br />

1 1 1 1 1<br />

∑ = 1+ + + + +<br />

3<br />

k 3 9 27 3<br />

n<br />

k = 0<br />

n<br />

⎛3⎞ 3 9 ⎛3⎞<br />

∑ ⎜ ⎟ = 1+ + + + ⎜ ⎟<br />

⎝2⎠ 2 4 ⎝2⎠<br />

k = 0<br />

n−1<br />

k = 0<br />

k<br />

1 1 1 1 1<br />

∑ = + + + +<br />

k+<br />

1<br />

3 3 9 27<br />

n<br />

3<br />

n−1<br />

58. ∑ (2k<br />

+ 1) = 1+ 3+ 5+ 7 + + ( 2( n− 1) + 1)<br />

59.<br />

60.<br />

k = 0<br />

n<br />

k = 2<br />

= 1+ 3+ 5+ 7 + + (2n<br />

−1)<br />

k<br />

n<br />

∑ ( − 1) lnk<br />

= ln2− ln3+ ln4 − + ( −1) lnn<br />

n<br />

∑<br />

k = 3<br />

k+<br />

1 k<br />

( −1) 2<br />

4 3 5 4 6 5 n+<br />

1 n<br />

= ( − 1) 2 + ( − 1) 2 + ( − 1) 2 + + ( −1) 2<br />

3 4 5 6 n+<br />

1 n<br />

= 2 − 2 + 2 − 2 + + ( −1) 2<br />

n+<br />

1 n<br />

= 8− 16+ 32− 64 + ... + ( −1) 2<br />

61. Answers may vary. One possibility follows:<br />

20<br />

1+ 2+ 3+ + 20= ∑ k<br />

k = 1<br />

62. Answers may vary. One possibility follows:<br />

8<br />

3 3 3 3 3<br />

1 + 2 + 3 + + 8 = ∑ k<br />

k = 1<br />

63. Answers may vary. One possibility follows:<br />

1 2 3 13<br />

13<br />

k<br />

+ + + + = ∑<br />

2 3 4 13+ 1 k + 1<br />

k = 1<br />

64. Answers may vary. One possibility follows:<br />

<strong>12</strong><br />

1+ 3 + 5 + 7 + + 2(<strong>12</strong>) − 1 = (2k<br />

−1)<br />

[ ]<br />

n<br />

∑<br />

k = 1<br />

65. Answers may vary. One possibility follows:<br />

1 1 1<br />

6<br />

6 ⎛ 1 ⎞ k ⎛ 1 ⎞<br />

1 − + − + + ( − 1) ⎜ ( 1)<br />

3 9 27<br />

6 ⎟= ∑ − ⎜ k ⎟<br />

⎝3 ⎠ ⎝3<br />

⎠<br />

k = 0<br />

66. Answers may vary. One possibility follows:<br />

11<br />

2 4 8<br />

11<br />

11+ 1 ⎛2⎞ k + 1 ⎛2⎞<br />

− + + + ( − 1) ⎜ ⎟ = ∑ ( −1)<br />

⎜ ⎟<br />

3 9 27<br />

⎝3⎠ ⎝3⎠<br />

k = 1<br />

k<br />

67. Answers may vary. One possibility follows:<br />

2 3<br />

n k<br />

3 3 3 3<br />

3 + n<br />

2 + 3<br />

+ + n<br />

= ∑ k<br />

k = 1<br />

68. Answers may vary. One possibility follows:<br />

1 2 3 n<br />

n<br />

k<br />

+ + + + =<br />

e<br />

2 3<br />

n<br />

∑<br />

k<br />

e e e e<br />

k = 1<br />

69. Answers may vary. One possibility follows:<br />

n<br />

a+ ( a+ d) + ( a+ 2 d) + + ( a+ nd) = ( a+<br />

kd)<br />

n<br />

∑<br />

k = 1<br />

( )<br />

or = ( a+ k −1 d)<br />

∑<br />

k = 0<br />

70. Answers may vary. One possibility follows:<br />

n<br />

2 n−1 k−1<br />

a+ ar+ ar + + ar = ∑ ar<br />

or<br />

n−1<br />

∑<br />

k = 0<br />

ar<br />

k<br />

k = 1<br />

40<br />

71. ( )<br />

72.<br />

73.<br />

74.<br />

75.<br />

∑ 5= 5 <br />

+ 5+ 5+⋅⋅⋅+ 5= 40 5 = 200<br />

k = 1 40 times<br />

50<br />

∑ 8 = 8 <br />

+ 8 + 8 +⋅⋅⋅+ 8 = 50(8) = 400<br />

k = 1 50 times<br />

40<br />

∑<br />

k = 1<br />

( + )<br />

40 40 1<br />

k = = 20( 41)<br />

= 820<br />

2<br />

24 24<br />

k= 1 k=<br />

1<br />

( + )<br />

24 24 1<br />

( − k) = − k = − = −300<br />

2<br />

∑ ∑<br />

20 20 20 20 20<br />

∑ ∑ ∑ ∑ ∑<br />

(5k+ 3) = (5 k) + 3 = 5 k+<br />

3<br />

k= 1 k= 1 k= 1 k= 1 k=<br />

1<br />

( + )<br />

⎛20 20 1 ⎞<br />

= 5⎜<br />

⎟+<br />

3 20<br />

⎝ 2 ⎠<br />

= 1050 + 60 = 1110<br />

( )<br />

26 26 26 26 26<br />

76. ∑ ( k − ) = ∑( k)<br />

− ∑ = ∑k−∑<br />

3 7 3 7 3 7<br />

k= 1 k= 1 k= 1 k= 1 k=<br />

1<br />

( + )<br />

⎛26 26 1 ⎞<br />

= 3⎜<br />

⎟−7 26<br />

⎝ 2 ⎠<br />

= 1053 − 182 = 871<br />

( )<br />

<strong>12</strong>38<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.1: <strong>Sequences</strong><br />

16 16 16<br />

2 2<br />

∑ ∑ ∑<br />

77. ( k )<br />

+ 4 = k + 4<br />

k= 1 k= 1 k=<br />

1<br />

( + )( ⋅ + )<br />

16 16 1 2 16 1<br />

= + 416<br />

6<br />

= 1496 + 64 = 1560<br />

( )<br />

14 14<br />

78. ∑ ( k<br />

2 − 4) = ( 0 2 − 4) + ∑( k<br />

2 −4)<br />

79.<br />

k= 0 k=<br />

1<br />

14 14<br />

2<br />

∑<br />

= k −<br />

∑<br />

k= 1 k=<br />

1<br />

4<br />

( + )( ⋅ + )<br />

14 14 1 2 14 1<br />

=− 4+ −4 14<br />

6<br />

=− 4 + 1015− 64 = 955<br />

⎡ ⎤<br />

2k = 2 2k = 2⎢<br />

k − k⎥<br />

⎣ ⎦<br />

60 60 60 9<br />

∑ ∑ ∑ ∑<br />

k= 10 k= 10 k= 1 k=<br />

1<br />

( + ) ( + )<br />

⎡60 60 1 9 9 1 ⎤<br />

= 2 ⎢ − ⎥<br />

⎣ 2 2 ⎦<br />

= 2 1830 − 45 = 3570<br />

[ ]<br />

⎡ ⎤<br />

k k ⎢ k k⎥<br />

⎣ ⎦<br />

40 40 40 7<br />

80. ∑( − 3 ) =− 3∑ =−3<br />

∑ −∑<br />

k= 8 k= 8 k= 1 k=<br />

1<br />

( + ) ( + )<br />

⎡40 40 1 7 7 1 ⎤<br />

=−3⎢<br />

− ⎥<br />

⎣ 2 2 ⎦<br />

=−3 820 − 28 =−2376<br />

[ ]<br />

( )<br />

From <strong>the</strong> table we see that <strong>the</strong> balance is<br />

below $2000 after 14 payments have been<br />

made. The balance <strong>the</strong>n is $1953.70.<br />

c. Scrolling down <strong>the</strong> table, we find that<br />

balance is paid off in <strong>the</strong> 36th month. The<br />

last payment is $83.78. There are 35<br />

payments of $100 and <strong>the</strong> last payment of<br />

$83.78. The total amount paid is: 35(100) +<br />

83.78(1.01) = $3584.62. (we have to add<br />

<strong>the</strong> interest for <strong>the</strong> last month).<br />

d. The interest expense is:<br />

3584.62 – 3000.00 = $584.62<br />

81.<br />

82.<br />

20 20 4<br />

3 3 3<br />

∑ ∑ ∑<br />

k = k − k<br />

k= 5 k= 1 k=<br />

1<br />

( + ) ( + )<br />

2 2<br />

2 2<br />

⎡20 20 1 ⎤ ⎡4 4 1 ⎤<br />

= ⎢ ⎥ −⎢ ⎥<br />

⎣ 2 ⎦ ⎣ 2 ⎦<br />

= 210 − 10 = 44,000<br />

24 24 3<br />

3 3 3<br />

∑ ∑ ∑<br />

k = k − k<br />

k= 4 k= 1 k=<br />

1<br />

( + ) ( + )<br />

2 2<br />

2 2<br />

⎡24 24 1 ⎤ ⎡3 3 1 ⎤<br />

= ⎢ ⎥ −⎢ ⎥<br />

⎣ 2 ⎦ ⎣ 2 ⎦<br />

= 300 − 6 = 89,964<br />

84. a. B 1 = 1.005(18500) − 534.47 = $18,058.03<br />

b. Put <strong>the</strong> graphing utility in SEQuence mode.<br />

Enter Y= as follows, <strong>the</strong>n examine <strong>the</strong><br />

TABLE:<br />

83. a. B 1 = 1.01(3000) − 100 = $2930<br />

b. Put <strong>the</strong> graphing utility in SEQuence mode.<br />

Enter Y= as follows, <strong>the</strong>n examine <strong>the</strong><br />

TABLE:<br />

From <strong>the</strong> table we see that <strong>the</strong> balance is<br />

below $10,000 after 19 payments have been<br />

made. The balance <strong>the</strong>n is $9713.76.<br />

<strong>12</strong>39<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

c. Scrolling down <strong>the</strong> table, we find that<br />

balance is paid off in <strong>the</strong> 39th month. The<br />

last payment is $54.18. There are 38<br />

payments of $534.47 and <strong>the</strong> last payment<br />

of $54.18 plus interest. The total amount<br />

paid is: 38(534.47) + 54.18(1.005) =<br />

$20,364.31.<br />

d. The interest expense is:<br />

20,364.31 – 18,500.00 = $1864.31<br />

85. a. p1<br />

= 1.03(2000) + 20 = 2080;<br />

p2<br />

= 1.03(2080) + 20 = 2162.4<br />

There are approximately 2162 trout in <strong>the</strong><br />

pond at <strong>the</strong> end of <strong>the</strong> second month.<br />

b. Scrolling down <strong>the</strong> table, we find <strong>the</strong> trout<br />

population exceeds 5000 at <strong>the</strong> end of <strong>the</strong><br />

26th month when <strong>the</strong> population is 5084.<br />

c. The equilibrium level of pollution occurs<br />

when x = 0.9x+ 15 . That is, when x = 150<br />

tons.<br />

x = 0.9x+<br />

15<br />

0.1x<br />

= 15<br />

x = 150<br />

87. a. Since <strong>the</strong> fund returns 8% compound<br />

annually, this is equivalent to a return of 2%<br />

each quarter. Defining a recursive<br />

sequence, we have:<br />

a0 = 0, an<br />

= 1.02an<br />

− 1+<br />

500<br />

b. Insert <strong>the</strong> formulas in your graphing utility<br />

and use <strong>the</strong> table feature to find when <strong>the</strong><br />

value of <strong>the</strong> account will exceed $100,000:<br />

86. a. p1<br />

= 0.9(250) + 15 = 240;<br />

p2<br />

= 0.9(240) + 15 = 231<br />

There are 240 tons of pollutants at <strong>the</strong> end of<br />

<strong>the</strong> first year, and 231 tons of pollutants at<br />

<strong>the</strong> end of <strong>the</strong> second year.<br />

b. Scrolling down <strong>the</strong> table, we display <strong>the</strong><br />

pollutant levels for <strong>the</strong> next 20 years.<br />

In <strong>the</strong> 82nd quarter (approximately May<br />

2019) <strong>the</strong> value of <strong>the</strong> account will exceed<br />

$100,000 with a value of $101,810.<br />

<strong>12</strong>40<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.1: <strong>Sequences</strong><br />

c. Find <strong>the</strong> value of <strong>the</strong> account in 25 years or<br />

100 quarters:<br />

c. Enter <strong>the</strong> recursive formula in Y= and create<br />

<strong>the</strong> table:<br />

The value of <strong>the</strong> account will be $156,116.15.<br />

88. a. Since <strong>the</strong> fund returns 6% compounded<br />

annually, this is equivalent to a return of<br />

0.5% each month. Defining a recursive<br />

sequence, we have:<br />

a0 = 0, an<br />

= 1.005an<br />

− 1+<br />

45<br />

b. Insert <strong>the</strong> formulas in your graphing utility<br />

and use <strong>the</strong> table feature to find when <strong>the</strong><br />

value of <strong>the</strong> account will exceed $4,000:<br />

d. Scroll through <strong>the</strong> table:<br />

After 58 payments have been made, <strong>the</strong><br />

balance is below $140,000. The balance is<br />

about $139,981.<br />

e. Scroll through <strong>the</strong> table:<br />

In <strong>the</strong> 74th month (February 2006) <strong>the</strong> value<br />

of <strong>the</strong> account will exceed $4,000 with a<br />

value of about $4,017.60.<br />

c. Find <strong>the</strong> value of <strong>the</strong> account in 16 years or<br />

192 months:<br />

The value of <strong>the</strong> account will be<br />

approximately $14,449.11.<br />

89. a. Since <strong>the</strong> interest rate is 6% per annum<br />

compounded monthly, this is equivalent to a<br />

rate of 0.5% each month. Defining a<br />

recursive sequence, we have:<br />

a0 = 150,000, an<br />

= 1.005an<br />

− 1−<br />

899.33<br />

b. 1.005(150,000) − 899.33 = $149,850.67<br />

The loan will be paid off at <strong>the</strong> end of 360<br />

months or 30 years.<br />

Total amount paid = (359)($899.33) +<br />

$890.65(1.005) = $323,754.57.<br />

f. The total interest expense is <strong>the</strong> difference<br />

of <strong>the</strong> total of <strong>the</strong> payments and <strong>the</strong> original<br />

loan: 323,754.57 − 150,000 = $173,754.57<br />

g. (a) Since <strong>the</strong> interest rate is 6% per annum<br />

compounded monthly, this is equivalent to<br />

a rate of 0.5% each month. Defining a<br />

recursive sequence, we have:<br />

a0 = 150,000, an<br />

= 1.005an<br />

− 1−<br />

999.33<br />

(b) 1.005(150,000) − 999.33 = $149,750.67<br />

<strong>12</strong>41<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

(c) Enter <strong>the</strong> recursive formula in Y= and<br />

create <strong>the</strong> table:<br />

b.<br />

⎛ 0.065 ⎞<br />

⎜1 + ⎟(<strong>12</strong>0,000) −758.48<br />

= $119,891.52<br />

⎝ <strong>12</strong> ⎠<br />

c. Enter <strong>the</strong> recursive formula in Y= and create<br />

<strong>the</strong> table:<br />

(d) Scroll through <strong>the</strong> table:<br />

d. Scroll through <strong>the</strong> table:<br />

After 37 payments have been made, <strong>the</strong><br />

balance is below $140,000. The<br />

balance is $139,894.<br />

(e) Scroll through <strong>the</strong> table:<br />

After <strong>12</strong>9 payments have been made, <strong>the</strong><br />

balance is below $100,000. The balance is<br />

about $99,824.<br />

e. Scroll through <strong>the</strong> table:<br />

The loan will be paid off at <strong>the</strong> end of<br />

279 months or 23 years and 3 months.<br />

Total amount paid = (278)($999.33) +<br />

353.69(1.005) = $278,169.20<br />

(f) The total interest expense is <strong>the</strong><br />

difference of <strong>the</strong> total of <strong>the</strong> payments<br />

and <strong>the</strong> original loan:<br />

278,169.20 − 150,000 = $<strong>12</strong>8,169.20<br />

h. Yes, if <strong>the</strong>y can afford <strong>the</strong> additional<br />

monthly payment. They would save<br />

$44,586.07 in interest payments by paying<br />

<strong>the</strong> loan off sooner.<br />

90. a. Since <strong>the</strong> interest rate is 6.5% per annum<br />

compounded at a rate of (6.5/<strong>12</strong>)% each<br />

month. Defining a recursive sequence, we<br />

have:<br />

a0<br />

= <strong>12</strong>0,000,<br />

⎛ 0.065 ⎞<br />

an<br />

= ⎜1+ ⎟an<br />

− 1 −758.48<br />

⎝ <strong>12</strong> ⎠<br />

The loan will be paid in <strong>the</strong> 360th month i.e.<br />

after 30 years.<br />

Total amount paid = (359)(758.48) +<br />

756.19(1+0.065/<strong>12</strong>) = $273,054.60.<br />

f. The total interest expense is <strong>the</strong> difference<br />

of <strong>the</strong> total of <strong>the</strong> payments and <strong>the</strong> original<br />

loan: 273,054.60 − <strong>12</strong>0,000 = $153,054.60<br />

g. (a) Since <strong>the</strong> interest rate is 6.5% per<br />

annum compounded monthly, this is<br />

equivalent to a rate of (6.5/<strong>12</strong>)% each<br />

month. Defining a recursive sequence,<br />

we have:<br />

a0<br />

= <strong>12</strong>0,000,<br />

⎛ 0.065 ⎞<br />

an<br />

= ⎜1+ ⎟an<br />

− 1 −858.48<br />

⎝ <strong>12</strong> ⎠<br />

<strong>12</strong>42<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.1: <strong>Sequences</strong><br />

(b)<br />

⎛ 0.065 ⎞<br />

⎜1 + ⎟(<strong>12</strong>0, 000) −858.48<br />

⎝ <strong>12</strong> ⎠<br />

= $119,791.52<br />

(c) Enter <strong>the</strong> recursive formula in Y= and<br />

create <strong>the</strong> table:<br />

(d) Scroll through <strong>the</strong> table:<br />

After 78 payments have been made, <strong>the</strong><br />

balance is below $100,000. The<br />

balance is $99,831.<br />

(e) Scroll through <strong>the</strong> table:<br />

The loan will be paid off at <strong>the</strong> end of<br />

262 months or 21 years and 10 months.<br />

Total amount paid = (261)(858.48) +<br />

(851.23)(1+0.065/<strong>12</strong>) = $224,919.<strong>12</strong>.<br />

(f) The total interest expense is <strong>the</strong><br />

difference of <strong>the</strong> total of <strong>the</strong> payments<br />

and <strong>the</strong> original loan:<br />

224,919.<strong>12</strong> − <strong>12</strong>0,000 = $104,919.<strong>12</strong><br />

h. Yes, if <strong>the</strong>y can afford <strong>the</strong> additional<br />

monthly payment. They would save<br />

$48,238.49 in interest payments by paying<br />

<strong>the</strong> loan off sooner.<br />

91. a1 a2 a3 a4 a5<br />

92. a.<br />

= 1, = 1, = 2, = 3, = 5,<br />

a6 = 8, a7 = 13, a8 = 21, an = an−1+<br />

an−2<br />

a8 = a7 + a6 = 13+ 8 = 21<br />

After 7 months <strong>the</strong>re are 21 mature pairs of<br />

rabbits.<br />

b.<br />

( 1+ 5) −( 1−<br />

5)<br />

1 1<br />

u1 =<br />

1<br />

2 5<br />

1+ 5− 1+<br />

5 2 5<br />

= = = 1<br />

2 5 2 5<br />

u<br />

u<br />

=<br />

( 1+ 5) −( 1−<br />

5)<br />

2 2<br />

2 2<br />

=<br />

2 5<br />

1+ 2 5+ 5− 1+ 2 5−5 4 5<br />

= = = 1<br />

4 5 4 5<br />

n+<br />

1<br />

+ u<br />

n<br />

n n n n<br />

+ 1 + 1<br />

( 1+ 5) −( 1− 5) ( 1+ 5) −( 1−<br />

5)<br />

+<br />

n+<br />

1<br />

n<br />

2 5 2 5<br />

+ 1 + 1<br />

( 1+ 5) −( 1− 5) + 2( 1+ 5) −2( 1−<br />

5)<br />

n n n n<br />

=<br />

n+<br />

1<br />

2 5<br />

n<br />

n<br />

( 1+ 5) ⎡1+ 5 + 2⎤−( 1− 5)<br />

⎡1− 5+<br />

2⎤<br />

=<br />

⎣ ⎦ ⎣ ⎦<br />

n+<br />

1<br />

2 5<br />

n<br />

n<br />

( 1+ 5) ⎡3+ 5⎤−( 1− 5)<br />

⎡3−<br />

5⎤<br />

=<br />

⎣ ⎦ ⎣ ⎦<br />

n+<br />

1<br />

2 5<br />

n+ 2 ( 3+ 5)<br />

n+<br />

2 ( 3−<br />

5)<br />

( 1+ 5)<br />

−<br />

2 ( 1−<br />

5)<br />

2<br />

( 1+ 5)<br />

( 1−<br />

5)<br />

=<br />

n+<br />

1<br />

2 5<br />

n+ 2 ( 3+ 5)<br />

n+<br />

2 ( 3−<br />

5)<br />

( 1+ 5)<br />

−( 1−<br />

5)<br />

( 6+ 2 5)<br />

( 6−2 5)<br />

=<br />

n+<br />

1<br />

2 5<br />

n+ 2 1 n+<br />

2 1<br />

( 1+ 5) −( 1−<br />

5)<br />

=<br />

2 2<br />

n+<br />

1<br />

2 5<br />

=<br />

n<br />

( 1+ 5) −( 1−<br />

5)<br />

= u n + 2<br />

+ 2 n+<br />

2<br />

2<br />

n+<br />

2<br />

5<br />

c. Since u = 1, u = 1, u = u + u , { u }<br />

1 2 n+ 2 n+<br />

1 n n<br />

is <strong>the</strong> Fibonacci sequence.<br />

<strong>12</strong>43<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

93. 1, 1, 2, 3, 5, 8, 13<br />

This is <strong>the</strong> Fibonacci sequence.<br />

94. a. u1 = 1, u2 = 1, u3 = 2, u4 = 3, u5<br />

= 5,<br />

u6 = 8, u7 = 13, u8 = 21, u9 = 34, u10<br />

= 55,<br />

u = 89<br />

b.<br />

11<br />

u2 1 u3<br />

2 u4<br />

3<br />

= = 1, = = 2, = = 1.5,<br />

u1 1 u2 1 u3<br />

2<br />

u5 5 u6<br />

8<br />

= ≈ 1.67, = = 1.6,<br />

u4 3 u5<br />

5<br />

u7 13 u8<br />

21<br />

= = 1.625, = ≈1.615,<br />

u6 8 u7<br />

13<br />

u9 34 u10<br />

55<br />

= ≈ 1.619, = ≈1.618,<br />

u8 21 u9<br />

34<br />

u11<br />

89<br />

= ≈1.618<br />

u 55<br />

10<br />

⎛<br />

1+<br />

5⎞<br />

c. 1.618 ⎜The exact value is ⎟<br />

⎝<br />

2 ⎠<br />

u1 1 u2<br />

1 u3<br />

2<br />

d. = = 1, = = 0.5, = ≈ 0.667,<br />

u2 1 u3 2 u4<br />

3<br />

u4<br />

3 u5<br />

5<br />

= = 0.6, = = 0.625,<br />

u5 5 u6<br />

8<br />

u6 8 u7<br />

13<br />

= ≈ 0.615, = ≈0.619,<br />

u7 13 u8<br />

21<br />

u8 21 u9<br />

34<br />

= ≈ 0.618, = ≈0.618,<br />

u9 34 u10<br />

55<br />

u10<br />

55<br />

= ≈0.618<br />

u 89<br />

11<br />

1.3<br />

c. f ( ) e<br />

1.3 = ≈ 3.669296668<br />

d. It will take n = <strong>12</strong> to approximate<br />

f<br />

1.3<br />

( 1.3) e<br />

96. a. ( 2.4)<br />

= correct to 8 decimal places.<br />

3<br />

( 2.4)<br />

∑<br />

2.4<br />

f e − −<br />

− = ≈<br />

b. ( 2.4)<br />

k = 0<br />

k!<br />

( −2.4) ( −2.4) ( −2.4) ( −2.4)<br />

+ + +<br />

0 1 2 3<br />

=<br />

0! 1! 2! 3!<br />

=−0.824<br />

2.4 ( 2.4)<br />

f e − −<br />

− = ≈<br />

2.4<br />

c. f ( ) e −<br />

6<br />

∑<br />

k = 0<br />

k!<br />

( −2.4) ( −2.4) ( −2.4)<br />

= + + ... +<br />

0 1 6<br />

0! 1! 6!<br />

= 0.1602688<br />

− 2.4 = ≈ 0.0907179533<br />

k<br />

k<br />

e. 0.618<br />

⎛<br />

2 ⎞<br />

⎜The exact value is ⎟<br />

⎝<br />

1 + 5 ⎠<br />

d. It will take n = 17 to approximate<br />

f<br />

2.4<br />

( 2.4) e −<br />

− = correct to 8 decimal places.<br />

95. a. f ( 1.3)<br />

b. f ( 1.3)<br />

4<br />

k<br />

1.3 1.3<br />

∑ k!<br />

k = 0<br />

= e ≈<br />

0 1 4<br />

1.3 1.3 1.3<br />

= + + ... +<br />

0! 1! 4!<br />

≈ 3.630170833<br />

7<br />

k<br />

1.3 1.3<br />

∑ k!<br />

k = 0<br />

= e ≈<br />

0 1 7<br />

1.3 1.3 1.3<br />

= + + ... +<br />

0! 1! 7!<br />

≈ 3.669060828<br />

<strong>12</strong>44<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.1: <strong>Sequences</strong><br />

97. a. a 1 = 0.4 ,<br />

2−2<br />

a 2 = 0.4 + 0.3⋅ 2 = 0.4 + 0.3 = 0.7<br />

3−2<br />

( )<br />

( )<br />

( )<br />

( )<br />

( )<br />

( )<br />

a 3<br />

= 0.4 + 0.3⋅ 2 = 0.4 + 0.3 2 = 1.0<br />

4−2<br />

a 4<br />

= 0.4 + 0.3⋅ 2 = 0.4 + 0.3 4 = 1.6<br />

5−2<br />

a 5 = 0.4 + 0.3⋅ 2 = 0.4 + 0.3 8 = 2.8<br />

6−2<br />

a 6<br />

= 0.4 + 0.3⋅ 2 = 0.4 + 0.3 16 = 5.2<br />

7−2<br />

a 7<br />

= 0.4 + 0.3⋅ 2 = 0.4 + 0.3 32 = 10.0<br />

8−2<br />

a 8 = 0.4 + 0.3⋅ 2 = 0.4 + 0.3 64 = 19.6<br />

The first eight terms of <strong>the</strong> sequence are 0.4,<br />

0.7, 1.0, 1.6, 2.8, 5.2, 10.0, and 19.6.<br />

b. Except for term 5, which has no match,<br />

Bode’s formula provides excellent<br />

approximations for <strong>the</strong> mean distances of<br />

<strong>the</strong> planets from <strong>the</strong> Sun.<br />

c. The mean distance of Ceres from <strong>the</strong> Sun is<br />

approximated by a 5 = 2.8 , and that of<br />

Uranus is a 8 = 19.6 .<br />

9−2<br />

d. = + ⋅ = + ( ) =<br />

10−2<br />

( )<br />

a 9<br />

0.4 0.3 2 0.4 0.3 <strong>12</strong>8 38.8<br />

a 10 = 0.4 + 0.3⋅ 2 = 0.4 + 0.3 256 = 77.2<br />

e. Pluto’s distance is approximated by a 9 , but<br />

no term approximates Neptune’s mean<br />

distance from <strong>the</strong> Sun.<br />

11−2<br />

f. ( )<br />

a 11<br />

= 0.4 + 0.3⋅ 2 = 0.4 + 0.3 5<strong>12</strong> = 154<br />

According to Bode’s Law, <strong>the</strong> mean orbital<br />

distance of 2003 UB 313 will be 154 AU<br />

from <strong>the</strong> Sun.<br />

98. 5<br />

We begin with an initial guess of a<br />

0<br />

= 2 .<br />

1⎛<br />

5⎞<br />

a1<br />

= ⎜2+ ⎟=<br />

2.25<br />

2⎝<br />

2⎠<br />

1⎛<br />

5 ⎞<br />

a2<br />

= ⎜2.25 + ⎟≈2.236111111<br />

2⎝<br />

2.25⎠<br />

1⎛<br />

5 ⎞<br />

a3<br />

= ⎜2.236111111+<br />

⎟<br />

2 ⎝<br />

2.236111111⎠<br />

≈ 2.236067978<br />

1⎛<br />

5 ⎞<br />

a4<br />

= ⎜2.236067978<br />

+<br />

⎟<br />

2 ⎝<br />

2.236067978 ⎠<br />

≈ 2.236067977<br />

1⎛<br />

5 ⎞<br />

a5<br />

= ⎜2.236067977<br />

+<br />

⎟<br />

2 ⎝<br />

2.236067977 ⎠<br />

≈ 2.236067977<br />

For both a<br />

5<br />

and <strong>the</strong> calculator approximation,<br />

we obtain 5 ≈ 2.236067977 .<br />

99. 8<br />

We begin with an initial guess of a<br />

0<br />

= 3 .<br />

1⎛ 8 ⎞ 1⎛ 8⎞<br />

a1 = ⎜a0<br />

+ ⎟= ⎜3 + ⎟≈<br />

2.833333333<br />

2⎝<br />

a0<br />

⎠ 2⎝<br />

3⎠<br />

1⎛<br />

8 ⎞<br />

a2 = ⎜a1<br />

+ ⎟<br />

2 ⎝ a1<br />

⎠<br />

1⎛<br />

8 ⎞<br />

= ⎜2.833333333<br />

+<br />

⎟<br />

2 ⎝<br />

2.2.833333333 ⎠<br />

≈ 2.828431373<br />

1⎛<br />

8 ⎞<br />

a3 = ⎜a2<br />

+ ⎟<br />

2 ⎝ a2<br />

⎠<br />

1⎛<br />

8 ⎞<br />

= ⎜2.828431373<br />

+<br />

⎟<br />

2 ⎝<br />

2.828431373 ⎠<br />

≈ 2.828427<strong>12</strong>5<br />

1⎛<br />

8 ⎞<br />

a4 = ⎜a3<br />

+ ⎟<br />

2 ⎝ a3<br />

⎠<br />

1 ⎛<br />

8 ⎞<br />

= ⎜ 2.828427<strong>12</strong>5 +<br />

⎟<br />

2 ⎝<br />

2.828427<strong>12</strong>5 ⎠<br />

≈ 2.828427<strong>12</strong>5<br />

1⎛<br />

8 ⎞<br />

a5 = ⎜a4<br />

+ ⎟<br />

2 ⎝ a4<br />

⎠<br />

1⎛<br />

8 ⎞<br />

= ⎜2.828427<strong>12</strong>5<br />

+<br />

⎟<br />

2 ⎝<br />

2.828427<strong>12</strong>5 ⎠<br />

≈ 2.828427<strong>12</strong>5<br />

For both a<br />

5<br />

and <strong>the</strong> calculator approximation,<br />

we obtain 8 ≈ 2.828427<strong>12</strong>5 .<br />

<strong>12</strong>45<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

100. 21<br />

We begin with an initial guess of a<br />

0<br />

= 5 .<br />

1⎛<br />

21⎞<br />

a1<br />

= ⎜5+ ⎟=<br />

4.625<br />

2⎝<br />

5 ⎠<br />

1⎛<br />

21 ⎞<br />

a2<br />

= ⎜4.625 + ⎟≈<br />

4.58277027<br />

2⎝<br />

4.625⎠<br />

1⎛<br />

21 ⎞<br />

a3<br />

= ⎜4.58277027<br />

+<br />

⎟<br />

2 ⎝<br />

4.58277027 ⎠<br />

≈ 4.582575699<br />

1⎛<br />

21 ⎞<br />

a4<br />

= ⎜4.582575699<br />

+<br />

⎟<br />

2 ⎝<br />

4.582575699 ⎠<br />

≈ 4.582575695<br />

1⎛<br />

21 ⎞<br />

a5<br />

= ⎜4.582575695<br />

+<br />

⎟<br />

2 ⎝<br />

4.582575695 ⎠<br />

≈ 4.582575695<br />

101. 89<br />

We begin with an initial guess of a<br />

0<br />

= 9 .<br />

1⎛<br />

89⎞<br />

a1<br />

= ⎜5 + ⎟≈9.444444444<br />

2⎝<br />

5 ⎠<br />

1⎛<br />

89 ⎞<br />

a2<br />

= ⎜9.444444444<br />

+<br />

⎟<br />

2 ⎝<br />

9.444444444 ⎠<br />

≈ 9.433986928<br />

1⎛<br />

89 ⎞<br />

a3<br />

= ⎜9.433986928<br />

+<br />

⎟<br />

2 ⎝<br />

9.433986928 ⎠<br />

≈ 9.433981132<br />

1⎛<br />

89 ⎞<br />

a4<br />

= ⎜9.433981132<br />

+<br />

⎟<br />

2 ⎝<br />

9.433981132 ⎠<br />

≈ 9.433981132<br />

1⎛<br />

89 ⎞<br />

a5<br />

= ⎜9.433981132<br />

+<br />

⎟<br />

2 ⎝<br />

9.433981132<br />

⎠<br />

≈ 9.433981132<br />

For both a<br />

5<br />

and <strong>the</strong> calculator approximation,<br />

we obtain 21 ≈ 4.582575695 .<br />

For both a<br />

5<br />

and <strong>the</strong> calculator approximation,<br />

we obtain 89 ≈ 9.433981132 .<br />

_________________________________________________________________________________________________<br />

102. To show that 1 2 3 ... ( n 1)<br />

( + 1)<br />

n n<br />

+ + + + − + n =<br />

2<br />

S = 1 + 2 + 3 + ... + n− 1 + n, we can reverse <strong>the</strong> order to get<br />

Let ( )<br />

+ S = n+ ( n− ) + ( n−<br />

)<br />

1 2 +...+ 2 + 1, now add <strong>the</strong>se two lines to get<br />

[ ] ⎡ ( ) ⎤ ⎡ ( ) ⎤ ⎡( ) ⎤ [ ]<br />

2S = 1+ n + ⎣2 + n− 1 ⎦+ ⎣3+ n− 2 ⎦+ ...... + ⎣ n− 1 + 2⎦+ n+<br />

1<br />

So we have 2S = [ 1+ n] + [ 1+ n] + [ 1 + n] + .... + [ n+ 1] + [ n+ 1] = n⋅ [ n+<br />

1]<br />

Thus, 2S<br />

= n( n+<br />

1)<br />

n⋅ ( n+<br />

1)<br />

S =<br />

103. Answers will vary.<br />

2<br />

<strong>12</strong>46<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.2: Arithmetic <strong>Sequences</strong><br />

Section <strong>12</strong>.2<br />

1. arithmetic<br />

2. False; <strong>the</strong> sum of <strong>the</strong> first and last terms equals<br />

twice <strong>the</strong> sum of all <strong>the</strong> terms divided by <strong>the</strong><br />

number of terms.<br />

3. d = sn<br />

−sn−1<br />

= ( n+ 4) −( n− 1+ 4) = ( n+ 4) − ( n+<br />

3)<br />

= n+ 4−n− 3=<br />

1<br />

The difference between consecutive terms is<br />

constant, <strong>the</strong>refore <strong>the</strong> sequence is arithmetic.<br />

s1 = 1+ 4= 5, s2 = 2+ 4= 6, s3<br />

= 3+ 4=<br />

7,<br />

s = 4+ 4=<br />

8<br />

4.<br />

5.<br />

6.<br />

4<br />

d = s −s<br />

n<br />

n−1<br />

( ) ( )<br />

= ( n−5) −( n−1− 5) = n−5 − n−6<br />

= n−5− n+ 6=<br />

1<br />

The difference between consecutive terms is<br />

constant, <strong>the</strong>refore <strong>the</strong> sequence is arithmetic.<br />

s1 = 1− 5 =− 4, s2 = 2 − 5 =− 3, s3<br />

= 3 − 5 =−2,<br />

s = 4− 5= −1<br />

4<br />

d = an<br />

−an−1<br />

= ( 2n−5 ) −(2( n−1) −5)<br />

= ( 2n−5) −( 2n−2−5)<br />

= 2n−5− 2n+ 7 = 2<br />

The difference between consecutive terms is<br />

constant, <strong>the</strong>refore <strong>the</strong> sequence is arithmetic.<br />

a1 = 21 ⋅ − 5= − 3, a2<br />

= 22 ⋅ − 5= −1,<br />

a = 23 ⋅ − 5= 1, a = 24 ⋅ − 5=<br />

3<br />

3 4<br />

d = bn<br />

−bn−1<br />

= ( 3n+ 1 ) −(3( n− 1) + 1)<br />

= ( 3n+ 1) −( 3n− 3+<br />

1)<br />

= 3n+ 1− 3n+ 2=<br />

3<br />

The difference between consecutive terms is<br />

constant, <strong>the</strong>refore <strong>the</strong> sequence is arithmetic.<br />

b1 = 31 ⋅ + 1= 4, b2<br />

= 32 ⋅ + 1=<br />

7,<br />

b = 3⋅ 3+ 1= 10, b = 3⋅ 4+ 1=<br />

13<br />

3 4<br />

7.<br />

8.<br />

d = c − c<br />

n<br />

n−1<br />

( n)<br />

n<br />

( 6 2n) ( 6 2n<br />

2)<br />

= 6−2 −(6−2( −1))<br />

= − − − +<br />

= 6−2n− 6+ 2n− 2=−2<br />

The difference between consecutive terms is<br />

constant, <strong>the</strong>refore <strong>the</strong> sequence is arithmetic.<br />

c = 6−2⋅ 1= 4, c = 6−2⋅ 2=<br />

2,<br />

c<br />

1 2<br />

= 6−2⋅ 3= 0, c = 6−2⋅ 4=−2<br />

3 4<br />

d = d − d<br />

n<br />

n−1<br />

( n)<br />

n<br />

( 4 2n) ( 4 2n<br />

2)<br />

= 4−2 −(4−2( −1))<br />

= − − − +<br />

= 4−2n− 4+ 2n− 2=−2<br />

The difference between consecutive terms is<br />

constant, <strong>the</strong>refore <strong>the</strong> sequence is arithmetic.<br />

d = 4−2⋅ 1= 2, d = 4−2⋅ 2=<br />

0,<br />

d<br />

1 2<br />

= 4−2⋅ 3= − 2, d = 4−2⋅ 4= −4<br />

3 4<br />

9. d = tn<br />

− tn−1<br />

⎛1 1 ⎞ ⎛1 1 ⎞<br />

= ⎜ − n⎟−⎜ − ( n−<br />

1) ⎟<br />

⎝2 3 ⎠ ⎝2 3 ⎠<br />

⎛1 1 ⎞ ⎛1 1 1⎞<br />

= ⎜ − n⎟−⎜ − n+<br />

⎟<br />

⎝2 3 ⎠ ⎝2 3 3⎠<br />

1 1 1 1 1 1<br />

= − n− + n− = −<br />

2 3 2 3 3 3<br />

The difference between consecutive terms is<br />

constant, <strong>the</strong>refore <strong>the</strong> sequence is arithmetic.<br />

1 1 1 1 1 1<br />

t1 = − ⋅ 1 = , t2<br />

= − ⋅ 2 =− ,<br />

2 3 6 2 3 6<br />

1 1 1 1 1 5<br />

t3 = − ⋅ 3 =− , t4<br />

= − ⋅ 4=−<br />

2 3 2 2 3 6<br />

10. d = tn<br />

− tn−1<br />

⎛2 1 ⎞ ⎛2 1 ⎞<br />

= ⎜ + n⎟− ⎜ + ( n−<br />

1) ⎟<br />

⎝3 4 ⎠ ⎝3 4 ⎠<br />

⎛2 1 ⎞ ⎛2 1 1⎞<br />

= ⎜ + n⎟− ⎜ + n−<br />

⎟<br />

⎝3 4 ⎠ ⎝3 4 4⎠<br />

2 1 2 1 1 1<br />

= + n− − n+ =<br />

3 4 3 4 4 4<br />

The difference between consecutive terms is<br />

constant, <strong>the</strong>refore <strong>the</strong> sequence is arithmetic.<br />

2 1 11 2 1 7<br />

t1 = + ⋅ 1 = , t2<br />

= + ⋅ 2 = ,<br />

3 4 <strong>12</strong> 3 4 6<br />

2 1 17 2 1 5<br />

t3 = + ⋅ 3 = , t4<br />

= + ⋅ 4=<br />

3 4 <strong>12</strong> 3 4 3<br />

<strong>12</strong>47<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

11.<br />

d = s −s<br />

n<br />

n−1<br />

n n−1<br />

( ) ( )<br />

= ln 3 −ln 3<br />

nln ( 3) ( n 1) ln ( 3)<br />

( ln 3 )( n ( n 1 )) ( ln 3)( n n 1)<br />

= − −<br />

= − − = − +<br />

= ln 3<br />

The difference between consecutive terms is<br />

constant, <strong>the</strong>refore <strong>the</strong> sequence is arithmetic.<br />

s<br />

1<br />

= ln 3 = ln 3 , s<br />

2<br />

= ln 3 = 2ln 3 ,<br />

s<br />

( ) ( ) ( ) ( )<br />

3 4<br />

( ) ( ) s ( ) ( )<br />

1 2<br />

= ln 3 = 3ln 3 , = ln 3 = 4ln 3<br />

3 4<br />

ln n ln( n−1)<br />

<strong>12</strong>. d s s e e n ( n )<br />

= n − n−1 = − = − − 1 = 1<br />

The difference between consecutive terms is<br />

constant, <strong>the</strong>refore <strong>the</strong> sequence is arithmetic.<br />

ln1 ln 2 ln 3<br />

1 2 3<br />

ln 4<br />

4 = e = 4<br />

s = e = 1, s = e = 2, s = e = 3,<br />

s<br />

13. an<br />

= a1 + ( n−1)<br />

d<br />

= 2 + ( n −1)3<br />

= 2+ 3n<br />

−3<br />

= 3n<br />

−1<br />

a 51 = 351 ⋅ − 1=<br />

152<br />

14. an<br />

= a1 + ( n−1)<br />

d<br />

=− 2 + ( n −1)4<br />

=− 2+ 4n<br />

−4<br />

= 4n<br />

−6<br />

a 51 = 451 ⋅ − 6=<br />

198<br />

15. an<br />

= a1 + ( n−1)<br />

d<br />

= 5 + ( n −1)( −3)<br />

= 5− 3n<br />

+ 3<br />

= 8−3n<br />

a 51 = 8−3⋅ 51=−<br />

145<br />

16. an<br />

= a1 + ( n−1)<br />

d<br />

= 6 + ( n −1)( −2)<br />

= 6− 2n<br />

+ 2<br />

= 8−2n<br />

a 51 = 8 −2⋅ 51 =− 94<br />

17.<br />

an<br />

= a1 + ( n−1)<br />

d<br />

1<br />

= 0 + ( n −1) 2<br />

1 1<br />

= n −<br />

2 2<br />

1<br />

= ( n −1)<br />

2<br />

1<br />

a 51 = ( 51 − 1 ) = 25<br />

2<br />

18. an<br />

= a1 + ( n−1)<br />

d<br />

⎛ 1 ⎞<br />

= 1 + ( n −1)<br />

⎜ − ⎟<br />

⎝ 3 ⎠<br />

1 1<br />

= 1− n + 3 3<br />

4 1<br />

= − n<br />

3 3<br />

4 1 4 51 47<br />

a 51 = − ⋅ 51 = − =−<br />

3 3 3 3 3<br />

19. an<br />

= a1 + ( n−1)<br />

d<br />

= 2 + ( n −1) 2<br />

= 2+ 2n− 2 = 2n<br />

a 51 = 51 2<br />

20. a a n d n ( n )<br />

n = 1 + ( − 1) = 0 + ( −1) π= −1<br />

π<br />

a 51 = 51π−π= 50π<br />

21. a1 = 2, d = 2, an<br />

= a1+ ( n−<br />

1) d<br />

a 100 = 2 + (100 − 1)2 = 2 + 99(2) = 2 + 198 = 200<br />

22. a1 = − 1, d = 2, an<br />

= a1+ ( n−<br />

1) d<br />

a 80 = − 1 + (80 − 1)2 = − 1+ 79(2) =− 1+ 158 = 157<br />

23. a1 = 1, d =−2 − 1 =− 3, an<br />

= a1+ ( n−<br />

1) d<br />

a 90 = 1 + (90−1)( − 3) = 1+ 89( −3)<br />

= 1− 267= −266<br />

24. a1 = 5, d = 0 − 5 =− 5, an<br />

= a1+ ( n−<br />

1) d<br />

a 80 = 5 + (80−1)( − 5) = 5+ 79( −5)<br />

= 5 − 395 = −390<br />

<strong>12</strong>48<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.2: Arithmetic <strong>Sequences</strong><br />

5 1<br />

25. a1 = 2, d = − 2 = , an<br />

= a1+ ( n−<br />

1) d<br />

2 2<br />

1 83<br />

a 80 = 2 + (80− 1) = 2 2<br />

26. a1<br />

= 2 5, d = 4 5− 2 5 = 2 5,<br />

an<br />

= a1<br />

+ ( n−1)<br />

d<br />

a 70 = 2 5 + (70−1)2 5<br />

= 2 5+<br />

69 2 5<br />

( )<br />

= 2 5+<br />

138 5<br />

= 140 5<br />

27. 8 1 20 1<br />

a = a + 7d = 8 a = a + 19d<br />

= 44<br />

Solve <strong>the</strong> system of equations by subtracting <strong>the</strong><br />

first equation from <strong>the</strong> second:<br />

<strong>12</strong>d<br />

= 36 ⇒ d = 3<br />

a1<br />

= 8− 7(3) = 8− 21=−13<br />

Recursive formula: a1 =− 13 an<br />

= an<br />

− 1+<br />

3<br />

nth term: an<br />

= a1 + ( n−1)<br />

d<br />

=− 13 + ( n −1)( 3)<br />

=− 13 + 3n<br />

−3<br />

= 3n<br />

−16<br />

28. 4 1 20 1<br />

a = a + 3d = 3 a = a + 19d<br />

= 35<br />

Solve <strong>the</strong> system of equations by subtracting <strong>the</strong><br />

first equation from <strong>the</strong> second:<br />

16d<br />

= 32 ⇒ d = 2<br />

a1<br />

= 3− 3(2) = 3− 6=−3<br />

Recursive formula: a1 =− 3 an<br />

= an<br />

− 1+<br />

2<br />

nth term: an<br />

= a1 + ( n−1)<br />

d<br />

=− 3+ ( n −1)( 2)<br />

=− 3+ 2n<br />

−2<br />

= 2n<br />

−5<br />

29. 9 1 15 1<br />

a = a + 8d = − 5 a = a + 14d<br />

= 31<br />

Solve <strong>the</strong> system of equations by subtracting <strong>the</strong><br />

first equation from <strong>the</strong> second:<br />

6d<br />

= 36⇒ d = 6<br />

a1<br />

=−5 − 8(6) =−5 − 48 =−53<br />

Recursive formula: a1 =− 53 an<br />

= an<br />

− 1+<br />

6<br />

nth term: an<br />

= a1 + ( n−1)<br />

d<br />

=− 53 + ( n −1)( 6)<br />

=− 53 + 6n<br />

−6<br />

= 6n<br />

−59<br />

30. 8 1 18 1<br />

a = a + 7d = 4 a = a + 17d<br />

=− 96<br />

Solve <strong>the</strong> system of equations by subtracting <strong>the</strong><br />

first equation from <strong>the</strong> second:<br />

10d<br />

= −100 ⇒ d =−10<br />

a = 4 −7( − 10) = 4 + 70 = 74<br />

1<br />

Recursive formula: a1 = 74 an<br />

= an<br />

− 1−<br />

10<br />

a = a + n−<br />

d<br />

nth term: n 1 ( 1)<br />

= 74 + ( n −1)( −10)<br />

= 74 − 10n<br />

+ 10<br />

= 84 −10n<br />

31. 15 1 40 1<br />

a = a + 14d = 0 a = a + 39d<br />

= − 50<br />

Solve <strong>the</strong> system of equations by subtracting <strong>the</strong><br />

first equation from <strong>the</strong> second:<br />

25d<br />

= −50 ⇒ d = −2<br />

a =−14( − 2) = 28<br />

1<br />

Recursive formula: a1 = 28 an<br />

= an<br />

− 1−<br />

2<br />

a = a + n−<br />

d<br />

nth term: n 1 ( 1)<br />

= 28 + ( n −1)( −2)<br />

= 28 − 2n<br />

+ 2<br />

= 30 −2n<br />

32. 5 1 13 1<br />

a = a + 4d =− 2 a = a + <strong>12</strong>d<br />

= 30<br />

Solve <strong>the</strong> system of equations by subtracting <strong>the</strong><br />

first equation from <strong>the</strong> second:<br />

8d<br />

= 32⇒ d = 4<br />

a = −2− 4(4) = −18<br />

1<br />

Recursive formula: a1 =− 18 an<br />

= an<br />

− 1+<br />

4<br />

a = a + n−<br />

d<br />

nth term: n 1 ( 1)<br />

=− 18 + ( n −1)( 4)<br />

=− 18 + 4n<br />

−4<br />

= 4n<br />

−22<br />

33. 14 1 18 1<br />

a = a + 13d = − 1 a = a + 17d<br />

=− 9<br />

Solve <strong>the</strong> system of equations by subtracting <strong>the</strong><br />

first equation from <strong>the</strong> second:<br />

4d<br />

= −8⇒ d = −2<br />

a = −1−13( − 2) = − 1+ 26=<br />

25<br />

1<br />

Recursive formula: a1 = 25 an<br />

= an<br />

− 1−<br />

2<br />

a = a + n−<br />

d<br />

nth term: n 1 ( 1)<br />

= 25 + ( n −1)( −2)<br />

= 25 − 2n<br />

+ 2<br />

= 27 −2n<br />

<strong>12</strong>49<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

34. <strong>12</strong> 1 18 1<br />

a = a + 11d = 4 a = a + 17d<br />

= 28<br />

Solve <strong>the</strong> system of equations by subtracting <strong>the</strong><br />

first equation from <strong>the</strong> second:<br />

6d<br />

= 24⇒ d = 4<br />

a = 4− 11(4) = 4− 44= −40<br />

1<br />

Recursive formula: a1 =− 40 an<br />

= an<br />

− 1+<br />

4<br />

a = a + n−<br />

d<br />

nth term: n 1 ( 1)<br />

=− 40 + ( n −1)( 4)<br />

=− 40 + 4n<br />

−4<br />

= 4n<br />

−44<br />

n n n<br />

1 n 1 2 1 2<br />

2 2 2<br />

2<br />

35. S = ( a + a ) = ( + ( n− )) = ( n) = n<br />

n<br />

n n<br />

1 n 2 2 1<br />

2 2<br />

2<br />

36. S = ( a + a ) = ( + n) = n+ n = n( n+<br />

)<br />

n<br />

n n n<br />

1 n 7 2 5 9 5<br />

2 2 2<br />

37. S = ( a + a ) = ( + ( + n)<br />

) = ( + n)<br />

n<br />

n n<br />

2<br />

1 n<br />

2<br />

n<br />

2<br />

= ( 4n− 6)<br />

= 2n −3n<br />

2<br />

= n −<br />

38. S = ( a + a ) = ( − 1+ ( 4n−5)<br />

)<br />

n<br />

( 2n<br />

3)<br />

39. a1 = 2, d = 4 − 2 = 2, an<br />

= a1+ ( n−<br />

1) d<br />

70 = 2 + ( n −1)2<br />

70 = 2 + 2n<br />

−2<br />

70 = 2n<br />

n = 35<br />

n 35 35<br />

Sn<br />

= ( a1<br />

+ an) = ( 2+ 70) = ( 72)<br />

= <strong>12</strong>60<br />

2 2 2<br />

40. a1 = 1, d = 3 − 1 = 2, an<br />

= a1+ ( n−<br />

1) d<br />

59 = 1 + ( n −1)2<br />

59 = 1+ 2n<br />

−2<br />

60 = 2n<br />

n = 30<br />

n 30<br />

Sn<br />

= ( a1<br />

+ an) = ( 1 + 59 ) = 15 ( 60 ) = 900<br />

2 2<br />

41. a1 = 5, d = 9 − 5 = 4, an<br />

= a1+ ( n−<br />

1) d<br />

49 = 5 + ( n −1)<br />

4<br />

49 = 5 + 4n<br />

−4<br />

48 = 4n<br />

n = <strong>12</strong><br />

n <strong>12</strong><br />

Sn<br />

= ( a1<br />

+ an) = ( 5 + 49 ) = 6 ( 54 ) = 324<br />

2 2<br />

42. a1 = 2, d = 5 − 2 = 3, an<br />

= a1+ ( n−<br />

1) d<br />

41 = 2 + ( n −1)<br />

3<br />

41 = 2 + 3n<br />

−3<br />

42 = 3n<br />

n = 14<br />

n 14<br />

Sn<br />

= ( a1<br />

+ an) = ( 2 + 41 ) = 7 ( 43 ) = 301<br />

2 2<br />

43. a 1 = 73 , 78 73 5<br />

d = − = ,<br />

n<br />

=<br />

1<br />

+ ( − 1)<br />

( n )( )<br />

( n )<br />

558 = 73 + −1 5<br />

485 = 5 −1<br />

97 = n −1<br />

98 = n<br />

n 98<br />

Sn<br />

= a1<br />

+ an<br />

= 73 + 558<br />

2 2<br />

= 49 631 = 30,919<br />

( ) ( )<br />

( )<br />

44. a 1 = 7 , 1 7 6<br />

a a n d<br />

d = − = − ,<br />

n = 1 + ( − 1)<br />

( n )( )<br />

( n )<br />

− 299 = 7 + −1 −6<br />

− 306 = −6 −1<br />

51 = n −1<br />

52 = n<br />

n 52<br />

Sn<br />

= a1<br />

+ an<br />

= 7 + − 299<br />

2 2<br />

= 26 − 292 = −7592<br />

a a n d<br />

( )<br />

( ) ( )<br />

( )<br />

45. a 1 = 4 , 4.5 4 0.5<br />

d = − = ,<br />

n<br />

=<br />

1<br />

+ ( − 1)<br />

( n )( )<br />

( n )<br />

100 = 4 + −1 0.5<br />

a a n d<br />

96 = 0.5 −1<br />

192 = n −1<br />

193 = n<br />

n 193 193<br />

Sn<br />

= a1<br />

+ an<br />

= 4+ 100 = 104<br />

2 2 2<br />

= 10,036<br />

( ) ( ) ( )<br />

<strong>12</strong>50<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.2: Arithmetic <strong>Sequences</strong><br />

1 1<br />

46. a 1 = 8 , d = 8 − 8= , an<br />

= a1 + ( n−<br />

1)<br />

d<br />

4 4<br />

⎛1<br />

⎞<br />

50 = 8 + ( n −1)<br />

⎜ ⎟<br />

⎝4<br />

⎠<br />

1<br />

42 = ( n −1)<br />

4<br />

168 = n −1<br />

169 = n<br />

n 169 169<br />

Sn<br />

= ( a1<br />

+ an) = ( 8 + 50) = ( 58)<br />

= 4901<br />

2 2 2<br />

47. a<br />

1<br />

= 21 () − 5= − 3, ( )<br />

a<br />

80<br />

= 280− 5=<br />

155<br />

80<br />

S<br />

80<br />

= ( − 3+ 155) = 40( 152)<br />

= 6080<br />

2<br />

48. a 1 = 3− 2()<br />

1 = 1, ( )<br />

a 90 = 3 − 2 90 =− 177<br />

( ( )) ( )<br />

90<br />

S<br />

90<br />

= 1 + − 177 = 45 − 176 = − 7920<br />

2<br />

1 11 1<br />

49. a<br />

1<br />

= 6− () 1 = , a<br />

100<br />

= 6 − ( 100)<br />

= − 44<br />

2 2<br />

2<br />

100 ⎛11 ⎞ ⎛ 77 ⎞<br />

S100<br />

= ⎜ + ( − 44)<br />

⎟= 50⎜− ⎟= −1925<br />

2 ⎝ 2 ⎠ ⎝ 2 ⎠<br />

1 1 5<br />

50. 1 () 1<br />

3 2 6<br />

1 1 163<br />

a = + =<br />

3 2 6<br />

a = + = , 80 ( 80)<br />

S<br />

80<br />

80 ⎛5 163 ⎞<br />

= ⎜ + ⎟= 40( 28)<br />

= 1<strong>12</strong>0<br />

2 ⎝6 6 ⎠<br />

d = − = , an<br />

= a1 + ( n−<br />

1)<br />

d<br />

a<br />

<strong>12</strong>0<br />

= 14 + ( <strong>12</strong>0 − 1)( 2) = 14 + 119( 2)<br />

= 252<br />

51. a 1 = 14 , 16 14 2<br />

<strong>12</strong>0<br />

S<br />

<strong>12</strong>0<br />

= ( 14 + 252 ) = 60 ( 266 ) = 15,960<br />

2<br />

d =− − =− , an<br />

= a1 + ( n−<br />

1)<br />

d<br />

a<br />

46<br />

= 2+ ( 46−1)( − 3) = 2+ ( 45)( − 3)<br />

= − 133<br />

52. a 1 = 2 , 1 2 3<br />

( ( )) ( )<br />

46<br />

S<br />

46<br />

= 2 + − 133 = 23 − 131 = − 3013<br />

2<br />

53. Find <strong>the</strong> common difference of <strong>the</strong> terms and<br />

solve <strong>the</strong> system of equations:<br />

(2x + 1) − ( x+ 3) = d ⇒ x− 2 = d<br />

(5x + 2) − (2x+ 1) = d ⇒ 3x+ 1 = d<br />

3x+ 1= x−2<br />

2x<br />

=−3<br />

3<br />

x =−<br />

2<br />

54. Find <strong>the</strong> common difference of <strong>the</strong> terms and<br />

solve <strong>the</strong> system of equations:<br />

(3x + 2) − (2 x) = d ⇒ x+ 2 = d<br />

(5x + 3) − (3x+ 2) = d ⇒ 2x+ 1 = d<br />

2x+ 1= x+<br />

2<br />

x = 1<br />

55. a 1 = 11 , d = 3 , S = 1092<br />

n<br />

( )<br />

an<br />

= a1 + ( n− 1) d = 11+ n− 1 3= 3n+<br />

8<br />

n<br />

Sn<br />

= ( a1<br />

+ an)<br />

2<br />

n<br />

1092 = ⎡11 (3 8)<br />

2<br />

⎣ + n + ⎤⎦<br />

n<br />

1092 = (3n<br />

+ 19)<br />

2<br />

2184 = n(3n+<br />

19)<br />

2<br />

0 = 3n<br />

+ 19n−2184<br />

0 = (3n+ 91)( n−24)<br />

91<br />

n =− or n = 24<br />

3<br />

Disregard <strong>the</strong> negative result. To obtain a sum<br />

of 1092, add 24 terms.<br />

56. a 1 = 78 , d = − 4 , S = 702<br />

n<br />

an<br />

= a1 + ( n− 1) d = 78 + ( n−1)( − 4) = − 4n+<br />

82<br />

n<br />

Sn<br />

= ( a1<br />

+ an)<br />

2<br />

n<br />

702 = ⎡78 ( 4 82)<br />

2<br />

⎣ + − n + ⎤⎦<br />

n<br />

702 = ( − 4n<br />

+ 160)<br />

2<br />

2<br />

0 =− 2n<br />

+ 80n−702<br />

2<br />

0= n − 40n+<br />

351<br />

0 = ( n−27)( n−13)<br />

n= 27 or n=<br />

13<br />

To obtain a sum of 702, add 13 terms or 27 terms.<br />

<strong>12</strong>51<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

57. The total number of seats is:<br />

S = 25 + 26 + 27 + + ( 25 + 29()<br />

1 )<br />

This is <strong>the</strong> sum of an arithmetic sequence with<br />

d = 1, a1<br />

= 25, and n= 30 .<br />

Find <strong>the</strong> sum of <strong>the</strong> sequence:<br />

30<br />

S 30 = [ 2(25) + (30 − 1)(1) ]<br />

2<br />

= 15(50 + 29) = 15(79)<br />

= 1185<br />

There are 1185 seats in <strong>the</strong> <strong>the</strong>ater.<br />

58. The total number of seats is:<br />

( ( ( )))<br />

S = 15 + 17 + 19 + + 15 + 39 2<br />

This is <strong>the</strong> sum of an arithmetic sequence with<br />

d = 2, a1<br />

= 15, and n = 40 .<br />

Find <strong>the</strong> sum of <strong>the</strong> sequence:<br />

40<br />

S 40 = [ 2(15) + (40 − 1)(2) ]<br />

2<br />

= 20(30 + 78) = 20(108)<br />

= 2160<br />

The corner section has 2160 seats.<br />

59. The lighter colored tiles have 20 tiles in <strong>the</strong><br />

bottom row and 1 tile in <strong>the</strong> top row. The<br />

number decreases by 1 as we move up <strong>the</strong><br />

triangle. This is an arithmetic sequence with<br />

a1 = 20, d =− 1, and n = 20 . Find <strong>the</strong> sum:<br />

20<br />

S = [ 2(20) + (20 − 1)( − 1) ]<br />

2<br />

= 10(40 − 19) = 10(21)<br />

= 210<br />

There are 210 lighter tiles.<br />

The darker colored tiles have 19 tiles in <strong>the</strong><br />

bottom row and 1 tile in <strong>the</strong> top row. The<br />

number decreases by 1 as we move up <strong>the</strong><br />

triangle. This is an arithmetic sequence with<br />

a1 = 19, d =− 1, and n = 19 . Find <strong>the</strong> sum:<br />

19<br />

S = [ 2(19) + (19 − 1)( − 1) ]<br />

2<br />

19 19<br />

= (38 − 18) = (20) = 190<br />

2 2<br />

There are 190 darker tiles.<br />

60. The number of bricks required decreases by 2 on<br />

each successive step. This is an arithmetic<br />

sequence with a1 = 100, d =− 2, and n= 30 .<br />

a. The number of bricks for <strong>the</strong> top step is:<br />

a30 = a1 + ( n− 1) d = 100 + (30 −1)( −2)<br />

= 100 + 29( − 2) = 100 −58<br />

= 42<br />

42 bricks are required for <strong>the</strong> top step.<br />

b. The total number of bricks required is <strong>the</strong><br />

sum of <strong>the</strong> sequence:<br />

30<br />

S = [ 100 + 42 ] = 15(142) = 2130<br />

2<br />

2130 bricks are required to build <strong>the</strong><br />

staircase.<br />

61. The air cools at <strong>the</strong> rate of 5.5° F per 1000 feet.<br />

Since n represents thousands of feet, we have<br />

d = − 5.5 . The ground temperature is 67° F so<br />

we have T 1 = 67 − 5.5 = 61.5 . Therefore,<br />

T = 61.5 + n−1 −5.5<br />

{ }<br />

{ n} ( )( )<br />

= { − 5.5n+ 67 } or { 67 −5.5n}<br />

After <strong>the</strong> parcel of air has risen 5000 feet, we<br />

have T 5 = 61.5 + ( 5 −1)( − 5.5)<br />

= 39.5 .<br />

The parcel of air will be 39.5° F after it has risen<br />

5000 feet.<br />

62. If we treat <strong>the</strong> length of each rung as <strong>the</strong> term of<br />

an arithmetic sequence, we have 1 49 a = ,<br />

d = − 2.5 , and a = 24 .<br />

n<br />

n<br />

( )<br />

( n )( )<br />

( n )<br />

a = a + n−<br />

d<br />

1<br />

1<br />

24 = 49 + −1 −2.5<br />

− 25 =−2.5 −1<br />

10 = n −1<br />

11 = n<br />

Therefore, <strong>the</strong> ladder contains 11 rungs.<br />

To find <strong>the</strong> total material required for <strong>the</strong> rungs,<br />

we need <strong>the</strong> sum of <strong>the</strong>ir lengths. Since <strong>the</strong>re are<br />

11 rungs, we have<br />

11 11<br />

S<br />

11<br />

= ( 49 + 24) = ( 73)<br />

= 401.5<br />

2 2<br />

It would require 401.5 feet of material to<br />

construct <strong>the</strong> rungs for <strong>the</strong> ladder.<br />

<strong>12</strong>52<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.3: Geometric <strong>Sequences</strong>; Geometric Series<br />

63. a 1 = 35 , 37 35 2<br />

d = − = ,<br />

n<br />

=<br />

1<br />

+ ( − 1)<br />

a 27 = 35 + ( 27 − 1)( 2) = 35 + 26( 2)<br />

= 87<br />

a a n d<br />

27 27<br />

S<br />

27<br />

= ( 35 + 87) = ( <strong>12</strong>2)<br />

= 1647<br />

2 2<br />

The amphi<strong>the</strong>ater has 1647 seats.<br />

64. Find n in an arithmetic sequence with<br />

a1 = 10, d = 4, S n = 2040 .<br />

n<br />

Sn<br />

= [ 2 a1<br />

+ ( n−1)<br />

d]<br />

2<br />

n<br />

2040 = [ 2(10) + ( n −1)4]<br />

2<br />

4080 = n[ 20 + 4n−4]<br />

4080 = n(4n+<br />

16)<br />

2<br />

4080 = 4n<br />

+ 16n<br />

2<br />

1020 = n + 4n<br />

2<br />

n + 4n− 1020=<br />

0<br />

( n+ 34)( n− 30) = 0 ⇒ n =− 34 or n=<br />

30<br />

There are 30 rows in <strong>the</strong> corner section of <strong>the</strong><br />

stadium.<br />

65. The yearly salaries form an arithmetic sequence<br />

with a1 = 35,000, d = 1400, S n = 280,000 .<br />

Find <strong>the</strong> number of years for <strong>the</strong> aggregate salary<br />

to equal $280,000.<br />

n<br />

Sn<br />

= [ 2 a1<br />

+ ( n−1)<br />

d]<br />

2<br />

n<br />

280,000 = [ 2(35,000) + ( n −1)1400]<br />

2<br />

280,000 = n[ 35,000 + 700n−700]<br />

280,000 = n(700n+<br />

34,300)<br />

2<br />

280,000 = 700 n + 34,300 n<br />

2<br />

400 = n + 49 n<br />

2<br />

n + 49 n− 400 = 0<br />

2<br />

− 49 ± 49 −4(1)( −400)<br />

n =<br />

2(1)<br />

− 49 ± 4001 − 49 ± 63.25<br />

= ≈<br />

2 2<br />

n≈7.13 or n ≈− 56.13<br />

It takes about 8 years to have an aggregate salary<br />

of at least $280,000. The aggregate salary after 8<br />

years will be $319,200.<br />

66. Answers will vary.<br />

67. Answers will vary. Both increase (or decrease) at<br />

a constant rate, but <strong>the</strong> domain of an arithmetic<br />

sequence is <strong>the</strong> set of natural numbers while <strong>the</strong><br />

domain of a linear function is <strong>the</strong> set of all real<br />

numbers.<br />

Section <strong>12</strong>.3<br />

1. geometric<br />

2.<br />

a<br />

1− r<br />

3. divergent series<br />

4. True<br />

5. False; <strong>the</strong> common ratio can be positive or<br />

negative (or 0, but this results in a sequence of<br />

only 0s).<br />

6. True<br />

7.<br />

8.<br />

n+<br />

1<br />

3 n+−<br />

1 n<br />

r = = 3 = 3<br />

n<br />

3<br />

The ratio of consecutive terms is constant,<br />

<strong>the</strong>refore <strong>the</strong> sequence is geometric.<br />

1 2<br />

1 = = s2<br />

= =<br />

3 4<br />

3 s4<br />

s<br />

s<br />

3 3, 3 9,<br />

= 3 = 27, = 3 = 81<br />

n+<br />

1<br />

( −5)<br />

n+−<br />

1 n<br />

r = = ( − 5) = −5<br />

n<br />

( −5)<br />

The ratio of consecutive terms is constant,<br />

<strong>the</strong>refore <strong>the</strong> sequence is geometric.<br />

1 2<br />

1 = − =− s2<br />

= − =<br />

3 4<br />

3 s4<br />

s<br />

s<br />

( 5) 5, ( 5) 25,<br />

= ( − 5) = − <strong>12</strong>5, = ( − 5) = 625<br />

n+<br />

1<br />

⎛1<br />

⎞<br />

−3<br />

⎜ ⎟ n+−<br />

1 n<br />

2 ⎛1⎞<br />

1<br />

9. r =<br />

⎝ ⎠<br />

=<br />

n ⎜ ⎟ =<br />

⎛1<br />

⎞ ⎝2⎠<br />

2<br />

−3 ⎜ ⎟<br />

⎝ 2 ⎠<br />

The ratio of consecutive terms is constant,<br />

<strong>the</strong>refore <strong>the</strong> sequence is geometric.<br />

1 2<br />

⎛1⎞ 3 ⎛1⎞<br />

3<br />

a1 =− 3 ⎜ ⎟ =− , a2<br />

=− 3 ⎜ ⎟ =− ,<br />

⎝2⎠ 2 ⎝2⎠<br />

4<br />

3 4<br />

⎛1⎞ 3 ⎛1⎞<br />

3<br />

a3 = − 3 ⎜ ⎟ = − , a4<br />

=− 3⎜ ⎟ =−<br />

⎝2⎠ 8 ⎝2⎠<br />

16<br />

<strong>12</strong>53<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

10.<br />

11.<br />

<strong>12</strong>.<br />

13.<br />

n+<br />

1<br />

⎛5<br />

⎞<br />

⎜ ⎟<br />

n+−<br />

1 n<br />

2 ⎛5⎞<br />

5<br />

r =<br />

⎝ ⎠<br />

=<br />

n ⎜ ⎟ =<br />

⎛5<br />

⎞ ⎝2⎠<br />

2<br />

⎜ ⎟<br />

⎝2<br />

⎠<br />

The ratio of consecutive terms is constant,<br />

<strong>the</strong>refore <strong>the</strong> sequence is geometric.<br />

1 2<br />

⎛5⎞ 5 ⎛5⎞<br />

25<br />

b1 = ⎜ ⎟ = , b2<br />

= ⎜ ⎟ = ,<br />

⎝2⎠ 2 ⎝2⎠<br />

4<br />

3 4<br />

⎛5 ⎞ <strong>12</strong>5 ⎛5 ⎞ 625<br />

b3 = ⎜ ⎟ = , b4<br />

= ⎜ ⎟ =<br />

⎝2⎠ 8 ⎝2⎠<br />

16<br />

⎛<br />

n+−<br />

11<br />

2 ⎞<br />

⎜<br />

4 ⎟ n<br />

2 n−( n−1)<br />

r =<br />

⎝ ⎠<br />

= = 2 = 2<br />

n−1<br />

n−1<br />

⎛2<br />

⎞ 2<br />

⎜<br />

4 ⎟<br />

⎝ ⎠<br />

The ratio of consecutive terms is constant,<br />

<strong>the</strong>refore <strong>the</strong> sequence is geometric.<br />

11 − 0<br />

2 2 −2<br />

1<br />

c1 = = = 2 = ,<br />

2<br />

4 2 4<br />

2−1 1<br />

2 2 −1<br />

1<br />

c2 = = = 2 = ,<br />

2<br />

4 2 2<br />

3−1 2<br />

2 2<br />

3 2<br />

c<br />

c<br />

= = = 1,<br />

4 2<br />

4−1 3<br />

2 2<br />

4 2<br />

= = = 2<br />

4 2<br />

⎛<br />

n+<br />

1<br />

3 ⎞<br />

⎜<br />

9 ⎟ n+<br />

1<br />

3 n+−<br />

1 n<br />

r =<br />

⎝ ⎠<br />

= = 3 = 3<br />

n n<br />

⎛3<br />

⎞ 3<br />

⎜<br />

9 ⎟<br />

⎝ ⎠<br />

The ratio of consecutive terms is constant,<br />

<strong>the</strong>refore <strong>the</strong> sequence is geometric.<br />

1 2<br />

1 d2<br />

3 1 3 9<br />

d = = , = = = 1,<br />

9 3 9 9<br />

3 4<br />

3 27 3 81<br />

d3 = = = 3, d4<br />

= = = 9<br />

9 9 9 9<br />

⎛n+<br />

1⎞<br />

⎜ ⎟<br />

3<br />

⎛n+<br />

1 n⎞<br />

⎝ ⎠ ⎜ − ⎟<br />

⎝ 3 3⎠<br />

⎛n<br />

⎞<br />

⎜ ⎟<br />

⎝3<br />

⎠<br />

2<br />

r = = 2 = 2<br />

1/3<br />

2<br />

The ratio of consecutive terms is constant,<br />

<strong>the</strong>refore <strong>the</strong> sequence is geometric.<br />

1/3 2/3 3/3 4/3<br />

1 = 2 , 2 = 2 , 3 = 2 = 2, 4 = 2<br />

e e e e<br />

14.<br />

15.<br />

16.<br />

17.<br />

18.<br />

19.<br />

20.<br />

2( n+<br />

1)<br />

3<br />

2n+ 2−2n<br />

2<br />

r = = 3 = 3 = 9<br />

2n<br />

3<br />

The ratio of consecutive terms is constant,<br />

<strong>the</strong>refore <strong>the</strong> sequence is geometric.<br />

21 ⋅<br />

22 ⋅ 4<br />

f1 = 3 = 9, f2<br />

= 3 = 3 = 81,<br />

23 ⋅ 6 24 ⋅ 8<br />

f = 3 = 3 = 729, f = 3 = 3 = 6561<br />

3 4<br />

⎛<br />

n+−<br />

11<br />

3 ⎞<br />

⎜ n+<br />

1<br />

2 ⎟ n n<br />

3 2<br />

r =<br />

⎝ ⎠<br />

= ⋅<br />

n 1 n− 1 n+<br />

1<br />

⎛<br />

−<br />

3 ⎞ 3 2<br />

⎜ n<br />

2 ⎟<br />

⎝ ⎠<br />

n−( n−1) n− ( n+ 1) −1<br />

3<br />

= 3 ⋅ 2 = 3⋅ 2 =<br />

2<br />

The ratio of consecutive terms is constant,<br />

<strong>the</strong>refore <strong>the</strong> sequence is geometric.<br />

11 − 0 21 − 1<br />

1 t<br />

1 2 2 2<br />

3 3 1 3 3 3<br />

t = = = , = = = ,<br />

2 2 2 2 2 4<br />

3−1 2 4−1 3<br />

3 3 9 3 3 27<br />

t3 = = = , t<br />

3 3 4 = = =<br />

4 4<br />

2 2 8 2 2 16<br />

⎛<br />

n+<br />

1<br />

2 ⎞<br />

⎜ n+− 11 1 1<br />

3 ⎟ n− n+<br />

3 2<br />

r =<br />

⎝ ⎠<br />

= ⋅<br />

n n n<br />

⎛ 2 ⎞ 3 2<br />

⎜ n−1<br />

3 ⎟<br />

⎝ ⎠<br />

n−− 1 n n+− 1 n −1<br />

2<br />

= 3 ⋅ 2 = 3 ⋅ 2=<br />

3<br />

The ratio of consecutive terms is constant,<br />

<strong>the</strong>refore <strong>the</strong> sequence is geometric.<br />

1 2<br />

1 11 − 0<br />

u2<br />

21 −<br />

2 2 2 2 4<br />

u = = = = 2, = = ,<br />

3 3 1 3 3<br />

3 4<br />

2 8 8 2 16 16<br />

u3 = = = , u<br />

3−1 2 4 = = =<br />

4−1 3<br />

3 3 9 3 3 27<br />

a<br />

a<br />

5<br />

n<br />

a<br />

a<br />

5<br />

n<br />

a<br />

a<br />

5<br />

n<br />

n<br />

5−1 4<br />

= 23 ⋅ = 23 ⋅ = 281 ⋅ = 162<br />

1<br />

23 n −<br />

= ⋅<br />

5−1 4<br />

=−2⋅ 4 =−2⋅ 4 =−2⋅ 256 =−5<strong>12</strong><br />

1<br />

24 n −<br />

=− ⋅<br />

5−1 4<br />

= 5( − 1) = 5( − 1) = 5⋅ 1 = 5<br />

1<br />

5(1) n −<br />

= ⋅ −<br />

5−1 4<br />

a5<br />

= 6( − 2) = 6( − 2) = 6⋅ 16 = 96<br />

1<br />

a 6( 2) n −<br />

= ⋅ −<br />

<strong>12</strong>54<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.3: Geometric <strong>Sequences</strong>; Geometric Series<br />

21.<br />

22.<br />

a<br />

a<br />

a<br />

a<br />

5<br />

n<br />

5<br />

n<br />

5−1 4<br />

⎛1⎞ ⎛1⎞<br />

= 0⋅ ⎜ ⎟ = 0⋅ ⎜ ⎟ = 0<br />

⎝2⎠ ⎝2⎠<br />

n−1<br />

⎛1<br />

⎞<br />

= 0⋅ ⎜ ⎟ = 0<br />

⎝2<br />

⎠<br />

5−1 4<br />

⎛ 1⎞ ⎛ 1⎞<br />

1<br />

= 1⋅⎜− ⎟ = 1⋅⎜− ⎟ =<br />

⎝ 3⎠ ⎝ 3⎠<br />

81<br />

n−1 n−1<br />

⎛ 1⎞ ⎛ 1⎞<br />

= 1⋅⎜− ⎟ = ⎜−<br />

⎟<br />

⎝ 3⎠ ⎝ 3⎠<br />

−<br />

23. a5<br />

( ) ( )<br />

n−1<br />

n<br />

an<br />

= 2⋅ ( 2) = ( 2)<br />

24.<br />

a<br />

a<br />

5<br />

n<br />

5 1 4<br />

= 2⋅ 2 = 2⋅ 2 = 2⋅ 4=<br />

4 2<br />

5−1 4<br />

⎛1⎞ ⎛1⎞<br />

= 0⋅ ⎜ ⎟ = 0⋅ ⎜ ⎟ = 0<br />

⎝π⎠ ⎝π⎠<br />

n−1<br />

⎛1<br />

⎞<br />

= 0⋅ ⎜ ⎟ = 0<br />

⎝π<br />

⎠<br />

1<br />

25. a1<br />

= 1, r = , n = 7<br />

2<br />

a<br />

7<br />

7−1 6<br />

⎛1⎞ ⎛1⎞<br />

1<br />

= 1⋅ ⎜ ⎟ = ⎜ ⎟ =<br />

⎝ 2 ⎠ ⎝ 2 ⎠ 64<br />

26. a1<br />

= 1, r = 3, n = 8<br />

27.<br />

a<br />

8<br />

1<br />

9<br />

8−1 7<br />

= 1⋅ 3 = 3 = 2187<br />

a = 1, r =− 1, n = 9<br />

a<br />

−<br />

( ) ( )<br />

9 1 8<br />

= 1⋅ − 1 = − 1 = 1<br />

10<br />

n<br />

32. a 1 = 5 , r = = 2 , an<br />

= a1<br />

⋅ r −<br />

5<br />

1<br />

52 n −<br />

= ⋅<br />

a n<br />

1 1<br />

n<br />

33. a 1 = − 3 , r = =− , an<br />

= a1<br />

⋅ r −<br />

−3 3<br />

n−1 n−2<br />

⎛ 1⎞ ⎛ 1⎞<br />

a n =−3⎜− ⎟ = ⎜−<br />

⎟<br />

⎝ 3⎠ ⎝ 3⎠<br />

1<br />

n<br />

34. a 1 = 4 , r = , an<br />

= a1<br />

⋅ r −<br />

4<br />

n−1 n−2<br />

⎛1⎞ ⎛1⎞<br />

a n = 4⎜ ⎟ = ⎜ ⎟<br />

⎝ 4 ⎠ ⎝ 4 ⎠<br />

35.<br />

36.<br />

n 1<br />

an<br />

= a1<br />

⋅ r −<br />

243 = a ⋅ −3<br />

1<br />

1<br />

( )<br />

5<br />

( )<br />

243 = a1<br />

−3<br />

243 =−243a<br />

− 1 = a<br />

Therefore,<br />

a = a ⋅ r −<br />

1<br />

a n<br />

n 1<br />

n 1<br />

2−1<br />

⎛1<br />

⎞<br />

7 = a1<br />

⎜ ⎟<br />

⎝3<br />

⎠<br />

1<br />

7 = a1<br />

3<br />

21 = a<br />

1<br />

Therefore,<br />

a n<br />

6−1<br />

=−− ( 3) n<br />

−1<br />

n<br />

⎛1<br />

⎞<br />

= 21⎜ ⎟<br />

⎝ 3 ⎠<br />

−1<br />

.<br />

1<br />

1<br />

1<br />

28.<br />

29.<br />

30.<br />

a =− 1, r =− 2, n=<br />

10<br />

a<br />

1<br />

10<br />

1<br />

8<br />

−<br />

( ) ( )<br />

10 1 9<br />

=−1⋅ − 2 = −1⋅ − 2 =−1( − 5<strong>12</strong>) = 5<strong>12</strong><br />

a = 0.4, r = 0.1, n=<br />

8<br />

a<br />

1<br />

7<br />

−<br />

( ) ( )<br />

8 1 7<br />

= 0.4⋅ 0.1 = 0.4 0.1 = 0.00000004<br />

a = 0.1, r = 10, n=<br />

7<br />

a<br />

7−1<br />

( )<br />

= 0.1⋅ 10 = 0.1 10 = 100,000<br />

14<br />

n<br />

31. a 1 = 7 , r = = 2 , an<br />

= a1<br />

⋅ r −<br />

7<br />

1<br />

7 2 n −<br />

= ⋅<br />

a n<br />

6<br />

1<br />

37.<br />

2 1<br />

4−1 3<br />

a4 a1⋅<br />

r r<br />

= = = r<br />

2−1<br />

a a ⋅ r r<br />

2 1575<br />

r = = 225<br />

7<br />

r = 225 = 15<br />

a = a ⋅r<br />

n<br />

1<br />

1<br />

1<br />

n−1<br />

7 = a ⋅15<br />

7 = 15a<br />

7<br />

a1<br />

=<br />

15<br />

Therefore,<br />

2−1<br />

a n<br />

2<br />

7 15<br />

n−1 7 15<br />

n−2<br />

= ⋅ = ⋅ .<br />

15<br />

<strong>12</strong>55<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

38.<br />

39.<br />

3 1<br />

6−1 5<br />

a6 a1<br />

⋅ r r<br />

= = = r<br />

3−1 2<br />

a a ⋅ r r<br />

r<br />

1<br />

3 81<br />

1<br />

3<br />

1 1<br />

= = ⋅ 3 =<br />

81 27<br />

1 1<br />

r = 3 =<br />

27 3<br />

n−1<br />

a = a ⋅r<br />

n 1<br />

3−1<br />

1 ⎛1⎞<br />

= a1<br />

⋅ ⎜ ⎟<br />

3 ⎝3⎠<br />

1 1<br />

= a1<br />

3 9<br />

3 = a<br />

1<br />

Therefore,<br />

a n<br />

3<br />

n−1 n−2<br />

⎛1⎞ ⎛1⎞<br />

= 3⎜ ⎟ = ⎜ ⎟<br />

⎝ 3 ⎠ ⎝ 3 ⎠<br />

1<br />

a1<br />

= , r = 2<br />

4<br />

⎛<br />

n<br />

n<br />

1−r<br />

⎞ 1⎛1−2 ⎞ 1<br />

Sn<br />

= a1<br />

⎜ 1 2<br />

1 r ⎟<br />

= 4⎜ 1 2 ⎟<br />

= − −<br />

⎝ − ⎠ ⎝ − ⎠ 4<br />

1<br />

( 2<br />

n<br />

= − 1 )<br />

4<br />

.<br />

n<br />

( )<br />

42.<br />

a = 4, r = 3<br />

S<br />

1<br />

n<br />

⎛<br />

n n n<br />

1−r<br />

⎞ ⎛1−3 ⎞ ⎛1−3<br />

⎞<br />

= a1<br />

⎜ = 4 = 4<br />

1−r<br />

⎟ ⎜ 1−3 ⎟ ⎜ −2<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

n n<br />

( ) ( )<br />

=−21− 3 = 23 −1<br />

43. a1<br />

= − 1, r = 2<br />

S<br />

n<br />

⎛<br />

n<br />

n<br />

1−r<br />

⎞ ⎛1−2<br />

⎞<br />

= a1<br />

⎜ =− 1 = 1−2<br />

1−r<br />

⎟ ⎜ 1−2<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

3<br />

44. a1<br />

= 2, r =<br />

5<br />

S<br />

n<br />

⎡<br />

n<br />

n<br />

⎛3⎞ ⎤ ⎡ ⎛3⎞<br />

⎤<br />

n ⎢1−<br />

⎥ ⎢1−<br />

⎥<br />

⎛1− r ⎞ ⎜ ⎟ ⎜ ⎟<br />

5 5<br />

= a1<br />

2<br />

⎝ ⎠<br />

2<br />

⎝ ⎠<br />

⎢ ⎥ ⎢ ⎥<br />

⎜ 1 r ⎟<br />

= =<br />

⎢ 3 ⎥ ⎢ 2 ⎥<br />

⎝ − ⎠ 1<br />

⎛ ⎞<br />

⎢ − 5<br />

⎥ ⎢ ⎜ ⎟ ⎥<br />

⎢⎣ ⎥⎦ ⎢⎣ ⎝ 5 ⎠ ⎥⎦<br />

⎡<br />

n<br />

⎛3<br />

⎞ ⎤<br />

= 51 ⎢ −⎜<br />

⎟ ⎥<br />

⎢⎣<br />

⎝5<br />

⎠ ⎥⎦<br />

45. Using <strong>the</strong> sum of <strong>the</strong> sequence feature:<br />

n<br />

40.<br />

3 1<br />

a1<br />

= = , r = 3<br />

9 3<br />

⎛<br />

n n n<br />

1−r<br />

⎞ 1⎛1−3 ⎞ 1⎛1−3<br />

⎞<br />

Sn<br />

= a1<br />

⎜ 1 r ⎟<br />

= 3⎜ 1 3 ⎟<br />

=<br />

3⎜ 2 ⎟<br />

⎝ − ⎠ ⎝ − ⎠ ⎝ − ⎠<br />

1 n 1 n<br />

=− ( 1− 3 ) = ( 3 −1)<br />

6 6<br />

46. Using <strong>the</strong> sum of <strong>the</strong> sequence feature:<br />

2 2<br />

41. a1<br />

= , r =<br />

3 3<br />

S<br />

n<br />

⎡<br />

n<br />

⎛2<br />

⎞ ⎤<br />

n ⎢1−<br />

⎥<br />

⎛1− r ⎞ 2<br />

⎜ ⎟<br />

3<br />

= a<br />

⎝ ⎠<br />

1<br />

⎢ ⎥<br />

⎜ 1 r ⎟<br />

=<br />

3⎢ 2 ⎥<br />

⎝ − ⎠<br />

⎢ 1−<br />

3<br />

⎥<br />

⎢⎣<br />

⎥⎦<br />

⎡<br />

n<br />

⎛2<br />

⎞ ⎤<br />

⎢1−<br />

2<br />

⎜ ⎟ ⎥<br />

n<br />

3 ⎡ ⎛2⎞<br />

⎤<br />

= ⎢ ⎝ ⎠ ⎥ = 21 ⎢ − ⎥<br />

3⎢ 1 ⎥ ⎜ ⎟<br />

⎢ ⎝3⎠<br />

⎥<br />

⎢<br />

⎣ ⎦<br />

3<br />

⎥<br />

⎢⎣<br />

⎥⎦<br />

47. Using <strong>the</strong> sum of <strong>the</strong> sequence feature:<br />

48. Using <strong>the</strong> sum of <strong>the</strong> sequence feature:<br />

<strong>12</strong>56<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.3: Geometric <strong>Sequences</strong>; Geometric Series<br />

49. Using <strong>the</strong> sum of <strong>the</strong> sequence feature:<br />

50. Using <strong>the</strong> sum of <strong>the</strong> sequence feature:<br />

1<br />

51. a1<br />

= 1, r =<br />

3<br />

Since r < 1, <strong>the</strong> series converges.<br />

S<br />

∞<br />

a1<br />

1 1 3<br />

= = = =<br />

1− r ⎛ 1⎞ ⎛2⎞<br />

2<br />

⎜1−<br />

⎟ ⎜ ⎟<br />

⎝ 3 ⎠ ⎝ 3 ⎠<br />

2<br />

52. a1<br />

= 2, r =<br />

3<br />

Since r < 1, <strong>the</strong> series converges.<br />

S<br />

∞<br />

a1<br />

2 2<br />

= = = = 6<br />

1− r ⎛ 2⎞ ⎛1⎞<br />

⎜1−<br />

⎟ ⎜ ⎟<br />

⎝ 3 ⎠ ⎝ 3 ⎠<br />

1<br />

53. a1<br />

= 8, r =<br />

2<br />

Since r < 1, <strong>the</strong> series converges.<br />

S<br />

∞<br />

a1<br />

8 8<br />

= = = = 16<br />

1− r ⎛ 1⎞ ⎛1⎞<br />

⎜1−<br />

⎟ ⎜ ⎟<br />

⎝ 2 ⎠ ⎝ 2 ⎠<br />

1<br />

54. a1<br />

= 6, r =<br />

3<br />

Since r < 1, <strong>the</strong> series converges.<br />

S<br />

∞<br />

a1<br />

6 6<br />

= = = = 9<br />

1− r ⎛ 1⎞ ⎛2⎞<br />

⎜1−<br />

⎟ ⎜ ⎟<br />

⎝ 3 ⎠ ⎝ 3 ⎠<br />

1<br />

55. a1<br />

= 2, r =−<br />

4<br />

Since r < 1, <strong>the</strong> series converges.<br />

a1<br />

2 2 8<br />

S∞<br />

= = = =<br />

1− r ⎛ ⎛ 1 ⎞⎞ ⎛5<br />

⎞ 5<br />

⎜1−⎜− ⎟ ⎜ ⎟<br />

4<br />

⎟<br />

⎝ ⎝ ⎠⎠<br />

⎝4<br />

⎠<br />

3<br />

56. a1<br />

= 1, r =−<br />

4<br />

Since r < 1, <strong>the</strong> series converges.<br />

a1<br />

1 1 4<br />

S∞<br />

= = = =<br />

1− r ⎛ ⎛ 3 ⎞⎞ ⎛7<br />

⎞ 7<br />

⎜1−⎜− ⎟ ⎜ ⎟<br />

4<br />

⎟<br />

⎝ ⎝ ⎠⎠<br />

⎝4<br />

⎠<br />

57. a 1 = 8 ,<br />

3<br />

r =<br />

2<br />

Since r > 1, <strong>the</strong> series diverges.<br />

58. a 1 = 9 ,<br />

4<br />

r =<br />

3<br />

Since r > 1, <strong>the</strong> series diverges.<br />

1<br />

59. a1<br />

= 5, r =<br />

4<br />

Since r < 1, <strong>the</strong> series converges.<br />

a1<br />

5 5 20<br />

S∞<br />

= = = =<br />

1− r ⎛ 1⎞ ⎛3⎞<br />

3<br />

⎜1−<br />

⎟ ⎜ ⎟<br />

⎝ 4 ⎠ ⎝ 4 ⎠<br />

1<br />

60. a1<br />

= 8, r =<br />

3<br />

Since r < 1, <strong>the</strong> series converges.<br />

a1<br />

8 8<br />

S∞<br />

= = = = <strong>12</strong><br />

1− r ⎛ 1⎞ ⎛2⎞<br />

⎜1−<br />

⎟ ⎜ ⎟<br />

⎝ 3 ⎠ ⎝ 3 ⎠<br />

1<br />

61. a<br />

1<br />

= , r = 3<br />

2<br />

Since r > 1, <strong>the</strong> series diverges.<br />

62. a 1 = 3 ,<br />

3<br />

r =<br />

2<br />

Since r > 1, <strong>the</strong> series diverges.<br />

<strong>12</strong>57<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

2<br />

63. a1<br />

= 6, r = −<br />

3<br />

Since r < 1, <strong>the</strong> series converges.<br />

a1<br />

6 6 18<br />

S∞<br />

= = = =<br />

1− r ⎛ ⎛ 2 ⎞⎞ ⎛5<br />

⎞ 5<br />

⎜1−⎜− ⎟ ⎜ ⎟<br />

3<br />

⎟<br />

⎝ ⎝ ⎠⎠<br />

⎝3<br />

⎠<br />

1<br />

64. a1<br />

= 4, r =−<br />

2<br />

Since r < 1, <strong>the</strong> series converges.<br />

a1<br />

4 4 8<br />

S∞<br />

= = = =<br />

1− r ⎛ ⎛ 1 ⎞⎞ ⎛3<br />

⎞ 3<br />

⎜1−⎜− ⎟ ⎜ ⎟<br />

2<br />

⎟<br />

⎝ ⎝ ⎠⎠<br />

⎝2<br />

⎠<br />

65.<br />

66.<br />

∞ k ∞ k−1 ∞ k−1<br />

⎛2⎞ 2 ⎛2⎞ ⎛2⎞<br />

∑3⎜ ⎟ = ∑3⋅ ⋅ ⎜ ⎟ = ∑ 2⎜ ⎟<br />

k= 1 ⎝3⎠ k= 1 3 ⎝3⎠ k=<br />

1 ⎝3⎠<br />

2<br />

a 1 = 2 , r =<br />

3<br />

Since r < 1, <strong>the</strong> series converges.<br />

a1<br />

2 2<br />

S∞<br />

= = = = 6<br />

1−<br />

r 1−<br />

2 1<br />

3 3<br />

∞ k ∞ k−1 ∞ k−1<br />

⎛3⎞ 3 ⎛3⎞ 3⎛3⎞<br />

∑2⎜ ⎟ = ∑2⋅ ⋅ ⎜ ⎟ = ∑ ⎜ ⎟<br />

k= 1 ⎝4⎠ k= 1 4 ⎝4⎠ k=<br />

<strong>12</strong>⎝4⎠<br />

3 3<br />

a<br />

1<br />

= , r =<br />

2 4<br />

Since r < 1, <strong>the</strong> series converges.<br />

3 3<br />

a1<br />

2 2 3<br />

S∞<br />

= = = = ⋅ 4=<br />

6<br />

1−<br />

r 1−<br />

3 1 2 4 4<br />

67. { n + 2 }<br />

d = ( n+ 1+ 2) − ( n+ 2) = n+ 3−n− 2=<br />

1<br />

The difference between consecutive terms is<br />

constant. Therefore <strong>the</strong> sequence is arithmetic.<br />

50 50 50<br />

S = ( k + 2) = k+<br />

2<br />

50<br />

68. { 2n − 5}<br />

∑ ∑ ∑<br />

k= 1 k= 1 k=<br />

1<br />

50(50 + 1)<br />

= + 2(50) = <strong>12</strong>75 + 100 = 1375<br />

2<br />

d = 2( n+ 1) −5 −(2n−5)<br />

= 2n+ 2−5− 2n+ 5=<br />

2<br />

The difference between consecutive terms is<br />

constant. Therefore <strong>the</strong> sequence is arithmetic.<br />

50<br />

50 50 50<br />

∑ ∑ ∑<br />

S = (2k − 5) = 2 k−<br />

5<br />

k= 1 k= 1 k=<br />

1<br />

⎛50(50 + 1) ⎞<br />

= 2⎜<br />

⎟− 5(50) = 2550 − 250 = 2300<br />

⎝ 2 ⎠<br />

2<br />

69. { 4n } Examine <strong>the</strong> terms of <strong>the</strong> sequence: 4,<br />

16, 36, 64, 100, ...<br />

There is no common difference and <strong>the</strong>re is no<br />

common ratio. Therefore <strong>the</strong> sequence is nei<strong>the</strong>r<br />

arithmetic nor geometric.<br />

2<br />

70. { 5 1}<br />

71.<br />

72.<br />

n + Examine <strong>the</strong> terms of <strong>the</strong> sequence:<br />

6, 21, 46, 81, <strong>12</strong>6, ...<br />

There is no common difference and <strong>the</strong>re is no<br />

common ratio. Therefore <strong>the</strong> sequence is nei<strong>the</strong>r<br />

arithmetic nor geometric.<br />

⎧ 2 ⎫<br />

⎨ 3 − n ⎬<br />

⎩ 3 ⎭<br />

⎛ 2 ⎞ ⎛ 2 ⎞<br />

d = ⎜3 − ( n+ 1) ⎟−⎜3−<br />

n⎟<br />

⎝ 3 ⎠ ⎝ 3 ⎠<br />

2 2 2 2<br />

= 3− n− − 3+ n =−<br />

3 3 3 3<br />

The difference between consecutive terms is<br />

constant. Therefore <strong>the</strong> sequence is arithmetic.<br />

50 50 50<br />

⎛ 2 ⎞ 2<br />

S50<br />

= ∑⎜<br />

3− k ⎟= ∑3−<br />

∑k<br />

k= 1⎝<br />

3 ⎠ k= 1 3 k=<br />

1<br />

2 ⎛50(50 + 1) ⎞<br />

= 3(50) − ⎜ ⎟= 150 − 850 =−700<br />

3⎝<br />

2 ⎠<br />

⎧ 3 ⎫<br />

⎨ 8 − n ⎬<br />

⎩ 4 ⎭<br />

⎛ 3 ⎞ ⎛ 3 ⎞<br />

d = ⎜8 − ( n+ 1) ⎟−⎜8−<br />

n⎟<br />

⎝ 4 ⎠ ⎝ 4 ⎠<br />

3 3 3 3<br />

= 8− n− − 8+ n =−<br />

4 4 4 4<br />

The difference between consecutive terms is<br />

constant. Therefore <strong>the</strong> sequence is arithmetic.<br />

50 50 50<br />

S ⎛ 3 3<br />

50<br />

8 8<br />

1 4 k ⎞<br />

= ∑⎜<br />

− ⎟= ∑ − ∑<br />

k k 1 4<br />

k<br />

= ⎝ ⎠ = k=<br />

1<br />

3 ⎛50(50 + 1) ⎞<br />

= 8(50) − ⎜ ⎟<br />

4⎝<br />

2 ⎠<br />

= 400 − 956.25 =−556.25<br />

<strong>12</strong>58<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.3: Geometric <strong>Sequences</strong>; Geometric Series<br />

73. 1, 3, 6, 10, ...<br />

There is no common difference and <strong>the</strong>re is no<br />

common ratio. Therefore <strong>the</strong> sequence is nei<strong>the</strong>r<br />

arithmetic nor geometric.<br />

74. 2, 4, 6, 8, ...<br />

The common difference is 2.<br />

The difference between consecutive terms is<br />

constant. Therefore <strong>the</strong> sequence is arithmetic.<br />

50 50<br />

⎛50(50 + 1) ⎞<br />

S50<br />

= ∑( 2k ) = 2∑<br />

k = 2⎜<br />

⎟=<br />

2550<br />

k= 1 k=<br />

1 ⎝ 2 ⎠<br />

⎧<br />

n<br />

⎪⎛2<br />

⎞ ⎫⎪<br />

75. ⎨⎜<br />

⎟ ⎬<br />

⎪⎩⎝3<br />

⎠ ⎪⎭<br />

n+<br />

1<br />

⎛2<br />

⎞<br />

⎜ ⎟<br />

n+−<br />

1 n<br />

3 ⎛2⎞<br />

2<br />

r =<br />

⎝ ⎠<br />

=<br />

n ⎜ ⎟ =<br />

⎛2<br />

⎞ ⎝3⎠<br />

3<br />

⎜ ⎟<br />

⎝3<br />

⎠<br />

The ratio of consecutive terms is constant.<br />

Therefore <strong>the</strong> sequence is geometric.<br />

50<br />

⎛2<br />

⎞<br />

1<br />

50 k −<br />

2 2 ⎜ ⎟<br />

⎛ ⎞ 3<br />

S50<br />

=<br />

⎝ ⎠<br />

∑ ⎜ ⎟ = ⋅ = 1.999999997<br />

k = 1 ⎝ 3⎠ 3 2<br />

1−<br />

3<br />

⎧<br />

n<br />

⎪⎛5<br />

⎞ ⎫⎪<br />

76. ⎨⎜<br />

⎟ ⎬<br />

⎪⎩⎝4<br />

⎠ ⎪⎭<br />

n+<br />

1<br />

⎛5<br />

⎞<br />

⎜ ⎟<br />

n+−<br />

1 n<br />

4 ⎛5⎞<br />

5<br />

r =<br />

⎝ ⎠<br />

=<br />

n ⎜ ⎟ =<br />

⎛5<br />

⎞ ⎝4⎠<br />

4<br />

⎜ ⎟<br />

⎝4<br />

⎠<br />

The ratio of consecutive terms is constant.<br />

Therefore <strong>the</strong> sequence is geometric.<br />

50<br />

⎛5<br />

⎞<br />

1<br />

50 k −<br />

5 5 ⎜ ⎟<br />

⎛ ⎞ 4<br />

S50<br />

=<br />

⎝ ⎠<br />

∑ ⎜ ⎟ = ⋅ ≈350,319.6161<br />

k = 1 ⎝ 4⎠ 4 5<br />

1−<br />

4<br />

77. –1, 2, –4, 8, ...<br />

2 −4 8<br />

r = = = =−2<br />

−1 2 −4<br />

The ratio of consecutive terms is constant.<br />

Therefore <strong>the</strong> sequence is geometric.<br />

50<br />

50<br />

k −1<br />

1 −( −2)<br />

S50<br />

= ∑ −1( ⋅ − 2) = −1⋅<br />

k = 1<br />

1 − ( − 2)<br />

14<br />

≈ 3.752999689×<br />

10<br />

78. 1, 1, 2, 3, 5, 8, ...<br />

There is no common difference and <strong>the</strong>re is no<br />

common ratio. Therefore <strong>the</strong> sequence is nei<strong>the</strong>r<br />

arithmetic nor geometric.<br />

/2<br />

79. { }<br />

3 n ⎛n+<br />

1⎞<br />

⎜ ⎟<br />

2<br />

⎛n+<br />

1 n⎞<br />

3⎝ ⎠ ⎜ − ⎟<br />

⎝ 2 2⎠<br />

⎛n<br />

⎞<br />

⎜ ⎟<br />

⎝2<br />

⎠<br />

r = = 3 = 3<br />

1/2<br />

3<br />

The ratio of consecutive terms is constant.<br />

Therefore <strong>the</strong> sequence is geometric.<br />

S<br />

1−<br />

3<br />

1/2<br />

( ) 50<br />

50<br />

k /2 1/2<br />

50<br />

= ∑ 3 = 3 ⋅<br />

1/2<br />

k = 1<br />

1−<br />

3<br />

<strong>12</strong><br />

80. {( − 1) n<br />

}<br />

≈ 2.004706374×<br />

10<br />

n+<br />

1<br />

( −1)<br />

n+−<br />

1 n<br />

r = = ( − 1) = −1<br />

n<br />

( −1)<br />

The ratio of consecutive terms is constant.<br />

Therefore <strong>the</strong> sequence is geometric.<br />

S<br />

50<br />

50<br />

50<br />

k 1 −( −1)<br />

= ∑ ( − 1) = ( −1) ⋅ = 0<br />

1 −( −1)<br />

k = 1<br />

81. Find <strong>the</strong> common ratio of <strong>the</strong> terms and solve <strong>the</strong><br />

system of equations:<br />

x+ 2 x+<br />

3<br />

= r;<br />

= r<br />

x x+<br />

2<br />

x+ 2 x+<br />

3 2 2<br />

= → x + 4x+ 4= x + 3x→ x = −4<br />

x x+<br />

2<br />

82. Find <strong>the</strong> common ratio of <strong>the</strong> terms and solve <strong>the</strong><br />

system of equations:<br />

x x+<br />

2<br />

= r;<br />

= r<br />

x−1<br />

x<br />

x+ 2 x = →<br />

2 2<br />

x + x − 2 = x → x = 2<br />

x x−1<br />

83. This is a geometric series with<br />

a1 = $18,000, r = 1.05, n = 5 . Find <strong>the</strong> 5th<br />

term:<br />

−<br />

( ) ( )<br />

5 1 4<br />

a 5 = 18000 1.05 = 18000 1.05 = $21,879.11<br />

84. This is a geometric series with<br />

a1 = $15,000, r = 0.85, n = 6 . Find <strong>the</strong> 6th<br />

term:<br />

−<br />

( ) ( )<br />

6 1 5<br />

a 6 = 15000 0.85 = 15000 0.85 = $6655.58<br />

<strong>12</strong>59<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

85. a. Find <strong>the</strong> 10th term of <strong>the</strong> geometric<br />

sequence:<br />

a1<br />

= 2, r = 0.9, n=<br />

10<br />

10−1 9<br />

a = 2(0.9) = 2(0.9) = 0.775 feet<br />

10<br />

b. Find n when a n < 1:<br />

n−1<br />

2(0.9) < 1<br />

n−1<br />

( 0.9)<br />

< 0.5<br />

( ) ( )<br />

log ( 0.5)<br />

n − 1 ><br />

log ( 0.9)<br />

log ( 0.5)<br />

n<br />

log ( 0.9)<br />

( n − 1)log 0.9 < log 0.5<br />

> + 1≈7.58<br />

On <strong>the</strong> 8th swing <strong>the</strong> arc is less than 1 foot.<br />

c. Find <strong>the</strong> sum of <strong>the</strong> first 15 swings:<br />

15<br />

⎛<br />

15<br />

1 − (0.9) ⎞ ⎛1−<br />

( 0.9)<br />

⎞<br />

S15<br />

= 2 2<br />

⎜ 1 0.9 ⎟<br />

=<br />

⎝ − ⎠<br />

⎜ 0.1 ⎟<br />

⎝ ⎠<br />

15<br />

= 20 1− 0.9 = 15.88 feet<br />

( ( ) )<br />

d. Find <strong>the</strong> infinite sum of <strong>the</strong> geometric series:<br />

2 2<br />

S ∞ = = = 20 feet<br />

1−<br />

0.9 0.1<br />

86. a. Find <strong>the</strong> 3rd term of <strong>the</strong> geometric<br />

sequence:<br />

a1<br />

= 24, r = 0.8, n = 3<br />

3−1 2<br />

a = 24(0.8) = 24(0.8) = 15.36 feet<br />

3<br />

b. The height after <strong>the</strong> n th bounce is:<br />

n−1<br />

−1<br />

n<br />

a = 24(0.8) = 24 0.8 0.8<br />

n<br />

( )<br />

n<br />

= 30 0.8 ft<br />

c. Find n when a n < 0.5 :<br />

n−1<br />

24(0.8) < 0.5<br />

( ) ( )<br />

n−1<br />

( 0.8)<br />

< 0.020833<br />

( ) ( )<br />

log ( 0.020833)<br />

n − 1 ><br />

log ( 0.8)<br />

log ( 0.020833)<br />

n<br />

log ( 0.8)<br />

( n − 1)log 0.8 < log 0.020833<br />

> + 1≈18.35<br />

On <strong>the</strong> 19th bounce <strong>the</strong> height is less than<br />

0.5 feet.<br />

d. Find <strong>the</strong> infinite sum of <strong>the</strong> geometric<br />

series:<br />

24 24<br />

S ∞ = = = <strong>12</strong>0 feet on <strong>the</strong> upward<br />

1−<br />

0.8 0.2<br />

bounce.<br />

For <strong>the</strong> downward motion of <strong>the</strong> ball:<br />

30 30<br />

S ∞ = = = 150 feet<br />

1−<br />

0.8 0.2<br />

The total distance <strong>the</strong> ball travels is<br />

<strong>12</strong>0 + 150 = 270 feet.<br />

87. This is a geometric sequence with<br />

a1 = 1, r = 2, n = 64 .<br />

Find <strong>the</strong> sum of <strong>the</strong> geometric series:<br />

⎛<br />

64 64<br />

1−2 ⎞ 1−2<br />

64<br />

S64<br />

= 1 ⎜<br />

2 1<br />

1 2 ⎟<br />

= = −<br />

⎝ − ⎠ −1<br />

19<br />

= 1.845×<br />

10 grains<br />

88. This is an infinite geometric series with<br />

a 1 1<br />

1 = , r = .<br />

4 4<br />

Find <strong>the</strong> sum of <strong>the</strong> infinite geometric series:<br />

1 1<br />

( ) ( ) 1<br />

S<br />

4 4<br />

∞ = = =<br />

1 3<br />

( 1−<br />

) ( )<br />

3<br />

4 4<br />

Therefore, 1 3<br />

of <strong>the</strong> square is eventually shaded.<br />

89. The common ratio, r = 0.90 < 1. The sum is:<br />

1 1<br />

S = = = 10 .<br />

1−<br />

0.9 0.10<br />

The multiplier is 10.<br />

90. The common ratio, r = 0.95 < 1. The sum is:<br />

1 1<br />

S = = = 20 .<br />

1−<br />

0.95 0.05<br />

The multiplier is 20.<br />

91. This is an infinite geometric series with<br />

1.03<br />

a = 4, and r = .<br />

1.09<br />

Find <strong>the</strong> sum:<br />

4<br />

Price = $72.67<br />

1.03<br />

≈ per share.<br />

⎛ ⎞<br />

⎜1−<br />

⎟<br />

⎝ 1.09 ⎠<br />

<strong>12</strong>60<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.3: Geometric <strong>Sequences</strong>; Geometric Series<br />

92. This is an infinite geometric series with<br />

1.04<br />

a1<br />

= 2.5, and r = .<br />

1.11<br />

Find <strong>the</strong> sum:<br />

2.5<br />

Price = ≈$39.64<br />

per share.<br />

⎛ 1.04 ⎞<br />

⎜1−<br />

⎟<br />

⎝ 1.11 ⎠<br />

93. Given: a1 = 1000, r = 0.9<br />

Find n when a n < 0.01 :<br />

n−1<br />

1000(0.9) < 0.01<br />

n−1<br />

( 0.9)<br />

< 0.00001<br />

( ) ( )<br />

log ( 0.00001)<br />

n − 1 ><br />

log ( 0.9)<br />

log ( 0.00001)<br />

n<br />

log ( 0.9)<br />

( n − 1)log 0.9 < log 0.00001<br />

> + 1 ≈110.27<br />

On <strong>the</strong> 111th day or December 20, 2007, <strong>the</strong><br />

amount will be less than $0.01.<br />

Find <strong>the</strong> sum of <strong>the</strong> geometric series:<br />

111<br />

⎛<br />

n<br />

1−<br />

r ⎞ ⎛1−<br />

( 0.9)<br />

⎞<br />

S111 = a1<br />

1000⎜<br />

⎟<br />

⎜ 1 r ⎟<br />

=<br />

⎝ − ⎠<br />

⎜ 1−0.9<br />

⎟<br />

⎝ ⎠<br />

⎛<br />

111<br />

1−<br />

( 0.9)<br />

⎞<br />

= 1000 ⎜ ⎟=<br />

$9999.92<br />

⎜ 0.1 ⎟<br />

⎝ ⎠<br />

94. Both options are geometric sequences:<br />

Option A: a1 = $20,000; r = 1.06; n = 5<br />

5−1 4<br />

a5<br />

= 20,000(1.06) = 20,000(1.06) = $25,250<br />

⎛<br />

5<br />

1−<br />

( 1.06)<br />

⎞<br />

S5<br />

= 20000 ⎜ ⎟=<br />

$1<strong>12</strong>,742<br />

⎜ 1−1.06<br />

⎟<br />

⎝ ⎠<br />

Option B: a1 = $22,000; r = 1.03; n = 5<br />

5−1 4<br />

a5<br />

= 22,000(1.03) = 22,000(1.03) = $24,761<br />

⎛<br />

5<br />

1−<br />

( 1.03)<br />

⎞<br />

S5<br />

= 22000 ⎜ ⎟=<br />

$116,801<br />

⎜ 1−1.03<br />

⎟<br />

⎝ ⎠<br />

Option A provides more money in <strong>the</strong> 5th year,<br />

while Option B provides <strong>the</strong> greatest total<br />

amount of money over <strong>the</strong> 5 year period.<br />

95. Find <strong>the</strong> sum of each sequence:<br />

A: Arithmetic series with:<br />

a1 = $1000, d =− 1, n = 1000<br />

Find <strong>the</strong> sum of <strong>the</strong> arithmetic series:<br />

1000<br />

S 1000 = ( 1000 + 1 ) = 500(1001) = $500,500<br />

2<br />

B: This is a geometric sequence with<br />

a 1= 1, r = 2, n = 19.<br />

Find <strong>the</strong> sum of <strong>the</strong> geometric series:<br />

⎛<br />

19 19<br />

1−2 ⎞ 1−2<br />

19<br />

S19<br />

= 1 ⎜<br />

= = 2 − 1 = $524,287<br />

1 2 ⎟<br />

⎝ − ⎠ −1<br />

B results in more money.<br />

96. Option 1:<br />

Total Salary = $2,000,000(7) + $100,000(7)<br />

= $14,700,000<br />

Option 2: Geometric series with:<br />

a1 = $2,000,000, r = 1.045, n = 7<br />

Find <strong>the</strong> sum of <strong>the</strong> geometric series:<br />

⎛1−<br />

( 1.045) 7 ⎞<br />

S = 2,000,000 ⎜ ⎟≈$16,038,304<br />

⎜ 1−1.045<br />

⎟<br />

⎝ ⎠<br />

Option 3: Arithmetic series with:<br />

a1 = $2,000,000, d = $95,000, n = 7<br />

Find <strong>the</strong> sum of <strong>the</strong> arithmetic series:<br />

7<br />

S 7 = ( 2(2,000,000) + (7 − 1)(95,000) )<br />

2<br />

= $15,995,000<br />

Option 2 provides <strong>the</strong> most money; Option 1<br />

provides <strong>the</strong> least money.<br />

97. The amount paid each day forms a geometric<br />

sequence with a 1 = 0.01 and r = 2 .<br />

22 22<br />

1−r<br />

1−2<br />

S22 = a1<br />

⋅ = 0.01⋅ = 41,943.03<br />

1−<br />

r 1−<br />

2<br />

The total payment would be $41,943.03 if you<br />

worked all 22 days.<br />

( ) 21<br />

22 1<br />

a22 = a1 ⋅ r − = 0.01 2 = 20,971.52<br />

The payment on <strong>the</strong> 22 nd day is $20,971.52.<br />

Answers will vary. With this payment plan, <strong>the</strong><br />

bulk of <strong>the</strong> payment is at <strong>the</strong> end so missing even<br />

one day can dramatically reduce <strong>the</strong> overall<br />

payment. Notice that with one sick day you<br />

would lose <strong>the</strong> amount paid on <strong>the</strong> 22 nd day<br />

which is about half <strong>the</strong> total payment for <strong>the</strong> 22<br />

days.<br />

<strong>12</strong>61<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

98. Yes, a sequence can be both arithmetic and<br />

geometric. For example, <strong>the</strong> constant sequence<br />

3,3,3,3,..... can be viewed as an arithmetic<br />

sequence with a 1 = 3 and d = 0. Alternatively,<br />

<strong>the</strong> same sequence can be viewed as a geometric<br />

sequence with a 1 = 3 and r = 1.<br />

99 – 100. Answers will vary.<br />

101. Answers will vary. Both increase (or decrease)<br />

exponentially, but <strong>the</strong> domain of a geometric<br />

sequence is <strong>the</strong> set of natural numbers while <strong>the</strong><br />

domain of an exponential function is <strong>the</strong> set of<br />

all real numbers.<br />

Section <strong>12</strong>.4<br />

1. I: n = 1: 2⋅ 1= 2 and1(1 + 1) = 2<br />

II: If 2+ 4+ 6+ + 2 k = k( k+<br />

1) , <strong>the</strong>n<br />

2+ 4+ 6+ + 2k+ 2( k+<br />

1)<br />

= ( 2+ 4+ 6+ + 2k)<br />

+ 2( k+<br />

1)<br />

= kk ( + 1) + 2( k+<br />

1)<br />

2<br />

= k + 3k<br />

+ 2<br />

= ( k + 1)( k + 2)<br />

= ( k+ 1) ⎡⎣( k+ 1)<br />

+ 1⎤⎦<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

2. I: n = 1: 4⋅1− 3= 1and1(2⋅1− 1) = 1<br />

II: If 1+ 5+ 9 + + (4k − 3) = k(2k−1)<br />

, <strong>the</strong>n<br />

1+ 5+ 9 + + (4k− 3) + [4( k+ 1) −3]<br />

= [ 1+ 5+ 9 + + (4k− 3) ] + 4k+ 4−3<br />

= k(2k− 1) + 4k<br />

+ 1<br />

2<br />

= 2k − k+ 4k+<br />

1<br />

2<br />

= 2k<br />

+ 3k+<br />

1<br />

= ( k+ 1)(2k<br />

+ 1)<br />

= ( k+ 1) ⎡⎣2( k + 1)<br />

−1⎤⎦<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

3. I:<br />

1<br />

n = 1: 1+ 2 = 3and ⋅ 1(1 + 5) = 3<br />

2<br />

1<br />

II: If 3+ 4+ 5 + + ( k+ 2) = ⋅ k( k+<br />

5) , <strong>the</strong>n<br />

2<br />

3+ 4+ 5 + + ( k+ 2) + [( k+ 1) + 2]<br />

= [ 3+ 4+ 5 + + ( k+ 2) ] + ( k+<br />

3)<br />

1<br />

= ⋅ kk ( + 5) + ( k+<br />

3)<br />

2<br />

1 2 5<br />

= k + k + k+<br />

3<br />

2 2<br />

1 2 7<br />

= k + k + 3<br />

2 2<br />

1 2<br />

= ⋅ ( k + 7k+<br />

6)<br />

2<br />

= 1 ⋅ ( k+ 1)( k + 6)<br />

2<br />

= 1 ⋅ ( k+ 1)[( k + 1) + 5]<br />

2<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

4. I: n = 1: 2⋅ 1+ 1= 3and1(1 + 2) = 3<br />

II: If 3+ 5+ 7 + + (2k+ 1) = k( k+<br />

2) , <strong>the</strong>n<br />

3 + 5 + 7 + + (2k+ 1) + [2( k+ 1) + 1]<br />

= [ 3+ 5+ 7 + + (2k+ 1) ] + (2k+<br />

3)<br />

= kk ( + 2) + (2k+<br />

3)<br />

2<br />

= k + 2k+ 2k+<br />

3<br />

2<br />

= k + 4k+<br />

3<br />

= ( k + 1)( k + 3)<br />

= ( k + 1)[( k+ 1) + 2]<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

<strong>12</strong>62<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.4: Ma<strong>the</strong>matical <strong>Induction</strong><br />

5. I:<br />

6. I:<br />

1<br />

n = 1: 3⋅1− 1= 2 and ⋅1(3⋅ 1+ 1) = 2<br />

2<br />

1<br />

II: If 2+ 5+ 8 + + (3k− 1) = ⋅ k(3k+<br />

1) , <strong>the</strong>n<br />

2<br />

2 + 5 + 8 + + (3k− 1) + [3( k+ 1) −1]<br />

= [ 2+ 5+ 8 + + (3k− 1) ] + (3k+<br />

2)<br />

1 3 2 1<br />

= ⋅ k(3k+ 1) + (3k+ 2) = k + k+ 3k+<br />

2<br />

2 2 2<br />

3 2 7 1 2<br />

= k + k+ 2= ( 3k + 7k+<br />

4)<br />

2 2 2<br />

= 1 ( k+ 1)(3 k+<br />

4)<br />

2<br />

1<br />

= ( k+ 1)[3( k + 1) + 1]<br />

2<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

1<br />

n = 1: 3⋅1− 2 = 1and ⋅1(3⋅1− 1) = 1<br />

2<br />

1<br />

II: If 1+ 4+ 7 + + (3k− 2) = ⋅k(3k−1)<br />

,<br />

2<br />

<strong>the</strong>n<br />

1+ 4+ 7 + + (3k− 2) + [3( k+ 1) −2]<br />

= [ 1+ 4+ 7 + + (3k− 2) ] + (3k+<br />

1)<br />

1 3 2 1<br />

= ⋅k(3k − 1) + (3k+ 1) = k − k+ 3k+<br />

1<br />

2 2 2<br />

3 2 5 1 2<br />

= k + k + 1= ( 3k + 5k+<br />

2)<br />

2 2 2<br />

= 1 ( k+ 1)(3 k+<br />

2)<br />

2<br />

1<br />

= ( k+ 1)[3( k + 1) − 1]<br />

2<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

7. I:<br />

11 −<br />

1<br />

n = 1: 2 = 1and 2 − 1=<br />

1<br />

2 k−1<br />

II: If 1+ 2+ 2 + + 2 = 2 −1, <strong>the</strong>n<br />

2 k−<br />

1 k+ 1−1<br />

1+ 2+ 2 + + 2 + 2<br />

2 k−1<br />

= ⎡1 2 2 2 ⎤<br />

⎣<br />

+ + + +<br />

⎦<br />

+ 2<br />

k k k<br />

= 2 − 1+ 2 = 2⋅2 −1<br />

k + 1<br />

= 2 −1<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

k<br />

k<br />

8. I:<br />

11 − 1 1<br />

n = 1: 3 = 1and (3 − 1) = 1<br />

2<br />

2 k−1 1<br />

II: If 1+ 3+ 3 + + 3 = ⋅(3 −1)<br />

, <strong>the</strong>n<br />

2<br />

2 k−<br />

1 k+ 1−1<br />

1+ 3+ 3 + + 3 + 3<br />

2 k−1<br />

k<br />

= ⎡1 3 3 3 ⎤<br />

⎣<br />

+ + + +<br />

⎦<br />

+ 3<br />

1 k k 1 k 1 k<br />

= ⋅(3 − 1) + 3 = ⋅3 − + 3<br />

2 2 2<br />

3 k 1 1 k<br />

= ⋅3 − = ⋅( 3⋅3 −1)<br />

2 2 2<br />

1 1<br />

( 3<br />

k +<br />

= − 1 )<br />

2<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

11 −<br />

1<br />

9. I: n<br />

1<br />

( )<br />

= 1: 4 = 1and ⋅ 4 − 1 = 1<br />

3<br />

2 k−1 1 k<br />

II: If 1+ 4+ 4 + + 4 = ⋅( 4 −1)<br />

2 k−1<br />

( )<br />

( )<br />

3<br />

2 k−<br />

1 k+ 1−1<br />

1+ 4+ 4 + + 4 + 4<br />

= 1+ 4+ 4 + + 4 + 4<br />

1 1 1<br />

= ⋅ 4 − 1 + 4 = ⋅4 − + 4<br />

3 3 3<br />

4 k 1 1 k<br />

= ⋅4 − = ( 4⋅4 −1)<br />

3 3 3<br />

1 1<br />

( 4<br />

k +<br />

= ⋅ − 1 )<br />

3<br />

k k k k<br />

k<br />

k<br />

, <strong>the</strong>n<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

11 −<br />

1<br />

10. I: n<br />

1<br />

( )<br />

= 1: 5 = 1and ⋅ 5 − 1 = 1<br />

4<br />

2 k−1 1 k<br />

II: If 1+ 5+ 5 + + 5 = ⋅( 5 −1)<br />

4<br />

2 k−<br />

1 k+ 1−1<br />

1+ 5+ 5 + + 5 + 5<br />

2 k−1<br />

k<br />

= ⎡1 5 5 5 ⎤<br />

⎣<br />

+ + + +<br />

⎦<br />

+ 5<br />

1 1 1<br />

= ⋅( 5 − 1)<br />

+ 5 = ⋅5 − + 5<br />

4 4 4<br />

5 k 1 1 k<br />

= ⋅5 − = ( 5⋅5 −1)<br />

4 4 4<br />

1 1<br />

( 5<br />

k +<br />

= ⋅ − 1 )<br />

4<br />

k k k k<br />

, <strong>the</strong>n<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

<strong>12</strong>63<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

1 1 1 1<br />

11. I: n = 1: = and =<br />

1(1+ 1) 2 1+<br />

1 2<br />

1 1 1 1 k<br />

II: If + + + + = , <strong>the</strong>n<br />

<strong>12</strong> ⋅ 23 ⋅ 34 ⋅ kk ( + 1) k+<br />

1<br />

1 1 1 1 1<br />

+ + + + +<br />

1⋅2 2 ⋅3 3⋅ 4 kk ( + 1) ( k+ 1)( k+ 1 + 1)<br />

⎡ 1 1 1 1 ⎤ 1<br />

= ⎢ + + + + ⎥+<br />

⎣<strong>12</strong> ⋅ 23 ⋅ 34 ⋅ kk ( + 1) ⎦ ( k+ 1)( k+<br />

2)<br />

2 2<br />

k 1 k k + 2 1 k + 2k+ 1 ( k+ 1) k+ 1 k+<br />

1<br />

= + = ⋅ + = = = =<br />

k + 1 ( k + 1)( k+ 2) k+ 1 k+ 2 ( k+ 1)( k+ 2) ( k+ 1)( k+ 2) ( k+ 1)( k+ 2) k+ 2 k+ 1 + 1<br />

Conditions I and II are satisfied; <strong>the</strong> statement is true.<br />

( )<br />

<strong>12</strong>. I:<br />

1 1 1 1<br />

n = 1: = and =<br />

(2⋅1−1)(2⋅ 1+ 1) 3 2⋅ 1+<br />

1 3<br />

13. I:<br />

1 1 1 1 k<br />

II: If + + + + = , <strong>the</strong>n<br />

1⋅3 3⋅5 5⋅7 (2k− 1)(2k + 1) 2k+<br />

1<br />

1 1 1 1 1<br />

+ + + + +<br />

1⋅3 3⋅5 5 ⋅7 (2k − 1)(2k + 1) (2( k+ 1) − 1)(2( k+ 1) + 1)<br />

⎡ 1 1 1 1 ⎤ 1<br />

= ⎢ + + + + ⎥+<br />

⎣1⋅3 3⋅5 5⋅7 (2k− 1)(2k+ 1) ⎦ (2k+ 1)(2k+<br />

3)<br />

k 1 k 2k+<br />

3 1<br />

= + = ⋅ +<br />

2k + 1 (2k + 1)(2k+ 3) 2k+ 1 2k+ 3 (2k+ 1)(2k+<br />

3)<br />

2<br />

2k + 3k+ 1 ( k+ 1)(2k+ 1) k+<br />

1 k + 1<br />

= = = =<br />

(2k + 1)(2k + 3) (2k+ 1)(2k+<br />

3) 2k<br />

+ 3 2 k+ 1 + 1<br />

Conditions I and II are satisfied; <strong>the</strong> statement is true.<br />

2 1<br />

n = 1: 1 = 1and ⋅ 1(1 + 1)(2⋅ 1+ 1) = 1<br />

6<br />

2 2 2 2 1<br />

( )<br />

II: If 1 + 2 + 3 + + k = ⋅ k( k+ 1)(2k+<br />

1) , <strong>the</strong>n<br />

6<br />

2 2 2 2 2 2 2 2 2 2 1<br />

2<br />

1 + 2 + 3 + + k + ( k+ 1) = ( 1 + 2 + 3 + + k ) + ( k+ 1) = k( k+ 1)(2k+ 1) + ( k+<br />

1)<br />

6<br />

⎡1 ⎤ ⎡1 2 1 ⎤ ⎡1 2 7 ⎤ 1<br />

2<br />

= ( k + 1) ⎢ k(2k+ 1) + k+ 1 ( k 1) k k k 1 ( k 1) k k 1 ( k 1) 2k 7k<br />

6<br />

6 ⎥ = + ⎢ + + +<br />

3 6 ⎥ = + ⎢ + +<br />

3 6 ⎥ = + + +<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 6<br />

1<br />

= ⋅ ( k + 1)( k+ 2)(2 k+<br />

3)<br />

6<br />

= 1 ⋅ ( k + 1)[( k+ 1) + 1][2( k+ 1) + 1]<br />

6<br />

Conditions I and II are satisfied; <strong>the</strong> statement is true.<br />

( )<br />

<strong>12</strong>64<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.4: Ma<strong>the</strong>matical <strong>Induction</strong><br />

3 1 2 2<br />

14. I: n = 1: 1 = 1and ⋅ 1 (1+ 1) = 1<br />

4<br />

II: If 1 3 + 2 3 + 3 3 + + k 3 = 1 k 2 ( k+<br />

1)<br />

2 , <strong>the</strong>n<br />

4<br />

1<br />

1 + 2 + 3 + + k + ( k+ 1) = ⎡1 2 3 k ⎤<br />

⎣<br />

+ + + + ⎦<br />

+ ( k+ 1) = k ( k+ 1) + ( k+<br />

1)<br />

4<br />

2 ⎡1 2 ⎤ 1 2 2<br />

= ( k + 1) k k 1 ( k 1) ⎡k 4k<br />

4⎤<br />

⎢ + +<br />

4 ⎥ = + + +<br />

⎣ ⎦ 4 ⎣ ⎦<br />

1 ( 1)<br />

2 ( 2)<br />

2<br />

= ⋅ k+ k+<br />

4<br />

1 ( 1) 2 (( 1) 1) 2<br />

= ⋅ k+ k+ +<br />

4<br />

15. I:<br />

16. I:<br />

3 3 3 3 3 3 3 3 3 3 2 2 3<br />

Conditions I and II are satisfied; <strong>the</strong> statement is true.<br />

1<br />

n = 1: 5− 1= 4 and ⋅1(9 − 1) = 4<br />

2<br />

1<br />

II: If 4+ 3+ 2 + + (5 − k) = ⋅k(9 −k)<br />

, <strong>the</strong>n<br />

2<br />

1<br />

4+ 3+ 2 + + (5 − k) + [5 − ( k+ 1)] = [ 4+ 3+ 2 + + (5 − k) ] + (4 − k) = k(9 − k) + (4 −k)<br />

2<br />

9 1 2 1 2 7 1 2<br />

= k − k + 4− k =− k + k+ 4= − ⎡k 7k<br />

8⎤<br />

2 2 2 2 2⎣<br />

− −<br />

⎦<br />

1 1 1<br />

=− ( k+ 1)( k− 8) = ( k+ 1)(8 − k) = ( k+ 1) [ 9 − ( k+<br />

1) ]<br />

2 2 2<br />

Conditions I and II are satisfied; <strong>the</strong> statement is true.<br />

1<br />

n = 1: − (1 + 1) =−2 and − ⋅ 1(1+ 3) =− 2<br />

2<br />

1<br />

II: If −2−3−4 −<br />

− ( k+ 1) =− ⋅ k( k+<br />

3) , <strong>the</strong>n<br />

2<br />

−2−3−4 −− ( k+ 1) − (( k+ 1) + 1) = [ −2−3−4 −<br />

− ( k+ 1) ] − ( k+<br />

2)<br />

1 1 2 3 1 2 5<br />

=− ⋅ kk ( + 3) − ( k+ 2) =− k − k−k− 2=− k − k−2<br />

2 2 2 2 2<br />

1 2<br />

1<br />

=− ⋅ ⎡k 5k 4 ⎤ ( k 1)( k 4)<br />

2 ⎣<br />

+ +<br />

⎦<br />

=− ⋅ + +<br />

2<br />

1<br />

=− ⋅ ( k + 1)[( k+ 1) + 3]<br />

2<br />

Conditions I and II are satisfied; <strong>the</strong> statement is true.<br />

<strong>12</strong>65<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

17. I:<br />

18. I:<br />

1<br />

n = 1: 1(1+ 1) = 2 and ⋅ 1(1 + 1)(1+ 2) = 2<br />

3<br />

1<br />

II: If <strong>12</strong> ⋅ + 23 ⋅ + 34 ⋅ + + kk ( + 1) = ⋅ kk ( + 1)( k+<br />

2) , <strong>the</strong>n<br />

3<br />

<strong>12</strong> ⋅ + 23 ⋅ + 34 ⋅ + + kk ( + 1) + ( k+ 1)( k+ 1+ 1) = [ <strong>12</strong> ⋅ + 23 ⋅ + 34 ⋅ + + kk ( + 1) ] + ( k+ 1)( k+<br />

2)<br />

1 ⎡1<br />

⎤<br />

= ⋅ kk ( + 1)( k+ 2) + ( k+ 1)( k+ 2) = ( k+ 1)( k+ 2) k 1<br />

3 ⎢ +<br />

3 ⎥<br />

⎣ ⎦<br />

1<br />

= ⋅ ( k + 1)( k+ 2)( k+<br />

3)<br />

3<br />

1<br />

= ⋅ ( k + 1)[( k + 1) + 1][( k+ 1) + 2]<br />

3<br />

Conditions I and II are satisfied; <strong>the</strong> statement is true.<br />

1<br />

n = 1: (2⋅1−1)(2⋅ 1) = 2and ⋅ 1(1+ 1)(4⋅1− 1) = 2<br />

3<br />

1<br />

II: If 1⋅ 2 + 3⋅ 4 + 5⋅ 6 + + (2k− 1)(2 k) = ⋅ k( k+ 1)(4k−1)<br />

, <strong>the</strong>n<br />

3<br />

1⋅ 2 + 3⋅ 4 + 5⋅ 6 + + (2k− 1)(2 k) + [2( k+ 1) − 1][2( k+<br />

1)]<br />

= [ <strong>12</strong> ⋅ + 34 ⋅ + 56 ⋅ + + (2k− 1)(2) k ] + (2k+ 1)( k+ 1)2 ⋅<br />

1 ⎡1<br />

⎤<br />

= kk ( + 1)(4k− 1) + 2( k+ 1)(2k+ 1) = ( k+ 1) k(4k 1) 2(2k<br />

1)<br />

3 ⎢ − + +<br />

3<br />

⎥<br />

⎣<br />

⎦<br />

⎡4 2 1 ⎤ 1<br />

2<br />

= ( k + 1) ⎢ k − k+ 4k+ 2 ( k 1) ( 4k k <strong>12</strong>k<br />

6)<br />

3 3 ⎥ = + − + +<br />

⎣<br />

⎦ 3<br />

1 ( 1)<br />

2<br />

1<br />

= k + ( 4 k + 11 k+<br />

6 ) = ( k+ 1)( k+ 2)(4 k+<br />

3)<br />

3<br />

3<br />

1<br />

= ( k + 1)[( k+ 1) + 1][4( k+ 1) − 1]<br />

3<br />

Conditions I and II are satisfied; <strong>the</strong> statement is true.<br />

_________________________________________________________________________________________________<br />

19. I:<br />

2<br />

n = 1: 1 + 1 = 2 is divisible by 2<br />

20. I:<br />

3<br />

n = 1: 1 + 2⋅ 1 = 3 is divisible by 3<br />

2<br />

II: If k + k is divisible by 2 , <strong>the</strong>n<br />

2 2<br />

( k + 1) + ( k + 1) = k + 2k+ 1+ k+<br />

1<br />

2<br />

= ( k + k) + (2k+<br />

2)<br />

2<br />

Since k + k is divisible by 2 and 2k + 2 is<br />

2<br />

divisible by 2, <strong>the</strong>n ( k + 1) + ( k + 1) is<br />

divisible by 2.<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

3<br />

II: If k + 2k<br />

is divisible by 3 , <strong>the</strong>n<br />

3<br />

( k+ 1) + 2( k+<br />

1)<br />

3 2<br />

= k + 3k + 3k+ 1+ 2k+<br />

2<br />

3 2<br />

= ( k + 2 k) + (3k + 3k+<br />

3)<br />

Since k<br />

2<br />

3<br />

+ 2k<br />

is divisible by 3 and<br />

3k<br />

+ 3k+ 3 is divisible by 3, <strong>the</strong>n<br />

3<br />

( k + 1) + 2( k+ 1) is divisible by 3.<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

<strong>12</strong>66<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.4: Ma<strong>the</strong>matical <strong>Induction</strong><br />

21. I:<br />

2<br />

n = 1: 1 − 1+ 2 = 2 is divisible by 2<br />

2<br />

II: If k − k + 2 is divisible by 2 , <strong>the</strong>n<br />

2 2<br />

( k + 1) − ( k+ 1) + 2= k + 2k+ 1−k− 1+<br />

2<br />

2<br />

= ( k − k+ 2) + (2 k)<br />

2<br />

Since k − k + 2 is divisible by 2 and 2k is<br />

2<br />

divisible by 2, <strong>the</strong>n ( k + 1) − ( k + 1) + 2 is<br />

divisible by 2.<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

22. I: n = 1: 1(1 + 1)(1 + 2) = 6 is divisible by 6<br />

23. I:<br />

24. I:<br />

II: If kk ( + 1)( k+ 2) is divisible by 6 , <strong>the</strong>n<br />

( k + 1)( k+ 1+ 1)( k+ 1+<br />

2)<br />

= ( k + 1)( k+ 2)( k+<br />

3)<br />

= kk ( + 1)( k+ 2) + 3( k+ 1)( k+<br />

2).<br />

Now, kk ( + 1)( k+<br />

2) is divisible by 6;<br />

and since ei<strong>the</strong>r k + 1 or k + 2 is even,<br />

3( k + 1)( k + 2)<br />

is divisible by 6.<br />

Thus, ( k + 1)( k+ 2)( k+<br />

3)<br />

= k k+ 1 k+ 2 + 3 k+ 1 k+<br />

2<br />

( )( ) ( )( )<br />

is divisible by 6.<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

n= 1: If x > 1<strong>the</strong>n x = x > 1.<br />

II: Assume, for some natural number k, that if<br />

k<br />

x > 1 , <strong>the</strong>n x > 1 .<br />

k + 1<br />

Then x > 1, for x > 1,<br />

k+<br />

1 k<br />

x = x ⋅ x > 1⋅ x = x > 1<br />

↑<br />

k<br />

( x > 1)<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

n= 1: If 0 < x< 1<strong>the</strong>n 0 < x < 1.<br />

II: Assume, for some natural number k, that if<br />

k<br />

0< x < 1, <strong>the</strong>n 0< x < 1.<br />

Then, for 0 < x < 1,<br />

k+<br />

1 k<br />

0< x = x ⋅ x< 1⋅ x = x<<br />

1<br />

k + 1<br />

Thus, 0 < x < 1.<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

1<br />

1<br />

25. I:<br />

1 1<br />

n= 1: a−bis a factor of a − b = a−<br />

b.<br />

II: If a− b is a factor of a − b , show that<br />

a− b is a factor of a − b .<br />

k+ 1 k+<br />

1 k k<br />

a − b = a⋅a −b⋅b<br />

= aa ⋅ −ab ⋅ + ab ⋅ −bb<br />

⋅<br />

k k k<br />

= a a − b + b ( a−b)<br />

k<br />

( )<br />

k<br />

k+ 1 k+<br />

1<br />

k k k k<br />

Since a− b is a factor of a − b and a−<br />

b<br />

is a factor of a− b, <strong>the</strong>n a− b is a factor of<br />

a<br />

k+ 1 k+<br />

1<br />

− b .<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

26. I: n = 1:<br />

21 ⋅+ 1 21 ⋅+ 1 3 3<br />

a+ bis a factor of a + b = a + b .<br />

⎡ 3 3 2 2<br />

a + b = ( a+ b)( a − ab+<br />

b )<br />

⎤<br />

⎣<br />

⎦<br />

II:<br />

k<br />

k<br />

2k+ 1 2k+<br />

1<br />

If a+ b is a factor of a + b ,<br />

show that a+ b is a factor of<br />

2( k+ 1) + 1 2( k+ 1)<br />

+ 1<br />

a + b .<br />

2( k+ 1) + 1 2( k+ 1) + 1 2k+ 3 2k+<br />

3<br />

a + b = a + b<br />

= a ⋅ a + a ⋅b −a ⋅ b + b ⋅b<br />

2 2k+ 1 2k+ 1 2k+<br />

1 2 2<br />

= a a + b −b ( a −b<br />

)<br />

2 2k+ 1 2 2k+ 1 2 2k+ 1 2 2k+<br />

1<br />

( )<br />

2k+ 1 2k+<br />

1<br />

Since a+ b is a factor of a + b and<br />

2 2<br />

a+ b is a factor of a − b [( a− b)( a+ b)<br />

] ,<br />

2k+ 3 2k+<br />

3<br />

<strong>the</strong>n a+ b is a factor of a + b .<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

27. I: 1<br />

n = : ( ) 1<br />

1+ a = 1+ a ≥ 1+ 1⋅<br />

a<br />

II: Assume that <strong>the</strong>re is an integer k for which<br />

<strong>the</strong> inequality holds. We need to show that if<br />

k<br />

1+ a ≥ 1+ ka <strong>the</strong>n<br />

( )<br />

k + 1<br />

( 1+ a) ≥ 1+ ( k+ 1)<br />

a.<br />

k+<br />

1<br />

k<br />

( 1+ a) = ( 1+ a) ( 1+<br />

a)<br />

≥ ( 1+ ka)( 1+<br />

a)<br />

2<br />

= 1+ ka + a + ka<br />

= 1+ k+ 1 a+<br />

ka<br />

( )<br />

( k )<br />

≥ 1+ + 1 a<br />

Conditions I and II are satisfied, <strong>the</strong> statement is<br />

true.<br />

2<br />

<strong>12</strong>67<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

28.<br />

n = 1:<br />

2<br />

1 − 1+ 41 = 41 is a prime number.<br />

n = 41:<br />

2 2<br />

41 − 41+ 41 = 41 is not a prime number.<br />

29. II: If 2+ 4+ 6+ + 2k = k + k + 2, <strong>the</strong>n<br />

2+ 4+ 6+ + 2k+ 2( k+<br />

1)<br />

= 2+ 4+ 6+ + 2k<br />

+ 2k+<br />

2<br />

I:<br />

30. I:<br />

[ ]<br />

2<br />

= k + k+ 2+ 2k+<br />

2<br />

2<br />

= ( k + 2k+ 1) + ( k+ 1) + 2<br />

2<br />

= ( k + 1) + ( k+ 1) + 2<br />

2<br />

n = 1: 2⋅ 1= 2 and1 + 1+ 2 = 4 ≠ 2<br />

1<br />

11 −<br />

⎛1−<br />

r ⎞<br />

n= 1: ar = a and a ⎜<br />

= a<br />

1−<br />

r ⎟<br />

⎝ ⎠<br />

k<br />

2 k −1 ⎛1−<br />

r ⎞<br />

II: If a+ ar+ ar + + ar = a<br />

⎜<br />

1−<br />

r ⎟<br />

,<br />

⎝ ⎠<br />

<strong>the</strong>n<br />

2 k−<br />

1 k+ 1−1<br />

a+ ar+ ar + + ar + ar<br />

2 k−1<br />

k<br />

= ⎡a ar ar ar ⎤<br />

⎣<br />

+ + + +<br />

⎦<br />

+ ar<br />

⎛<br />

k k k<br />

1 −r ⎞<br />

k a(1 − r ) + ar (1 −r)<br />

= a<br />

⎜<br />

ar<br />

1 r ⎟<br />

+ =<br />

⎝ − ⎠<br />

1−r<br />

k k k+ 1 k+<br />

1<br />

a− ar + ar −ar ⎛1−r<br />

⎞<br />

= = a<br />

1−r<br />

⎜ 1−r<br />

⎟<br />

⎝ ⎠<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

31. I: n = 1:<br />

1(1 −1)<br />

a+ (1− 1) d = a and 1⋅ a+ d = a<br />

2<br />

II: If a+ ( a+ d) + ( a+ 2 d) + + [ a+ ( k−1)<br />

d]<br />

kk ( −1)<br />

= ka + d<br />

2<br />

<strong>the</strong>n<br />

a+ ( a+ d) + ( a+ 2 d) + + [ a+ ( k − 1) d] + ( a+<br />

kd)<br />

= [ a+ ( a+ d) + ( a+ 2 d) + + [ a+ ( k − 1) d]<br />

] + ( a+<br />

kd)<br />

kk ( −1)<br />

= ka + d + ( a + kd)<br />

2<br />

⎡kk<br />

( −1)<br />

⎤<br />

= ( k+ 1) a+ d ⎢ + k<br />

2 ⎥<br />

⎣ ⎦<br />

2<br />

⎡<br />

2<br />

k − k + 2k⎤<br />

= ( k+ 1) a+<br />

d<br />

⎢⎣<br />

2 ⎥⎦<br />

⎡<br />

2<br />

k + k⎤<br />

= ( k+ 1) a+<br />

d<br />

⎢⎣<br />

2 ⎥⎦<br />

⎡( k + 1) k⎤<br />

= ( k+ 1) a+<br />

d⎢<br />

2<br />

⎥<br />

⎣ ⎦<br />

⎡( k + 1) ⎡ ( k + 1)<br />

−1⎤⎤<br />

= ( k + 1)<br />

a+<br />

d<br />

⎣ ⎦<br />

⎢<br />

⎥<br />

⎢⎣<br />

2 ⎥⎦<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

32. I: n = 4: The number of diagonals of a<br />

quadrilateral is 1 4(4 3) 2<br />

2 ⋅ − = .<br />

II: Assume that for any integer k, <strong>the</strong> number of<br />

diagonals of a convex polygon with k sides<br />

(k vertices) is 1 ( 3)<br />

2 ⋅ kk−<br />

. A convex<br />

polygon with k + 1 sides ( k + 1 vertices)<br />

consists of a convex polygon with k sides<br />

(k vertices) plus a triangle, for a total of<br />

( k + 1) vertices. The diagonals of this<br />

k + 1-sided convex polygon consist of <strong>the</strong><br />

diagonals of <strong>the</strong> k-sided polygon plus k − 1<br />

additional diagonals. For example, consider<br />

<strong>the</strong> following diagrams.<br />

k + 1 = 6 sides<br />

k = 5 sides k − 1 = 4 new diagonals<br />

Thus, we have <strong>the</strong> equation:<br />

1 1 2 3<br />

kk ( − 3) + ( k− 1) = k − k+ k−1<br />

2 2 2<br />

1 2 1<br />

= k − k−1<br />

2 2<br />

1 2<br />

= ( k −k−2)<br />

2<br />

1<br />

= ( k + 1)( k−<br />

2)<br />

2<br />

1<br />

= ( k + 1)[( k+ 1) − 3]<br />

2<br />

Conditions I and II are satisfied; <strong>the</strong><br />

statement is true.<br />

<strong>12</strong>68<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.5: The <strong>Binomial</strong> <strong>Theorem</strong><br />

33. I: n = 3: (3 −2) ⋅ 180°= 180 ° which is <strong>the</strong><br />

sum of <strong>the</strong> angles of a triangle.<br />

II: Assume that for any integer k, <strong>the</strong> sum of<br />

<strong>the</strong> angles of a convex polygon with k sides<br />

is ( k −2) ⋅ 180°. A convex polygon with<br />

k + 1 sides consists of a convex polygon<br />

with k sides plus a triangle. Thus, <strong>the</strong> sum of<br />

<strong>the</strong> angles is<br />

( k −2) ⋅ 180°+ 180 °= [( k+ 1) −2] ⋅ 180 ° .<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

34. Answers will vary.<br />

Section <strong>12</strong>.5<br />

1. Pascal Triangle<br />

2.<br />

⎛6⎞ 6! 654321 ⋅ ⋅ ⋅ ⋅ ⋅ 65 ⋅<br />

⎜ ⎟= = = = 15<br />

⎝2⎠<br />

2!4! 2⋅1⋅4⋅3⋅2⋅1 2⋅1<br />

⎛n⎞ n!<br />

3. False; ⎜ ⎟ =<br />

⎝ j ⎠ j! ( n−<br />

j)<br />

!<br />

4. <strong>Binomial</strong> <strong>Theorem</strong><br />

5.<br />

6.<br />

⎛5⎞ 5! 54321 ⋅ ⋅ ⋅ ⋅ 54 ⋅<br />

⎜ ⎟= = = = 10<br />

⎝3⎠<br />

3! 2! 3⋅2⋅1⋅2⋅1 2⋅1<br />

⎛7⎞ 7! 7654321 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 765 ⋅ ⋅<br />

⎜ ⎟= = = = 35<br />

⎝3⎠<br />

3!4! 3214321 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 321 ⋅ ⋅<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

<strong>12</strong>.<br />

13.<br />

14.<br />

15.<br />

16.<br />

⎛7⎞ 7! 7⋅6⋅5⋅4⋅3⋅2⋅1 7⋅6<br />

⎜ ⎟= = = = 21<br />

⎝5⎠<br />

5!2! 5432<strong>12</strong>1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 21 ⋅<br />

⎛9⎞ 9! 9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 9⋅8<br />

⎜ ⎟= = = = 36<br />

⎝7⎠<br />

7!2! 765432<strong>12</strong>1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 21 ⋅<br />

⎛50⎞ 50! 50⋅<br />

49! 50<br />

⎜ ⎟= = = = 50<br />

⎝49⎠<br />

49!1! 49! ⋅1 1<br />

⎛100⎞ 100! 100⋅99⋅98! 100⋅99<br />

⎜ ⎟= = = = 4950<br />

⎝ 98 ⎠ 98!2! 98!21 ⋅ ⋅ 21 ⋅<br />

⎛1000⎞ 1000! 1<br />

⎜ ⎟ = = = 1<br />

⎝1000⎠<br />

1000!0! 1<br />

⎛1000⎞ 1000! 1<br />

⎜ ⎟ = = = 1<br />

⎝ 0 ⎠ 0!1000! 1<br />

⎛55⎞ 55!<br />

⎜ ⎟ = ≈ 1.8664 × 10<br />

⎝23⎠<br />

23!32!<br />

⎛60⎞ 60!<br />

⎜ ⎟ = ≈ 4.1918 × 10<br />

⎝20⎠<br />

20! 40!<br />

⎛47⎞ 47!<br />

⎜ ⎟ = ≈ 1.4834 × 10<br />

⎝25⎠<br />

25! 22!<br />

⎛37⎞ 37!<br />

⎜ ⎟ = ≈ 1.7673 × 10<br />

⎝19 ⎠ 19!18!<br />

15<br />

15<br />

13<br />

10<br />

_________________________________________________________________________________________________<br />

17.<br />

18.<br />

19.<br />

⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞<br />

( x + 1) = ⎜ ⎟x + ⎜ ⎟x + ⎜ ⎟x + ⎜ ⎟x + ⎜ ⎟x + ⎜ ⎟x<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠ ⎝5⎠<br />

5 5 4 3 2 1 0<br />

5 4 3 2<br />

= x + 5x + 10x + 10x + 5x+<br />

1<br />

⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞<br />

( x − 1) = ⎜ ⎟x + ⎜ ⎟( − 1) x + ⎜ ⎟( − 1) x + ⎜ ⎟( − 1) x + ⎜ ⎟( − 1) x + ⎜ ⎟( −1)<br />

x<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠ ⎝5⎠<br />

5 5 4 2 3 3 2 4 1 5 0<br />

5 4 3 2<br />

= x − 5x + 10x − 10x + 5x−1<br />

⎛6⎞ ⎛6⎞ ⎛6⎞ ⎛6⎞ ⎛6⎞ ⎛6⎞ ⎛6⎞<br />

( x− 2) = ⎜ ⎟x + ⎜ ⎟x ( − 2) + ⎜ ⎟x ( − 2) + ⎜ ⎟x ( − 2) + ⎜ ⎟x ( − 2) + ⎜ ⎟x( − 2) + ⎜ ⎟x<br />

( −2)<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠ ⎝5⎠ ⎝6⎠<br />

6 6 5 4 2 3 3 2 4 5 0 6<br />

6 5 4 3 2<br />

= x + 6 x ( − 2) + 15x ⋅ 4 + 20 x ( − 8) + 15x ⋅ 16 + 6 x⋅( − 32) + 64<br />

6 5 4 3 2<br />

= x − <strong>12</strong>x + 60x − 160x + 240x − 192x+<br />

64<br />

<strong>12</strong>69<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

20.<br />

21.<br />

⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞<br />

( x+ 3) = ⎜ ⎟x + ⎜ ⎟x (3) + ⎜ ⎟x (3) + ⎜ ⎟x (3) + ⎜ ⎟x (3) + ⎜ ⎟x<br />

(3)<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠ ⎝5⎠<br />

5 5 4 3 2 2 3 1 4 0 5<br />

5 4 3 2<br />

= x + 5 x (3) + 10x ⋅ 9 + 10 x (27) + 5x⋅ 81+<br />

243<br />

5 4 3 2<br />

= x + 15x + 90x + 270x + 405x+<br />

243<br />

4 ⎛4⎞ 4 ⎛4⎞ 3 ⎛4⎞ 2 ⎛4⎞ ⎛4⎞<br />

(3x+ 1) = ⎜ ⎟(3 x) + ⎜ ⎟(3 x) + ⎜ ⎟(3 x) + ⎜ ⎟(3 x)<br />

+ ⎜ ⎟<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠<br />

4 3 2 4 3 2<br />

= 81x + 4⋅ 27x + 6⋅ 9x + 4⋅ 3x+ 1 = 81x + 108x + 54x + <strong>12</strong>x+<br />

1<br />

22.<br />

⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞<br />

(2x+ 3) = ⎜ ⎟(2 x) + ⎜ ⎟(2 x) ⋅ 3 + ⎜ ⎟(2 x) ⋅ 3 + ⎜ ⎟(2 x) ⋅ 3 + ⎜ ⎟⋅2x⋅ 3 + ⎜ ⎟⋅3<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠ ⎝5⎠<br />

5 5 4 3 2 2 3 4 5<br />

5 4 3 2<br />

= 32x + 5⋅16x ⋅ 3 + 10⋅8x ⋅ 9 + 10⋅4x ⋅ 27 + 5⋅2x⋅ 81+<br />

243<br />

5 4 3 2<br />

= 32x + 240x + 720x + 1080x + 810x+<br />

243<br />

2 2 ⎛5⎞ 2 ⎛5⎞ 2 2 ⎛5⎞ 2 2 ⎛5⎞ 2 2 ⎛5⎞ 2 2 ⎛5⎞<br />

2<br />

23. ( x + y ) = ⎜ ⎟( x ) + ⎜ ⎟( x ) y + ⎜ ⎟( x ) ( y ) + ⎜ ⎟( x ) ( y ) + ⎜ ⎟x ( y ) + ⎜ ⎟( y )<br />

5 5 4 3 2 2 3 4 5<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠ ⎝5⎠<br />

10 8 2 6 4 4 6 2 8 10<br />

= x + 5x y + 10x y + 10x y + 5x y + y<br />

2 2 ⎛6⎞ 2 ⎛6⎞ 2 2 ⎛6⎞ 2 2 ⎛6⎞ 2 2 ⎛6⎞<br />

2 2<br />

24. ( x − y ) = ⎜ ⎟( x ) + ⎜ ⎟( x ) ( − y ) + ⎜ ⎟( x ) ( − y ) + ⎜ ⎟( x ) ( − y ) + ⎜ ⎟( x ) ( −y<br />

)<br />

6 6 5 4 2 3 3 2 4<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠<br />

⎛6⎞<br />

2 2<br />

5 ⎛6⎞<br />

2<br />

6<br />

+ ⎜ ⎟x ( − y ) + ⎜ ⎟( −y<br />

)<br />

⎝5⎠<br />

⎝6⎠<br />

<strong>12</strong> 10 2 8 4 6 6 4 8 2 10 <strong>12</strong><br />

= x − 6x y + 15x y − 20x y + 15x y − 6x y + y<br />

⎛6⎞ ⎛6⎞ ⎛6⎞ ⎛6⎞<br />

25. ( x + 2) = ⎜ ⎟( x) + ⎜ ⎟( x) ( 2) + ⎜ ⎟( x) ( 2) + ⎜ ⎟( x) ( 2)<br />

6 6 5 1 4 2 3 3<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠<br />

⎛6⎞ 2 4 ⎛6⎞ 5 ⎛6⎞<br />

6<br />

+ ⎜ ⎟( x) ( 2) + ⎜ ⎟( x)( 2) + ⎜ ⎟( 2)<br />

⎝4⎠ ⎝5⎠ ⎝6⎠<br />

3 5/2 2 3/2 1/2<br />

= x + 6 2x + 15⋅ 2x + 20⋅ 2 2x + 15⋅ 4x+ 6⋅ 4 2x<br />

+ 8<br />

3 5/2 2 3/2 1/2<br />

= x + 6 2x + 30x + 40 2x + 60x+ 24 2x<br />

+ 8<br />

⎛4⎞ ⎛4⎞ ⎛4⎞ ⎛4⎞ ⎛4⎞<br />

26. ( x − 3) = ⎜ ⎟( x) + ⎜ ⎟( x) ( − 3) + ⎜ ⎟( x) ( − 3) + ⎜ ⎟( x)( − 3) + ⎜ ⎟( − 3)<br />

4 4 3 1 2 2 3 4<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠<br />

2 3/2 1/2<br />

= x − 4 3x + 63 ⋅ x−43 ⋅ 3x<br />

+ 9<br />

2 3/2 1/2<br />

= x − 4 3x + 18x− <strong>12</strong> 3x<br />

+ 9<br />

⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞<br />

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠ ⎝5⎠<br />

5 5 4 3 2 2 3 4 5<br />

27. ( ax + by) = ( ax) + ( ax) ⋅ by + ( ax) ( by) + ( ax) ( by) + ax( by) + ( by)<br />

5 5 4 4 3 3 2 2 2 2 3 3 4 4 5 5<br />

= a x + 5a x by+ 10a x b y + 10a x b y + 5axb y + b y<br />

⎛4⎞ ⎛4⎞ ⎛4⎞ ⎛4⎞ ⎛4⎞<br />

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠<br />

4 4 3 2 2 3 4<br />

28. ( ax − by) = ( ax) + ( ax) ( − by)<br />

+ ( ax) ( − by) + ( ax)( − by) + ( −by)<br />

4 4 3 3 2 2 2 2 3 3 4 4<br />

= a x − 4a x by + 6a x b y − 4axb y + b y<br />

<strong>12</strong>70<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


Section <strong>12</strong>.5: The <strong>Binomial</strong> <strong>Theorem</strong><br />

29. n = 10, j = 4, x = x, a = 3<br />

⎛10⎞ 10! 10987 ⋅ ⋅ ⋅<br />

⎜ ⎟x ⋅ 3 = ⋅ 81x = ⋅81x<br />

⎝ 4 ⎠ 4!6! 4⋅3⋅2⋅1<br />

6<br />

= 17,010x<br />

6<br />

The coefficient of x is 17,010.<br />

6 4 6 6<br />

30. n= 10, j = 7, x = x, a = − 3<br />

⎛10⎞<br />

3 7 10!<br />

3<br />

⎜ ⎟x<br />

⋅− ( 3) = ⋅− ( 2187)<br />

x<br />

⎝ 7 ⎠ 7!3!<br />

10⋅9⋅8<br />

= ⋅( −2187)<br />

x<br />

321 ⋅ ⋅<br />

3<br />

=−262,440x<br />

3<br />

The coefficient of x is − 262,440.<br />

31. n = <strong>12</strong>, j = 5, x = 2 x, a = − 1<br />

⎛<strong>12</strong>⎞<br />

7 5 <strong>12</strong>! 7<br />

⎜ ⎟(2 x) ⋅− ( 1) = ⋅<strong>12</strong>8 x ( −1)<br />

⎝ 5 ⎠<br />

5!7!<br />

<strong>12</strong>⋅11⋅10⋅9⋅8 = ⋅ ( − <strong>12</strong>8) x<br />

54321 ⋅ ⋅ ⋅ ⋅<br />

7<br />

=−101,376x<br />

7<br />

The coefficient of x is − 101,376.<br />

32. n= <strong>12</strong>, j = 9, x = 2 x, a = 1<br />

⎛<strong>12</strong>⎞ <strong>12</strong>! <strong>12</strong>⋅11⋅10<br />

⎜ ⎟(2 x) ⋅ (1) = ⋅ 8 x (1) = ⋅8x<br />

⎝ 9 ⎠<br />

9!3! 3⋅2⋅1<br />

3<br />

= 1760x<br />

3<br />

The coefficient of x is 1760.<br />

3 9 3 3<br />

33. n= 9, j = 2, x = 2 x, a = 3<br />

⎛9⎞<br />

7 2 9! 7<br />

⎜ ⎟(2 x) ⋅ 3 = ⋅<strong>12</strong>8 x (9)<br />

⎝2⎠<br />

2!7!<br />

98 ⋅ <strong>12</strong>8<br />

7<br />

= ⋅ x ⋅ 9<br />

21 ⋅<br />

7<br />

= 41,472x<br />

7<br />

The coefficient of x is 41,472.<br />

34. n= 9, j = 7, x = 2 x, a = − 3<br />

⎛9⎞<br />

2 7 9! 2<br />

⎜ ⎟(2 x) ⋅− ( 3) = ⋅4 x ( −2187)<br />

⎝7⎠<br />

7!2!<br />

98 ⋅ 4<br />

2<br />

= ⋅ x ⋅− 2187<br />

21 ⋅<br />

2<br />

=−314,928x<br />

2<br />

The coefficient of x is − 314,928.<br />

3<br />

7<br />

35. n= 7, j = 4, x = x, a = 3<br />

⎛7⎞<br />

7! 7⋅6⋅5<br />

⎜ ⎟x ⋅ 3 = ⋅ 81x = ⋅ 81x = 2835x<br />

⎝4⎠<br />

4!3! 3⋅2⋅1<br />

3 4 3 3 3<br />

36. n= 7, j = 2, x = x, a = − 3<br />

⎛7⎞<br />

7! 7⋅6<br />

⎜ ⎟x ⋅− ( 3) = ⋅ 9x = ⋅ 9x = 189x<br />

⎝2⎠<br />

2!5! 2⋅1<br />

5 2 5 5 5<br />

37. n= 9, j = 2, x = 3 x, a =− 2<br />

⎛9⎞<br />

7 2 9!<br />

7<br />

⎜ ⎟(3 x) ⋅− ( 2) = ⋅2187x<br />

⋅4<br />

⎝2⎠<br />

2!7!<br />

98 ⋅<br />

= ⋅ 8748 x = 314,928 x<br />

21 ⋅<br />

38. n= 8, j = 5, x = 3 x, a = 2<br />

7 7<br />

⎛8⎞<br />

3 5 8! 3<br />

⎜ ⎟(3 x) ⋅ ( 2) = ⋅27x<br />

⋅32<br />

⎝5⎠<br />

5!3!<br />

876 ⋅ ⋅<br />

= ⋅ 864 x = 48,384 x<br />

321 ⋅ ⋅<br />

0<br />

39. The x term in<br />

∑<br />

<strong>12</strong> <strong>12</strong><br />

⎛<strong>12</strong>⎞ <strong>12</strong>−<br />

j ⎛1 ⎞ <strong>12</strong><br />

( )<br />

j ⎛ ⎞<br />

⎜ ⎟ x<br />

x<br />

j= 0<br />

j<br />

⎜ ⎟ = ∑ ⎜ ⎟<br />

⎝ ⎠ ⎝ x ⎠ j=<br />

0⎝ j ⎠<br />

occurs when:<br />

24 − 3 j = 0<br />

24 = 3 j<br />

j = 8<br />

3 3<br />

2 24−3j<br />

⎛<strong>12</strong>⎞ <strong>12</strong>! <strong>12</strong>⋅11⋅10 ⋅9<br />

The coefficient is ⎜ 495<br />

8 ⎟ = = =<br />

⎝ ⎠ 8!4! 4321 ⋅ ⋅ ⋅<br />

0<br />

40. The x term in<br />

∑<br />

9 j 9<br />

⎛9⎞ − ⎛ 1 ⎞ ⎛9⎞<br />

⎜ ⎟ x<br />

1<br />

2<br />

j= 0<br />

j<br />

⎜− ⎟ = ∑ ⎜ ⎟ −<br />

⎝ ⎠ ⎝ x ⎠ j=<br />

0⎝ j⎠<br />

occurs when:<br />

9− 3j<br />

= 0<br />

9=<br />

3j<br />

j = 3<br />

The coefficient is<br />

⎛9⎞<br />

( ) 3 9! 9⋅8⋅7<br />

⎜ ⎟ − 1 =− =− =−84<br />

⎝3⎠<br />

3!6! 3⋅2⋅1<br />

( ) ( )<br />

9 j j 9−3j<br />

x<br />

<strong>12</strong>71<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

4<br />

2<br />

41. The x term in<br />

42. The x term in<br />

10 j<br />

∑ 10 3<br />

⎛10⎞ 10−<br />

j ⎛ − 2 ⎞ ⎛10⎞<br />

j 10−<br />

j<br />

( x) ( 2)<br />

x 2<br />

⎜ ⎟ ⎜ ⎟ = ∑<br />

8 j<br />

⎜ ⎟ −<br />

∑ ⎛8⎞ 8−<br />

j ⎛ 3 ⎞<br />

( ) 8 ⎛8⎞<br />

j 4−<br />

j<br />

⎜ ⎟ x ⎜ ⎟ = ∑ ⎜ ⎟( 3)<br />

x<br />

j= 0⎝ j ⎠ ⎝ x ⎠ j=<br />

0⎝ j ⎠<br />

j= 0⎝ j⎠ ⎝ x ⎠ j=<br />

0⎝ j⎠<br />

occurs when:<br />

occurs when:<br />

3<br />

4− j = 2<br />

10 − j = 4<br />

2<br />

− j =−2<br />

3<br />

− j =−6<br />

j = 2<br />

2<br />

The coefficient is<br />

j = 4<br />

⎛8⎞<br />

The coefficient is<br />

( ) 2 8! 8⋅7<br />

⎜ ⎟ 3 = ⋅ 9= ⋅ 9=<br />

252<br />

⎝2⎠<br />

6!2! 2⋅1<br />

⎛10⎞ ( ) 4 10! 10987 ⋅ ⋅ ⋅<br />

⎜ ⎟ − 2 = ⋅ 16 = ⋅ 16 = 3360<br />

⎝ 4 ⎠ 6!4! 4⋅3⋅2⋅1<br />

_________________________________________________________________________________________________<br />

5 −3 ⎛5⎞ 5 ⎛5⎞ 4 −3 ⎛5⎞ 3 −3 ⎛5⎞<br />

2 −3<br />

43. (1.001) ( 1 10 ) ⎜ ⎟1 ⎜ ⎟1 10 ⎜ ⎟1 ( 10 ) ⎜ ⎟1 ( 10 )<br />

5 2 3<br />

= + = + ⋅ + ⋅ + ⋅ +⋅⋅⋅<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠<br />

= 1+ 5(0.001) + 10(0.000001) + 10(0.000000001) +⋅⋅⋅<br />

= 1+ 0.005 + 0.000010 + 0.000000010 +⋅⋅⋅<br />

= 1.00501 (correct to 5 decimal places)<br />

6 ⎛6⎞ ⎛6⎞ ⎛6⎞ 2 ⎛6⎞<br />

3<br />

= − = ⎜ ⎟ + ⎜ ⎟ ⋅ − + ⎜ ⎟ ⋅ − + ⎜ ⎟⋅ ⋅ − +⋅⋅⋅<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠<br />

= 1+ 6( − 0.002) + 15( 0.000004) + 20( − 0.000000008 ) + ...<br />

= 1− 0.0<strong>12</strong> + 0.00006 −0.00000016<br />

= 0.98806 (correct to 5 decimal places)<br />

6 6 5 4 3<br />

44. (0.998) ( 1 0.002) 1 1 ( 0.002) 1 ( 0.002) 1 ( 0.002)<br />

45.<br />

( − )<br />

( )<br />

⎛ n ⎞ n! n!<br />

n n 1!<br />

⎜ ⎟ = = = = n ;<br />

⎝n −1⎠<br />

( n−1!( ) n−( n−1)! ) ( n−1!(1)! ) n−1!<br />

⎛n⎞ n! n! n! n!<br />

⎜ ⎟ = = = = = 1<br />

⎝n⎠<br />

n!( n−n)! n! 0! n! ⋅1 n!<br />

46.<br />

⎛ n ⎞ n! n! n!<br />

⎛n⎞<br />

⎜ ⎟= = = = ⎜ ⎟<br />

⎝n− j⎠ ( n− j)!( n−( n− j))! ( n− j)<br />

! j! j!( n−<br />

j)!<br />

⎝ j⎠<br />

⎛n⎞ ⎛n⎞ ⎛n⎞<br />

n<br />

47. Show that ⎜ ⎟+ ⎜ ⎟+⋅⋅⋅+ ⎜ ⎟=<br />

2<br />

⎝0⎠ ⎝1⎠ ⎝n⎠<br />

n n ⎛n⎞ n ⎛n⎞ n−1 ⎛n⎞ n−2 2 ⎛n⎞ n−n n ⎛n⎞ ⎛n⎞ ⎛n⎞<br />

2 = (1+ 1) = ⎜ ⎟⋅ 1 + ⎜ ⎟⋅1 ⋅ 1+ ⎜ ⎟⋅1 ⋅ 1 +⋅⋅⋅+ ⎜ ⎟⋅1 ⋅ 1 = ⎜ ⎟+ ⎜ ⎟+⋅⋅⋅+<br />

⎜ ⎟<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝n⎠ ⎝0⎠ ⎝1⎠ ⎝n⎠<br />

⎛n⎞ ⎛n⎞ ⎛n⎞ n ⎛n⎞<br />

48. Show that ⎜ ⎟− ⎜ ⎟+ ⎜ ⎟−⋅⋅⋅+ ( − 1) ⎜ ⎟=<br />

0<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝n⎠<br />

n ⎛n⎞ n ⎛n⎞ n−1 ⎛n⎞ n−2 2 ⎛n⎞ n−n n ⎛n⎞ ⎛n⎞ ⎛n⎞ n⎛n⎞<br />

0 = (1 − 1) = ⎜ ⎟⋅ 1 + ⎜ ⎟⋅1 ⋅− ( 1) + ⎜ ⎟⋅1 ⋅− ( 1) +⋅⋅⋅+ ⎜ ⎟⋅1 ⋅− ( 1) = ⎜ ⎟− ⎜ ⎟+ ⎜ ⎟−⋅⋅⋅+−<br />

( 1) ⎜ ⎟<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝n⎠ ⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝n⎠<br />

49.<br />

5 4 3 2 2 3 4 5 5<br />

⎛5⎞⎛1⎞ ⎛5⎞⎛1⎞ ⎛3⎞ ⎛5⎞⎛1⎞ ⎛3⎞ ⎛5⎞⎛1⎞ ⎛3⎞ ⎛5⎞⎛1⎞⎛3⎞ ⎛5⎞⎛3⎞ ⎛1 3⎞<br />

5<br />

⎜ ⎟ (1) 1<br />

0<br />

⎜ ⎟ + ⎜ ⎟<br />

4 1<br />

⎜ ⎟ ⎜ ⎟+ ⎜ ⎟ + + + = + = =<br />

4 4 2<br />

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟<br />

4 4 3<br />

⎜ ⎟ ⎜ ⎟<br />

4 4 4<br />

⎜ ⎟⎜ ⎟<br />

4 4 5<br />

⎜ ⎟ ⎜ ⎟<br />

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝4⎠<br />

⎝4 4⎠<br />

<strong>12</strong>72<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong> Review Exercises<br />

50.<br />

8<br />

<strong>12</strong>! = 479,001,600 = 4.790016×<br />

10<br />

18<br />

20! ≈ 2.432902008×<br />

10<br />

25<br />

25! ≈ 1.551<strong>12</strong>1004×<br />

10<br />

⎛<strong>12</strong> ⎞ ⎛ 1 ⎞<br />

<strong>12</strong>! ≈ 2⋅<strong>12</strong>π ⎜ ⎟ ⎜1+<br />

⎟<br />

⎝ e ⎠ ⎝ <strong>12</strong> ⋅ <strong>12</strong> − 1 ⎠<br />

≈ 479,013,972.4<br />

⎛20 ⎞ ⎛ 1 ⎞<br />

20! ≈ 2⋅20π ⎜ ⎟ ⎜1+<br />

⎟<br />

⎝ e ⎠ ⎝ <strong>12</strong> ⋅ 20 − 1 ⎠<br />

18<br />

≈ 2.43292403×<br />

10<br />

⎛25 ⎞ ⎛ 1 ⎞<br />

25! ≈ 2⋅25π ⎜ ⎟ ⎜1+<br />

⎟<br />

⎝ e ⎠ ⎝ <strong>12</strong> ⋅ 25 − 1 ⎠<br />

25<br />

≈ 1.551<strong>12</strong>9917×<br />

10<br />

<strong>Chapter</strong> <strong>12</strong> Review Exercises<br />

1.<br />

2.<br />

3.<br />

4.<br />

<strong>12</strong><br />

20<br />

25<br />

11+ 3 4 2 2+<br />

3 5<br />

a1 = ( − 1) =− , a2<br />

= ( − 1) = ,<br />

1+ 2 3 2+<br />

2 4<br />

3 3+ 3 6 4 4+<br />

3 7<br />

a3 = ( − 1) =− , a4<br />

= ( − 1) = ,<br />

3+ 2 5 4+<br />

2 6<br />

5 5+<br />

3 8<br />

a5<br />

= ( − 1) =− 5 + 2 7<br />

11 +<br />

b1<br />

= ( −1) (2 ⋅ 1+ 3) = 5,<br />

2+<br />

1<br />

b2<br />

= ( −1) (2⋅ 2+ 3) =−7,<br />

3+<br />

1<br />

b3<br />

= ( −1) (2⋅ 3+ 3) = 9,<br />

4+<br />

1<br />

b4<br />

= ( −1) (2⋅ 4+ 3) =−11,<br />

5+<br />

1<br />

b = ( −1) (2⋅ 5+ 3) = 13<br />

5<br />

1 2 3<br />

1 2 2 2 3 2<br />

2 2 2 4 2 8<br />

c = = = 2, c = = = 1, c = = ,<br />

1 1 2 4 3 9<br />

4 5<br />

2 16 2 32<br />

c4 = = = 1, c<br />

2 5 = =<br />

2<br />

4 16 5 25<br />

1 2 3 4 5<br />

1 = e = , 2 = e , 3 = e , e 4 = ,<br />

e<br />

5 =<br />

d e d d d d<br />

1 2 3 4 5<br />

2 2 4<br />

a = 3, a = ⋅ 3 = 2, a = ⋅ 2 = ,<br />

3 3 3<br />

2 4 8 2 8 16<br />

a4 = ⋅ = , a5<br />

= ⋅ =<br />

3 3 9 3 9 27<br />

5. 1 2 3<br />

1 1 1<br />

= 4, =− ⋅ 4 =− 1, =− ⋅− 1 = ,<br />

4 4 4<br />

1 1 1 1 1 1<br />

a4 =− ⋅ =− , a5<br />

=− ⋅− =<br />

4 4 16 4 16 64<br />

6. a1 a2 a3<br />

a = 2, a = 2 − 2 = 0, a = 2 − 0 = 2,<br />

7. 1 2 3<br />

a<br />

= 2− 2= 0, a = 2− 0=<br />

2<br />

4 5<br />

8. a1 a2 a3<br />

9.<br />

a<br />

= − 3, = 4 + ( − 3) = 1, = 4 + 1 = 5,<br />

= 4+ 5= 9, a = 4+ 9=<br />

13<br />

4 5<br />

4<br />

∑<br />

k = 1<br />

(4k<br />

+ 2)<br />

( 4 1 2) ( 4 2 2) ( 4 3 2) ( 4 4 2)<br />

( 6) ( 10) ( 14) ( 18)<br />

= ⋅ + + ⋅ + + ⋅ + + ⋅ +<br />

= + + +<br />

= 48<br />

3<br />

2 2 2 2<br />

10. ∑ (3 − k ) = ( 3 − 1 ) + ( 3 − 2 ) + ( 3 −3<br />

)<br />

k = 1<br />

( 2) ( 1) ( 6)<br />

= + − + −<br />

=−5<br />

1 1 1 1 k + 1 ⎛1⎞<br />

− + − +⋅⋅⋅+ = − ⎜ ⎟<br />

2 3 4 13<br />

⎝k<br />

⎠<br />

11. 1 ∑ ( 1)<br />

13<br />

k = 1<br />

2 3 4 n+ 1 n 1<br />

2 2 2 2 ⎛<br />

k+<br />

2 ⎞<br />

<strong>12</strong>. 2 + + + +⋅⋅⋅+ =<br />

2 3<br />

n ∑<br />

k<br />

3 3 3 3 ⎜<br />

k = 0 3 ⎟<br />

⎝ ⎠<br />

n+<br />

1⎛<br />

k<br />

2 ⎞<br />

= ∑<br />

⎜ k −1<br />

k = 1 3 ⎟<br />

⎝ ⎠<br />

13. { a } { n 5}<br />

n<br />

= + Arithmetic<br />

d = ( n+ 1+ 5) − ( n+ 5) = n+ 6−n− 5=<br />

1<br />

n<br />

n<br />

Sn<br />

= [ 6+ n+ 5 ] = ( n+<br />

11)<br />

2 2<br />

14. { b } { 4n<br />

3}<br />

n<br />

= + Arithmetic<br />

d = (4( n+ 1) + 3) − (4n+<br />

3)<br />

= 4n+ 4+ 3−4n− 3=<br />

4<br />

n<br />

Sn<br />

= + +<br />

2<br />

n<br />

= (4n<br />

+ 10)<br />

2<br />

= n +<br />

[ 7 4n<br />

3]<br />

( 2n<br />

5)<br />

<strong>12</strong>73<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

3<br />

15. { cn} { 2n<br />

}<br />

= Examine <strong>the</strong> terms of <strong>the</strong><br />

sequence: 2, 16, 54, <strong>12</strong>8, 250, ...<br />

There is no common difference; <strong>the</strong>re is no<br />

common ratio; nei<strong>the</strong>r.<br />

2<br />

16. { dn} { 2n<br />

1}<br />

= − Examine <strong>the</strong> terms of <strong>the</strong><br />

sequence: 1, 7, 17, 31, 49, ...<br />

There is no common difference; <strong>the</strong>re is no<br />

common ratio; nei<strong>the</strong>r.<br />

3<br />

17. { } { 2 n<br />

n }<br />

s = Geometric<br />

3( n+ 1) 3n+<br />

3<br />

2 2 3n+ 3−3n<br />

3<br />

r = = = 2 = 2 = 8<br />

3n<br />

3n<br />

2 2<br />

⎛<br />

n<br />

n<br />

1−8 ⎞ ⎛1−8 ⎞ 8 n<br />

S n = 8 ⎜ = 8 = 8 −1<br />

1 8 ⎟ ⎜ 7 ⎟<br />

⎝ − ⎠ ⎝ − ⎠ 7<br />

2<br />

18. { } { 3 n<br />

n }<br />

u = Geometric<br />

2( n+ 1) 2n+<br />

2<br />

( )<br />

3 3 2n+ 2−2n<br />

2<br />

r = = = 3 = 3 = 9<br />

2n<br />

2n<br />

3 3<br />

⎛<br />

n<br />

n<br />

1−9 ⎞ ⎛1−9 ⎞ 9 n<br />

S n = 9 ⎜ = 9 = 9 −1<br />

1 9 ⎟ ⎜ 8 ⎟<br />

⎝ − ⎠ ⎝ − ⎠ 8<br />

( )<br />

19. 0, 4, 8, <strong>12</strong>, ... Arithmetic d = 4− 0=<br />

4<br />

n<br />

n<br />

Sn<br />

= ( 2(0) + ( n− 1)4 ) = ( 4( n− 1) ) = 2 n( n−<br />

1)<br />

2 2<br />

20. 1, –3, –7, –11, ... Arithmetic<br />

d =−3− 1=−<br />

4<br />

21.<br />

n<br />

n<br />

Sn<br />

= + n− − =<br />

2 2<br />

− n+<br />

n<br />

= (6 − 4 n) = n( 3−2n)<br />

2<br />

( 2(1) ( 1)( 4) ) ( 2 4 4)<br />

3 3 3 3<br />

3, , , , , ...<br />

2 4 8 16<br />

⎛3<br />

⎞<br />

⎜ ⎟<br />

2 3 1 1<br />

r =<br />

⎝ ⎠<br />

= ⋅ =<br />

3 2 3 2<br />

S n<br />

Geometric<br />

⎛<br />

n<br />

n<br />

⎛1⎞ ⎞ ⎛ ⎛1⎞<br />

⎞<br />

⎜1−⎜ ⎟ ⎟ ⎜1−⎜ ⎟ ⎟<br />

n<br />

2 2 ⎛ ⎛1<br />

⎞ ⎞<br />

= 3⎜ ⎝ ⎠ ⎟= 3⎜ ⎝ ⎠ ⎟= 6 1−<br />

⎜ 1 ⎟ ⎜ 1<br />

⎜ ⎟<br />

1<br />

⎛ ⎞ ⎟ ⎜ ⎝2<br />

⎠ ⎟<br />

−<br />

⎝ ⎠<br />

⎜ 2 ⎟ ⎜ ⎜ ⎟<br />

⎝ 2 ⎠ ⎟<br />

⎝ ⎠ ⎝ ⎠<br />

22.<br />

5 5 5 5<br />

5, − , , − , , ... Geometric<br />

3 9 27 81<br />

⎛ 5 ⎞<br />

⎜−<br />

⎟<br />

3 5 1 1<br />

r =<br />

⎝ ⎠<br />

=− ⋅ =−<br />

5 3 5 3<br />

S<br />

n<br />

⎛<br />

n<br />

n<br />

⎛ 1⎞ ⎞ ⎛ ⎛ 1⎞<br />

⎞<br />

⎜1−⎜−<br />

⎟ ⎟ ⎜1−⎜−<br />

⎟ ⎟<br />

3 3<br />

= 5⎜ ⎝ ⎠ ⎟=<br />

5⎜ ⎝ ⎠ ⎟<br />

⎜ ⎛ 1⎞ ⎟ ⎜ ⎛4⎞<br />

⎟<br />

1− −<br />

⎜ ⎜ ⎟ 3 ⎟ ⎜ ⎜ ⎟<br />

3 ⎟<br />

⎝ ⎝ ⎠ ⎠ ⎝ ⎝ ⎠ ⎠<br />

n<br />

15 ⎛ ⎛ 1 ⎞ ⎞<br />

= 1− −<br />

4 ⎜ ⎜ ⎟<br />

⎝ 3⎠<br />

⎟<br />

⎝ ⎠<br />

23. Nei<strong>the</strong>r. There is no common difference or<br />

common ratio.<br />

24.<br />

25.<br />

26.<br />

27.<br />

28.<br />

3 5 7 9 11<br />

, , , , , Nei<strong>the</strong>r. There is no<br />

2 4 6 8 10<br />

common difference or common ratio.<br />

50 50<br />

k= 1 k=<br />

1<br />

( + )<br />

⎛50 50 1 ⎞<br />

3k<br />

= 3 k = 3⎜<br />

⎟=<br />

3825<br />

⎝ 2 ⎠<br />

∑ ∑<br />

30<br />

∑<br />

k = 1<br />

k<br />

2<br />

( + )( ⋅ + )<br />

30 30 1 2 30 1<br />

= = 9455<br />

6<br />

30 30 30 30 30<br />

∑ ∑ ∑ ∑ ∑<br />

(3k − 9) = 3k− 9 = 3 k−<br />

9<br />

k= 1 k= 1 k= 1 k= 1 k=<br />

1<br />

⎛30(30 + 1) ⎞<br />

= 3⎜<br />

⎟−30(9)<br />

⎝ 2 ⎠<br />

= 1395 − 270 = 1<strong>12</strong>5<br />

40 40 40<br />

∑ ∑ ∑<br />

( − 2k<br />

+ 8) = − 2k+<br />

8<br />

k= 1 k= 1 k=<br />

1<br />

40 40<br />

∑<br />

∑<br />

=− 2 k + 8<br />

k= 1 k=<br />

1<br />

⎛40(1 + 40) ⎞<br />

=− 2⎜<br />

⎟+<br />

40(8)<br />

⎝ 2 ⎠<br />

=− 1640 + 320 =−1320<br />

<strong>12</strong>74<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong> Review Exercises<br />

29.<br />

7<br />

∑<br />

k = 1<br />

10<br />

30. ∑ ( )<br />

k = 1<br />

⎛<br />

7<br />

⎞ ⎛<br />

7<br />

⎞<br />

⎛1⎞ ⎛1⎞<br />

k ⎜1−<br />

1<br />

1 1<br />

⎜ ⎟ ⎟ ⎜ −<br />

3 1<br />

⎜ ⎟ ⎟<br />

⎛ ⎞ ⎜ ⎝ ⎠ ⎟ ⎜ ⎝3⎠<br />

⎟<br />

⎜ ⎟ = =<br />

⎝3⎠ 3⎜ 1 ⎟ 3⎜ 2 ⎟<br />

1−<br />

⎛ ⎞<br />

⎜ 3 ⎟ ⎜ ⎜ ⎟<br />

3 ⎟<br />

⎝ ⎠ ⎝ ⎝ ⎠ ⎠<br />

1⎛<br />

1 ⎞<br />

= ⎜1−<br />

⎟<br />

2 ⎝ 2187 ⎠<br />

1 2186 1093<br />

= ⋅ = ≈0.49977<br />

2 2187 2187<br />

( )<br />

⎛<br />

10<br />

k 1− −2 ⎞<br />

⎛1−1024<br />

⎞<br />

− 2 = − 2⎜<br />

⎟=−2<br />

⎜<br />

⎜ ⎟<br />

1 −( −2) ⎟ 3<br />

⎝ ⎠<br />

⎝ ⎠<br />

2<br />

=− ( − 1023)<br />

= 682<br />

3<br />

31. Arithmetic<br />

a = 3, d = 4, a = a + ( n−<br />

1) d<br />

1 n 1<br />

a 9 = 3 + (9 − 1)4 = 3+ 8(4) = 3+ 32 = 35<br />

32. Arithmetic<br />

a = 1, d = − 2, a = a + ( n−1)<br />

d<br />

1 n 1<br />

a 8 = 1 + (8−1)( − 2) = 1+ 7( − 2) = 1− 14 = −13<br />

33. Geometric<br />

1<br />

n 1<br />

a1 = 1, r = , n = 11; an<br />

= a1r −<br />

10<br />

a<br />

11<br />

11−1 10<br />

⎛ 1 ⎞ ⎛ 1 ⎞<br />

= 1⋅ ⎜ ⎟ = ⎜ ⎟<br />

⎝ 10 ⎠ ⎝ 10 ⎠<br />

1<br />

=<br />

10,000,000,000<br />

34. Geometric<br />

n<br />

a = 1, r = 2, n= 11; a = a r −<br />

1 n 1<br />

11−1 10<br />

( ) ( )<br />

a 11 = 1⋅ 2 = 2 = 1024<br />

35. Arithmetic<br />

a = 2, d = 2, n = 9, a = a + ( n−<br />

1) d<br />

1 n 1<br />

a 9 = 2 + (9− 1) 2 = 2+<br />

8 2<br />

= 9 2 ≈<strong>12</strong>.7279<br />

36. Geometric<br />

n<br />

a = 2, r = 2, n= 9, a = a r −<br />

1 n 1<br />

−<br />

( ) ( )<br />

9 1 8<br />

a9 = 2 2 = 2 2 = 2⋅16<br />

= 16 2 ≈ 22.6274<br />

1<br />

1<br />

37. 7 1 20 1<br />

a = a + 6d = 31 a = a + 19d<br />

= 96;<br />

Solve <strong>the</strong> system of equations:<br />

a + 6d<br />

= 31<br />

1<br />

a1<br />

+ 19d<br />

= 96<br />

Subtract <strong>the</strong> second equation from <strong>the</strong> first<br />

equation and solve for d.<br />

− 13d<br />

=−65<br />

d = 5<br />

a 1 = 31− 6(5) = 31− 30 = 1<br />

a = a + n−<br />

d<br />

n<br />

( )<br />

( n )( )<br />

1 1<br />

= 1+ −1 5<br />

= 1+ 5n<br />

−5<br />

= 5n<br />

−4<br />

General formula: { a } = { 5n−<br />

4}<br />

38. 8 1 17 1<br />

n<br />

a = a + 7d =− 20 a = a + 16d<br />

= − 47;<br />

Solve <strong>the</strong> system of equations:<br />

a + 7d<br />

=−20<br />

1<br />

a1<br />

+ 16d<br />

=−47<br />

Subtract <strong>the</strong> second equation from <strong>the</strong> first<br />

equation and solve for d.<br />

− 9d<br />

= 27<br />

d = −3<br />

a 1 = −20 −7( − 3) = − 20 + 21 = 1<br />

a = a + n−<br />

d<br />

n<br />

( )<br />

( n )( )<br />

1 1<br />

= 1+ −1 −3<br />

= 1− 3n<br />

+ 3<br />

=− 3n<br />

+ 4<br />

General formula: { a } = { − 3n+<br />

4}<br />

39. 10 1 18 1<br />

a = a + 9d = 0 a = a + 17d<br />

= 8;<br />

Solve <strong>the</strong> system of equations:<br />

a + 9d<br />

= 0<br />

1<br />

a1<br />

+ 17d<br />

= 8<br />

Subtract <strong>the</strong> second equation from <strong>the</strong> first<br />

equation and solve for d.<br />

− 8d<br />

=−8<br />

d = 1<br />

a 1 = − 9(1) = − 9<br />

a = a + n−<br />

d<br />

n<br />

( )<br />

( n )( )<br />

1 1<br />

=− 9+ −1 1<br />

=− 9+ n −1<br />

= n −10<br />

General formula: { a } = { n−<br />

10}<br />

n<br />

n<br />

<strong>12</strong>75<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

40. <strong>12</strong> 1 22 1<br />

a = a + 11d = 30 a = a + 21d<br />

= 50 ;<br />

Solve <strong>the</strong> system of equations:<br />

a1<br />

+ 11d<br />

= 30<br />

a1<br />

+ 21d<br />

= 50<br />

Subtract <strong>the</strong> second equation from <strong>the</strong> first<br />

equation and solve for d.<br />

− 10d<br />

= −20<br />

d = 2<br />

a 1 = 30 − 11(2) = 30 − 22 = 8<br />

an<br />

= a1 + ( n−1)<br />

d<br />

= 8+ ( n −1)( 2)<br />

= 8+ 2n<br />

−2<br />

= 2n<br />

+ 6<br />

a = 2n+<br />

6<br />

General formula: { } { }<br />

1<br />

41. a1<br />

= 3, r =<br />

3<br />

Since r < 1, <strong>the</strong> series converges.<br />

a1<br />

3 3 9<br />

Sn<br />

= = = =<br />

1− r ⎛ 1⎞ ⎛2⎞<br />

2<br />

⎜1−<br />

⎟ ⎜ ⎟<br />

⎝ 3 ⎠ ⎝ 3 ⎠<br />

1<br />

42. a1<br />

= 2, r =<br />

2<br />

Since r < 1, <strong>the</strong> series converges.<br />

a1<br />

2 2<br />

Sn<br />

= = = = 4<br />

1− r ⎛ 1⎞ ⎛1⎞<br />

⎜1−<br />

⎟ ⎜ ⎟<br />

⎝ 2 ⎠ ⎝ 2 ⎠<br />

1<br />

43. a1<br />

= 2, r = −<br />

2<br />

Since r < 1, <strong>the</strong> series converges.<br />

S<br />

n<br />

a1 2 2 4<br />

= = = =<br />

1− r ⎛ ⎛ 1 ⎞⎞ ⎛3<br />

⎞ 3<br />

⎜1−⎜− ⎟ ⎜ ⎟<br />

2<br />

⎟<br />

⎝ ⎝ ⎠⎠<br />

⎝2<br />

⎠<br />

2<br />

44. a1<br />

= 6, r = −<br />

3<br />

Since r < 1, <strong>the</strong> series converges.<br />

S<br />

n<br />

a1 6 6 18<br />

= = = =<br />

1− r ⎛ ⎛ 2 ⎞⎞ ⎛5<br />

⎞ 5<br />

⎜1−⎜− ⎟ ⎜ ⎟<br />

3<br />

⎟<br />

⎝ ⎝ ⎠⎠<br />

⎝3<br />

⎠<br />

n<br />

1 3<br />

45. a<br />

1<br />

= , r =<br />

2 2<br />

Since r > 1, <strong>the</strong> series diverges.<br />

5<br />

46. a 1 = 5 , r = −<br />

4<br />

Since r > 1, <strong>the</strong> series diverges.<br />

1<br />

47. a1<br />

= 4, r =<br />

2<br />

Since r < 1, <strong>the</strong> series converges.<br />

S<br />

n<br />

a1 4 4<br />

= = = = 8<br />

1− r ⎛ 1⎞ ⎛1⎞<br />

⎜1−<br />

⎟ ⎜ ⎟<br />

⎝ 2 ⎠ ⎝ 2 ⎠<br />

3<br />

48. a1<br />

= 3, r = −<br />

4<br />

Since r < 1, <strong>the</strong> series converges.<br />

S<br />

49. I:<br />

50. I:<br />

n<br />

a1 3 3 <strong>12</strong><br />

= = = =<br />

1− r ⎛ ⎛ 3 ⎞⎞ ⎛7<br />

⎞ 7<br />

⎜1−⎜− ⎟ ⎜ ⎟<br />

4<br />

⎟<br />

⎝ ⎝ ⎠⎠<br />

⎝4<br />

⎠<br />

31 ⋅<br />

n = 1: 3⋅ 1= 3and (1+ 1) = 3<br />

2<br />

3k<br />

II: If 3+ 6+ 9+ + 3 k = ( k+<br />

1) , <strong>the</strong>n<br />

2<br />

3+ 6+ 9+ + 3k+ 3( k+<br />

1)<br />

= [ 3+ 6+ 9+ + 3k]<br />

+ 3( k+<br />

1)<br />

3 k<br />

= ( k + 1) + 3( k + 1)<br />

2<br />

⎛3k<br />

⎞ 3( k + 1)<br />

= ( k + 1) ⎜ + 3 ⎟= [( k+ 1) + 1]<br />

⎝ 2 ⎠ 2<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

2<br />

n = 1: 4⋅1− 2 = 2 and 2(1) = 2<br />

II: If 2+ 6+ 10 + + (4k− 2) = 2k<br />

, <strong>the</strong>n<br />

2 + 6 + 10 + + (4k− 2) + [4( k+ 1) −2]<br />

= 2 + 6 + 10 + + (4k− 2) + 4k+<br />

2<br />

[ ]<br />

2 2<br />

( ) ( ) 2<br />

= 2k + 4k+ 2= 2 k + 2k+ 1 = 2 k+<br />

1<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

2<br />

<strong>12</strong>76<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong> Review Exercises<br />

51. I:<br />

11 −<br />

1<br />

n = 1: 2⋅ 3 = 2 and 3 − 1=<br />

2<br />

k−1<br />

II: If 2+ 6+ 18+ + 2⋅ 3 = 3 −1, <strong>the</strong>n<br />

k−<br />

1 k+ 1−1<br />

2+ 6+ 18+ + 2⋅ 3 + 2⋅3<br />

k−1<br />

k<br />

= ⎡2 6 18 23 ⎤<br />

⎣<br />

+ + + + ⋅<br />

⎦<br />

+ 23 ⋅<br />

k k k k+<br />

1<br />

= 3 − 1+ 2⋅ 3 = 3⋅3 − 1= 3 −1<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

11 −<br />

1<br />

52. I: n = 1: 3⋅ 2 = 3and 3( 2 − 1)<br />

= 3<br />

k−1<br />

k<br />

II: If 3+ 6+ <strong>12</strong>+ + 3⋅ 2 = 3( 2 −1)<br />

k<br />

k−<br />

1 k+ 1−1<br />

3+ 6+ <strong>12</strong>+ + 32 ⋅ + 32 ⋅<br />

k−1<br />

= ⎡3 6 <strong>12</strong> 32 ⎤<br />

⎣<br />

+ + + + ⋅<br />

⎦<br />

+ 32 ⋅<br />

= 32 − 1+ 32 ⋅<br />

, <strong>the</strong>n<br />

k<br />

k<br />

( )<br />

k k k k+<br />

1<br />

( ) ( ) ( )<br />

= 3⋅ 2 − 1+ 2 = 3 2⋅2 − 1 = 3 2 −1<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

k<br />

54. I:<br />

1 3 2 2<br />

= ⋅ ⎡6k 6k 9k 9k 2k<br />

2⎤<br />

2 ⎣<br />

+ + + + +<br />

⎦<br />

1 2<br />

= ⋅ ⎡6k ( k+ 1) + 9k( k+ 1) + 2( k+<br />

1)<br />

⎤<br />

2 ⎣<br />

⎦<br />

1 ( 1) 6 2<br />

k ⎡ k <strong>12</strong> k 6 3 k 3 1<br />

= ⋅ + + + − − − ⎤<br />

2 ⎣<br />

⎦<br />

1 2<br />

= ⋅ ( k+ 1) ⎡ 6( k 2 k 1) 3( k 1) 1 ⎤<br />

2 ⎣<br />

+ + − + −<br />

⎦<br />

1 ( 1) 6( 1) 2<br />

= ⋅ k+ ⎡ k+ − 3( k+ 1) − 1 ⎤<br />

2 ⎣<br />

⎦<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

1<br />

n = 1: 1(1 + 2) = 3and ⋅ (1+ 1)(2⋅ 1+ 7) = 3<br />

6<br />

II: If<br />

k<br />

13 ⋅ + 24 ⋅ + + kk ( + 2) = ( k+ 1)(2k+<br />

7) ,<br />

6<br />

<strong>the</strong>n<br />

13 ⋅ + 24 ⋅ + + kk ( + 2) + ( k+ 1)( k+ 1+<br />

2)<br />

= 13 ⋅ + 24 ⋅ + + kk ( + 2) + ( k+ 1)( k+<br />

3)<br />

[ ]<br />

53. I: n = 1:<br />

k<br />

= ( k + 1)(2 k + 7) + ( k + 1)( k + 3)<br />

2 1<br />

6<br />

2<br />

(3⋅1− 2) = 1 and ⋅1(6 ⋅1 −3⋅1− 1) = 1<br />

( k + 1)<br />

2<br />

2<br />

= ( 2 k + 7 k+ 6 k+<br />

18 )<br />

6<br />

II: If<br />

( k + 1) 2<br />

2 2 2 1 2<br />

=<br />

1 + 4 + + (3k− 2) = ⋅k( 6k −3k−1)<br />

,<br />

( 2 k + 13 k+<br />

18 )<br />

6<br />

2<br />

<strong>the</strong>n<br />

( k + 1)<br />

= [( k + 1) + 1][2( k+ 1) + 7]<br />

2 2 2 2<br />

2<br />

1 + 4 + 7 + + (3k− 2) + ( 3( k+ 1) −2<br />

6<br />

)<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

⎡<br />

2 2 2 2 2<br />

= 1 + 4 + 7 + + (3k− 2) ⎤<br />

⎣<br />

<br />

⎦<br />

+ (3k+<br />

1)<br />

true.<br />

1 2 2<br />

= ⋅k( 6k −3k− 1 ) + (3k+<br />

1)<br />

⎛5⎞ 5! 54321 ⋅ ⋅ ⋅ ⋅ 54 ⋅<br />

2<br />

55. ⎜ ⎟= = = = 10<br />

1<br />

⎝2⎠<br />

2!3! 21321 ⋅ ⋅ ⋅ ⋅ 21 ⋅<br />

⎡<br />

3 2 2<br />

= ⋅ 6k −3k − k+ 18k + <strong>12</strong>k+<br />

2⎤<br />

2 ⎣<br />

⎦<br />

⎛8⎞ 1<br />

8! 87654321 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 87 ⋅<br />

⎡<br />

3 2<br />

= ⋅ 6k + 15k + 11k+<br />

2⎤<br />

56. ⎜ ⎟= = = = 28<br />

2 ⎣<br />

⎦<br />

⎝6⎠<br />

6!2! 65432<strong>12</strong>1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 21 ⋅<br />

1 ( 1) 6 2<br />

= ⋅ k+ ⎡ k + 9 k+<br />

2 ⎤<br />

2 ⎣ ⎦<br />

_________________________________________________________________________________________________<br />

57.<br />

⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞<br />

( x+ 2) = ⎜ ⎟x + ⎜ ⎟x ⋅ 2+ ⎜ ⎟x ⋅ 2 + ⎜ ⎟x ⋅ 2 + ⎜ ⎟x<br />

⋅ 2 + ⎜ ⎟⋅2<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠ ⎝5⎠<br />

5 5 4 3 2 2 3 1 4 5<br />

5 4 3 2<br />

= x + 5⋅ 2x + 10⋅ 4x + 10⋅ 8x + 5⋅ 16x+ 1⋅32<br />

5 4 3 2<br />

= x + 10x + 40x + 80x + 80x+<br />

32<br />

<strong>12</strong>77<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

58.<br />

59.<br />

60.<br />

⎛4⎞ ⎛4⎞ ⎛4⎞ ⎛4⎞ ⎛4⎞<br />

( x− 3) = ⎜ ⎟x + ⎜ ⎟x ( − 3) + ⎜ ⎟x ( − 3) + ⎜ ⎟x( − 3) + ⎜ ⎟x<br />

( −3)<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠<br />

4 4 3 2 2 3 0 4<br />

4 3 2<br />

= x + 4( − 3) x + 6⋅ 9x + 4( − 27) x+<br />

81<br />

4 3 2<br />

= x − <strong>12</strong>x + 54x − 108x+<br />

81<br />

⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞<br />

(2x+ 3) = ⎜ ⎟(2 x) + ⎜ ⎟(2 x) ⋅ 3 + ⎜ ⎟(2 x) ⋅ 3 + ⎜ ⎟(2 x) ⋅ 3 + ⎜ ⎟(2 x) ⋅ 3 + ⎜ ⎟⋅3<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠ ⎝5⎠<br />

5 5 4 3 2 2 3 1 4 5<br />

5 4 3 2<br />

= 32x + 5⋅16x ⋅ 3 + 10⋅8x ⋅ 9 + 10⋅4x ⋅ 27 + 5⋅2x⋅ 81+ 1⋅243<br />

5 4 3 2<br />

= 32x + 240x + 720x + 1080x + 810x+<br />

243<br />

⎛4⎞ ⎛4⎞ ⎛4⎞ ⎛4⎞ ⎛4⎞<br />

(3x− 4) = ⎜ ⎟(3 x) + ⎜ ⎟(3 x) ( − 4) + ⎜ ⎟(3 x) ( − 4) + ⎜ ⎟(3 x)( − 4) + ⎜ ⎟( −4)<br />

⎝0⎠ ⎝1⎠ ⎝2⎠ ⎝3⎠ ⎝4⎠<br />

4 4 3 2 2 3 4<br />

4 3 2<br />

= 81x + 4⋅27 x ( − 4) + 6⋅9x ⋅ 16 + 4⋅3 x( − 64) + 1⋅256<br />

4 3 2<br />

= 81x − 432x + 864x − 768x+<br />

256<br />

_________________________________________________________________________________________________<br />

61. n = 9, j = 2, x = x, a = 2<br />

⎛9⎞<br />

9! 9⋅8<br />

⎜ ⎟x ⋅ 2 = ⋅ 4x = ⋅ 4x = 144x<br />

⎝2⎠<br />

2!7! 2⋅1<br />

7<br />

The coefficient of x is 144.<br />

7 2 7 7 7<br />

62. n = 8, j = 5, x = x, a =− 3<br />

⎛8⎞<br />

3 5 8!<br />

3<br />

⎜ ⎟x<br />

( − 3) = ( −243)<br />

x<br />

⎝5⎠<br />

5!3!<br />

876 ⋅ ⋅<br />

= ( − 243) x =− 13,608 x<br />

321 ⋅ ⋅<br />

3<br />

The coefficient of x is − 13,608.<br />

63. n = 7, j = 5, x = 2 x, a = 1<br />

3 3<br />

⎛7⎞<br />

7! 7⋅6<br />

⎜ ⎟(2 x) ⋅ 1 = ⋅ 4 x (1) = ⋅ 4x = 84x<br />

⎝5⎠<br />

5!2! 2⋅1<br />

2<br />

The coefficient of x is 84.<br />

2 5 2 2 2<br />

64. n = 8, j = 2, x = 2 x, a = 1<br />

⎛8⎞<br />

6 2 8! 6<br />

⎜ ⎟(2 x) ⋅ 1 = ⋅64 x (1)<br />

⎝2⎠<br />

2!6!<br />

87 ⋅<br />

= ⋅ 64 x = 1792 x<br />

21 ⋅<br />

6<br />

The coefficient of x is 1792.<br />

6 6<br />

65. This is an arithmetic sequence with<br />

a1 = 80, d =− 3, n=<br />

25<br />

a. a 25 = 80 + (25 −1)( − 3) = 80 − 72 = 8 bricks<br />

25<br />

S = (80 + 8) = 25(44) = 1100 bricks<br />

2<br />

1100 bricks are needed to build <strong>the</strong> steps.<br />

b. 25<br />

66. This is an arithmetic sequence with<br />

a1 = 30, d =− 1, a n = 15<br />

15 = 30 + ( n −1)( −1)<br />

− 15 =− n + 1<br />

− 16 =−n<br />

n = 16<br />

16<br />

S 16 = (30 + 15) = 8(45) = 360 tiles<br />

2<br />

360 tiles are required to make <strong>the</strong> trapezoid.<br />

67. This is a geometric sequence with<br />

3<br />

a1<br />

= 20, r = .<br />

4<br />

a. After striking <strong>the</strong> ground <strong>the</strong> third time, <strong>the</strong><br />

3<br />

⎛3⎞ 135<br />

height is 20⎜<br />

⎟ = ≈ 8.44 feet .<br />

⎝4⎠<br />

16<br />

th<br />

b. After striking <strong>the</strong> ground <strong>the</strong> n time, <strong>the</strong><br />

n<br />

⎛3<br />

⎞<br />

height is 20 ⎜ ⎟ feet .<br />

⎝4<br />

⎠<br />

<strong>12</strong>78<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong> Review Exercises<br />

c. If <strong>the</strong> height is less than 6 inches or 0.5 feet,<br />

<strong>the</strong>n:<br />

n<br />

⎛3<br />

⎞<br />

0.5 ≥ 20⎜ ⎟<br />

⎝ 4 ⎠<br />

n<br />

⎛3<br />

⎞<br />

0.025 ≥ ⎜ ⎟<br />

⎝4<br />

⎠<br />

⎛3<br />

⎞<br />

log ( 0.025)<br />

≥ nlog ⎜ ⎟<br />

⎝ 4 ⎠<br />

log ( 0.025)<br />

n ≥<br />

≈<strong>12</strong>.82<br />

⎛3<br />

⎞<br />

log ⎜ ⎟<br />

⎝ 4 ⎠<br />

The height is less than 6 inches after <strong>the</strong><br />

13th strike.<br />

d. Since this is a geometric sequence with<br />

r < 1 , <strong>the</strong> distance is <strong>the</strong> sum of <strong>the</strong> two<br />

infinite geometric series - <strong>the</strong> distances<br />

going down plus <strong>the</strong> distances going up.<br />

Distance going down:<br />

20 20<br />

S down = = = 80 feet.<br />

⎛ 3⎞ ⎛1⎞<br />

⎜1−<br />

⎟ ⎜ ⎟<br />

⎝ 4 ⎠ ⎝ 4 ⎠<br />

Distance going up:<br />

15 15<br />

S up = = = 60 feet.<br />

⎛ 3⎞ ⎛1⎞<br />

⎜1−<br />

⎟ ⎜ ⎟<br />

⎝ 4 ⎠ ⎝ 4 ⎠<br />

The total distance traveled is 140 feet.<br />

68. a. Since <strong>the</strong> interest rate is 6.75% per annum<br />

compounded monthly, this is equivalent to a<br />

rate of (6.75/<strong>12</strong>)% each month. Defining a<br />

recursive sequence, we have:<br />

A0<br />

= 190,000<br />

⎛ 0.0675 ⎞<br />

An<br />

= ⎜1+ ⎟An<br />

− 1 −<strong>12</strong>32.34<br />

⎝ <strong>12</strong> ⎠<br />

⎛ 0.0675 ⎞<br />

⎜1+ ⎟ 190,000 −<strong>12</strong>32.34<br />

⎝ <strong>12</strong> ⎠<br />

= $189,836.41<br />

b. ( )<br />

c. Enter <strong>the</strong> recursive formula in Y= and create<br />

<strong>the</strong> table:<br />

d. Scroll through <strong>the</strong> table:<br />

After 252 months, <strong>the</strong> balance is below<br />

$100,000. The balance is about $99,540.<br />

e. Scroll through <strong>the</strong> table:<br />

The loan will be paid off after 360 months (or<br />

30 years). They will make 359 payments of<br />

$<strong>12</strong>32.34 plus a last payment of $<strong>12</strong>21.27 plus<br />

interest. The total amount paid is:<br />

⎛ 0.0675 ⎞<br />

359(<strong>12</strong>32.34) + <strong>12</strong>21.27⎜1+<br />

⎟<br />

⎝ <strong>12</strong> ⎠<br />

≈ $443,638.20<br />

f. The total interest expense is <strong>the</strong> difference<br />

of <strong>the</strong> total of <strong>the</strong> payments and <strong>the</strong> original<br />

loan: 443,638.20 − 190,000 = $253,638.20 .<br />

g. (a) Since <strong>the</strong> interest rate is 6.75% per annum<br />

compounded monthly, this is equivalent to<br />

a rate of (6.75/<strong>12</strong>)% each month.<br />

Defining a recursive sequence, we have:<br />

A0<br />

= 190,000<br />

⎛ 0.0675 ⎞<br />

An<br />

= ⎜1+ ⎟An<br />

− 1 −1332.34<br />

⎝ <strong>12</strong> ⎠<br />

⎛ 0.0675 ⎞<br />

⎜1+ ⎟ 190,000 −1332.34<br />

⎝ <strong>12</strong> ⎠<br />

= $189,736.41<br />

(b) ( )<br />

(c) Enter <strong>the</strong> recursive formula in Y= and<br />

create <strong>the</strong> table:<br />

<strong>12</strong>79<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

c. Scroll through <strong>the</strong> table:<br />

(d) Scroll through <strong>the</strong> table:<br />

At <strong>the</strong> beginning of <strong>the</strong> 33rd month, or after<br />

32 payments have been made, <strong>the</strong> balance is<br />

below $4,000. The balance is $3982.8.<br />

d. Scroll through <strong>the</strong> table:<br />

At <strong>the</strong> beginning of <strong>the</strong> 192nd month, or<br />

after 191 payments have been made, <strong>the</strong><br />

balance is below $100,000. The<br />

balance is about $99,288.<br />

(e) Scroll through <strong>the</strong> table:<br />

The loan will be paid off after 289<br />

months. They will make 288 payments<br />

of $1332.34 plus a last payment of<br />

$1142.80 plus interest. The total<br />

amount paid is:<br />

⎛ 0.0675 ⎞<br />

288(1332.34) + 1142.80⎜1+<br />

⎟<br />

⎝ <strong>12</strong> ⎠<br />

≈ $384,863.15<br />

(f) The total interest expense is <strong>the</strong><br />

difference of <strong>the</strong> total of <strong>the</strong> payments<br />

and <strong>the</strong> original loan:<br />

384,863.15 − 190,000 = $19,863.15 .<br />

69. a. b1 = 5,000, bn<br />

= 1.015bn<br />

− 1−<br />

100<br />

b2 = 1.015b( 2−1)<br />

− 100 = 1.015b1−100<br />

= 1.015 5000 − 100 = $4975<br />

( )<br />

b. Enter <strong>the</strong> recursive formula in Y= and draw<br />

<strong>the</strong> graph:<br />

The balance will be paid off at <strong>the</strong> end of 94<br />

months or 7years and 10 months.<br />

Total payments =<br />

100(93) + 11.01 1.015 = $9,311.18<br />

( )<br />

e. The total interest expense is <strong>the</strong> difference<br />

between <strong>the</strong> total of <strong>the</strong> payments and <strong>the</strong><br />

original balance:<br />

100(93) + 11.18 − 5,000 = $4,311.18<br />

70. This is a geometric sequence with<br />

a1 = 20,000, r = 1.04, n = 5 . Find <strong>the</strong> fifth term<br />

of <strong>the</strong> sequence:<br />

5−1 4<br />

a 5 = 20,000(1.04) = 20,000(1.04) = 23,397.17<br />

Her salary in <strong>the</strong> fifth year will be $23,397.17.<br />

<strong>Chapter</strong> <strong>12</strong> Test<br />

1.<br />

2<br />

n −1<br />

an<br />

=<br />

n + 8<br />

2 2<br />

1 −1 0 2 −1 3<br />

a1 = = = 0, a2<br />

= = ,<br />

1+ 8 9 2+<br />

8 10<br />

2 2<br />

3 −1 8 4 −1 15 5<br />

a3 = = , a4<br />

= = = ,<br />

3+ 8 11 4+<br />

8 <strong>12</strong> 4<br />

2<br />

5 −1 24<br />

a5<br />

= =<br />

5+<br />

8 13<br />

The first five terms of <strong>the</strong> sequence are 0, 3<br />

10 ,<br />

8<br />

11 , 5 24<br />

, and<br />

4 13 .<br />

<strong>12</strong>80<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong> Test<br />

2. a1 an<br />

an<br />

− 1<br />

= 4; = 3 + 2<br />

a2 = 3a1+ 2= 3( 4)<br />

+ 2=<br />

14<br />

a3 = 3a2<br />

+ 2= 3( 14)<br />

+ 2=<br />

44<br />

a4 = 3a3<br />

+ 2= 3( 44)<br />

+ 2=<br />

134<br />

a = 3a<br />

+ 2 = 3 134 + 2 = 404<br />

5 4<br />

( )<br />

The first five terms of <strong>the</strong> sequence are 4, 14, 44,<br />

134, and 404.<br />

3<br />

3. ∑ ( 1)<br />

4.<br />

5.<br />

k = 1<br />

k + 1 ⎛k<br />

+ 1⎞<br />

− ⎜ 2 ⎟<br />

⎝ k ⎠<br />

11 + 1+ 1 21 + 2+ 1 31 + 3+<br />

1<br />

= ( − 1<br />

⎛ ⎞<br />

) ( 1<br />

⎛ ⎞<br />

) ( 1<br />

⎛ ⎞<br />

⎜ )<br />

2<br />

⎟+ − ⎜<br />

2<br />

⎟+ − ⎜ 2 ⎟<br />

⎝ 1 ⎠ ⎝ 2 ⎠ ⎝ 3 ⎠<br />

2⎛2⎞ 3⎛3⎞ 4⎛4⎞<br />

= ( − 1) ⎜ ( 1) ( 1)<br />

1<br />

⎟+ − ⎜<br />

4<br />

⎟+ − ⎜<br />

9<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

3 4 61<br />

= 2 − + = 4 9 36<br />

4<br />

∑<br />

k<br />

⎡⎛2<br />

⎞ ⎤<br />

⎢⎜<br />

− k ⎥<br />

3<br />

⎟<br />

⎢⎣⎝<br />

⎠ ⎥⎦<br />

k = 1<br />

⎡ 1 ⎤ ⎡ 2 ⎤ ⎡ 3 ⎤ ⎡ 4<br />

⎤<br />

2 2 2 2<br />

( ) ( ) ( ) ( )<br />

= ⎢ − 1 2 3 4<br />

3 ⎥ + ⎢ −<br />

3 ⎥ + ⎢ −<br />

3 ⎥ + ⎢ −<br />

3 ⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦<br />

⎛2 ⎞ ⎛4 ⎞ ⎛ 8 ⎞ ⎛16<br />

⎞<br />

= ⎜ − 1 2 3 4<br />

3<br />

⎟+ ⎜ −<br />

9<br />

⎟+ ⎜ −<br />

27<br />

⎟+ ⎜ −<br />

81<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

1 14 73 308<br />

=− − − −<br />

3 9 27 81<br />

680<br />

=−<br />

81<br />

2 3 4 11<br />

− + − + ... +<br />

5 6 7 14<br />

Notice that <strong>the</strong> signs of each term alternate, with<br />

<strong>the</strong> first term being negative. This implies that<br />

<strong>the</strong> general term will include a power of − 1 .<br />

Also note that <strong>the</strong> numerator is always 1 more<br />

than <strong>the</strong> term number and <strong>the</strong> denominator is 4<br />

more than <strong>the</strong> term number. Thus, each term is in<br />

k ⎛ k + 1 ⎞<br />

<strong>the</strong> form ( −1)<br />

⎜<br />

k + 4<br />

⎟. The last numerator is 11<br />

⎝ ⎠<br />

which indicates that <strong>the</strong>re are 10 terms.<br />

10<br />

2 3 4 11 k ⎛ k + 1⎞<br />

− + − + ... + = ( 1)<br />

5 6 7 14<br />

∑ − ⎜<br />

k + 4<br />

⎟<br />

⎝ ⎠<br />

k = 1<br />

6. 6,<strong>12</strong>,36,144,...<br />

<strong>12</strong> − 6 = 6 and 36 − <strong>12</strong> = 24<br />

The difference between consecutive terms is not<br />

constant. Therefore, <strong>the</strong> sequence is not<br />

arithmetic.<br />

7.<br />

<strong>12</strong> = 2 and 36<br />

6 <strong>12</strong><br />

= 3<br />

The ratio of consecutive terms is not constant.<br />

Therefore, <strong>the</strong> sequence is not geometric.<br />

1 4<br />

n<br />

a n = − ⋅<br />

2<br />

1 n 1 n−1<br />

a − ⋅4 − ⋅4 ⋅4<br />

n 2 2<br />

= = = 4<br />

a 1 n−1 1 n−1<br />

− ⋅4 − ⋅4<br />

n−1 2 2<br />

Since <strong>the</strong> ratio of consecutive terms is constant,<br />

<strong>the</strong> sequence is geometric with common ratio<br />

1 1<br />

r = 4 and first term a 1 =− ⋅ 4 =− 2 .<br />

2<br />

The sum of <strong>the</strong> first n terms of <strong>the</strong> sequence is<br />

given by<br />

n<br />

1−<br />

r<br />

Sn<br />

= a1<br />

⋅<br />

1−<br />

r<br />

n<br />

1−<br />

4<br />

=−2⋅<br />

1 − 4<br />

2<br />

( 1 4<br />

n<br />

= − )<br />

3<br />

8. −2, −10, −18, − 26,...<br />

−10 −( − 2)<br />

= − 8 , ( )<br />

−18 − − 10 = − 8 ,<br />

−26 −( − 18)<br />

= − 8<br />

The difference between consecutive terms is<br />

constant. Therefore, <strong>the</strong> sequence is arithmetic<br />

with common difference d =− 8 and first term<br />

a 1 = − 2 .<br />

an<br />

= a1 + ( n−1)<br />

d<br />

= − 2+ ( n −1)( −8)<br />

=−2− 8n<br />

+ 8<br />

= 6−8n<br />

The sum of <strong>the</strong> first n terms of <strong>the</strong> sequence is<br />

given by<br />

n<br />

Sn<br />

= ( a+<br />

an)<br />

2<br />

n<br />

= ( − 2+ 6−8n)<br />

2<br />

n<br />

= ( 4−8n)<br />

2<br />

= n 2−4n<br />

( )<br />

<strong>12</strong>81<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

n<br />

9. a n =− + 7<br />

2<br />

⎡ n ⎤ ⎡ ( n −1)<br />

⎤<br />

an<br />

− an−1<br />

=<br />

⎢<br />

− + 7 − 7<br />

2<br />

⎢− +<br />

2<br />

⎥<br />

⎣<br />

⎥<br />

⎦ ⎣ ⎦<br />

n n−1<br />

=− + 7+ −7<br />

2 2<br />

1<br />

=−<br />

2<br />

The difference between consecutive terms is<br />

constant. Therefore, <strong>the</strong> sequence is arithmetic<br />

1<br />

with common difference d =− and first term<br />

2<br />

1 13<br />

a 1 =− + 7 = .<br />

2 2<br />

The sum of <strong>the</strong> first n terms of <strong>the</strong> sequence is<br />

given by<br />

n<br />

Sn<br />

= ( a1<br />

+ an)<br />

2<br />

n⎛13<br />

⎛ n ⎞⎞<br />

= 7<br />

2⎜<br />

+<br />

2<br />

⎜− +<br />

2<br />

⎟⎟<br />

⎝ ⎝ ⎠⎠<br />

n⎛27<br />

n⎞<br />

=<br />

2<br />

⎜ −<br />

2 2<br />

⎟<br />

⎝ ⎠<br />

n<br />

= ( 27 −n)<br />

4<br />

10.<br />

8<br />

25,10, 4, ,...<br />

5<br />

10 2<br />

= , 4 2<br />

8<br />

5 8 1 2<br />

= , = ⋅ =<br />

25 5 10 5 4 5 4 5<br />

The ratio of consecutive terms is constant.<br />

Therefore, <strong>the</strong> sequence is geometric with<br />

common ratio r = 2<br />

5<br />

and first term a 1 = 25 .<br />

The sum of <strong>the</strong> first n terms of <strong>the</strong> sequence is<br />

given by<br />

n<br />

2<br />

n<br />

1− ⎛ ⎞<br />

⎜<br />

1<br />

5<br />

⎟<br />

− r<br />

Sn<br />

= a1<br />

⋅ = 25⋅<br />

⎝ ⎠<br />

1−<br />

r 2<br />

1−<br />

5<br />

11.<br />

2n<br />

− 3<br />

an<br />

=<br />

2n<br />

+ 1<br />

2n<br />

− 3 2( n −1)<br />

−3<br />

an<br />

− an−1<br />

= −<br />

2n<br />

+ 1 2( n − 1)<br />

+ 1<br />

2n−3 2n−5<br />

= −<br />

2n+ 1 2n−1<br />

=<br />

( 2n− 3)( 2n−1) −( 2n− 5)( 2n+<br />

1)<br />

( 2n+ 1)( 2n−1)<br />

2 2<br />

( 4n − 8n+ 3) −( 4n −8n−5)<br />

=<br />

2<br />

4n<br />

−1<br />

8<br />

=<br />

2<br />

4n<br />

− 1<br />

The difference of consecutive terms is not<br />

constant. Therefore, <strong>the</strong> sequence is not<br />

arithmetic.<br />

2n<br />

− 3<br />

an<br />

=<br />

2n<br />

+ 1<br />

an−1<br />

2( n −1)<br />

−3<br />

2( n − 1)<br />

+ 1<br />

2n−3 2n−1<br />

= ⋅<br />

2n+ 1 2n−5<br />

( 2n−<br />

3)( 2n−1)<br />

=<br />

2n+ 1 2n−<br />

5<br />

( )( )<br />

The ratio of consecutive terms is not constant.<br />

Therefore, <strong>the</strong> sequence is not geometric.<br />

−64 1<br />

<strong>12</strong>. For this geometric series we have r = =−<br />

256 4<br />

1 1<br />

and a 1 = 256 . Since r =− = < 1, <strong>the</strong> series<br />

4 4<br />

converges and we get<br />

a1<br />

256 256 1024<br />

S∞ = 1−<br />

r<br />

= 1 5<br />

1−( −<br />

4 )<br />

= = 5<br />

4<br />

n<br />

⎡ 2<br />

1<br />

⎛ ⎞ ⎤<br />

⎢ − ⎜<br />

5<br />

⎟ ⎥<br />

n<br />

⎢ ⎝ ⎠ ⎥ 5⎡<br />

⎛2⎞<br />

⎤<br />

= 25⋅ ⎣ ⎦<br />

= 25⋅ ⎢1<br />

−<br />

3 3<br />

⎜<br />

5<br />

⎟ ⎥<br />

⎢⎣<br />

⎝ ⎠ ⎥⎦<br />

5<br />

n<br />

<strong>12</strong>5 ⎡ ⎛2<br />

⎞ ⎤<br />

= ⎢1<br />

−<br />

3<br />

⎜ ⎥<br />

5<br />

⎟<br />

⎢⎣<br />

⎝ ⎠ ⎥⎦<br />

<strong>12</strong>82<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong> Test<br />

⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞ ⎛5⎞<br />

⎜0⎟ ⎜1⎟ ⎜2⎟ ⎜3⎟ ⎜4⎟ ⎜5⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

5 4 3 2<br />

= 243m + 5⋅81m ⋅ 2 + 10⋅27m ⋅ 4 + 10⋅9m ⋅ 8 + 5⋅3m⋅ 16 + 32<br />

5 4 3 2<br />

= 243m + 810m + 1080m + 720m + 240m+<br />

32<br />

5 5 4 3 2 2 3 4 5<br />

13. ( 3m+ 2) = ( 3m) + ( 3m) ( 2) + ( 3m) ( 2) + ( 3m) ( 2) + ( 3m)( 2) + ( 2)<br />

14. First we show that <strong>the</strong> statement holds for n = 1 .<br />

⎛ 1⎞<br />

⎜1+ = 1+ 1=<br />

2<br />

1<br />

⎟<br />

⎝ ⎠<br />

1 1 1 1<br />

The equality is true for n = 1 so Condition I holds. Next we assume that ⎜ ⎛ 1+ 1 1 ... 1 n 1<br />

1<br />

⎟⎜ ⎞⎛ + ⎞⎛ + ⎞ ⎛ + ⎞ = +<br />

2<br />

⎟⎜<br />

3<br />

⎟ ⎜<br />

n<br />

⎟<br />

⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠<br />

is true for some k, and we show <strong>the</strong> formula <strong>the</strong>n holds for k + 1. We assume that<br />

⎛ 1⎞⎛ 1⎞⎛ 1⎞ ⎛ 1⎞<br />

⎜1+ 1 1 ... 1 k 1<br />

1<br />

⎟⎜ + + + = +<br />

2<br />

⎟⎜<br />

3<br />

⎟ ⎜<br />

k<br />

⎟ . Now we need to show that<br />

⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠<br />

⎛ 1⎞⎛ 1⎞⎛ 1⎞ ⎛ 1⎞⎛ 1 ⎞<br />

⎜1+ 1 1 ... 1 1 ( k 1)<br />

1 k 2<br />

1<br />

⎟⎜ +<br />

2<br />

⎟⎜ + + + = + + = +<br />

3<br />

⎟ ⎜<br />

k<br />

⎟⎜<br />

k+<br />

1<br />

⎟<br />

.<br />

⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠<br />

We do this as follows:<br />

⎛ 1⎞⎛ 1⎞⎛ 1⎞ ⎛ 1⎞⎛ 1 ⎞ ⎡⎛ 1⎞⎛ 1⎞⎛ 1⎞ ⎛ 1⎞⎤⎛ 1 ⎞<br />

⎜1+ 1 1 ... 1 1 1 1 1 ... 1 1<br />

1<br />

⎟⎜ +<br />

2<br />

⎟⎜ +<br />

3<br />

⎟ ⎜ +<br />

k<br />

⎟⎜ +<br />

k 1<br />

⎟ = ⎜ +<br />

1<br />

⎟⎜ +<br />

2<br />

⎟⎜ +<br />

3<br />

⎟ ⎜ +<br />

k<br />

⎟ ⎜ +<br />

k 1<br />

⎟<br />

⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ + ⎠<br />

⎢<br />

⎥<br />

⎣⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎦⎝ + ⎠<br />

⎛ 1 ⎞<br />

= ( k + 1)<br />

⎜1 + (using <strong>the</strong> induction assumption)<br />

k 1<br />

⎟<br />

⎝ + ⎠<br />

1<br />

= ( k+ 1) ⋅ 1+ ( k+ 1)<br />

⋅<br />

k + 1<br />

= k + 1+<br />

1<br />

= k + 2<br />

Condition II also holds. Thus, formula holds true for all natural numbers.<br />

_________________________________________________________________________________________________<br />

15. The yearly values of <strong>the</strong> Durango form a<br />

geometric sequence with first term a 1 = 31,000<br />

and common ratio r = 0.85 (which represents a<br />

15% loss in value).<br />

1<br />

a 31,000 ( 0.85)<br />

n −<br />

n = ⋅<br />

The nth term of <strong>the</strong> sequence represents <strong>the</strong><br />

value of <strong>the</strong> Durango at <strong>the</strong> beginning of <strong>the</strong> nth<br />

year. Since we want to know <strong>the</strong> value after 10<br />

years, we are looking for <strong>the</strong> 11 th term of <strong>the</strong><br />

sequence. That is, <strong>the</strong> value of <strong>the</strong> Durango at <strong>the</strong><br />

beginning of <strong>the</strong> 11 th year.<br />

11 1<br />

a ( ) 10<br />

11 = a1 ⋅ r − = 31,000 ⋅ 0.85 = 6,103.11<br />

After 10 years, <strong>the</strong> Durango will be worth<br />

$6,103.11.<br />

16. The weights for each set form an arithmetic<br />

sequence with first term a 1 = 100 and common<br />

difference d = 30 . If we imagine <strong>the</strong> weightlifter<br />

only performed one repetition per set, <strong>the</strong> total<br />

weight lifted in 5 sets would be <strong>the</strong> sum of <strong>the</strong><br />

first five terms of <strong>the</strong> sequence.<br />

an<br />

= a1<br />

+ ( n−1)<br />

d<br />

a5<br />

= 100 + ( 5 − 1)( 30) = 100 + 4( 30)<br />

= 220<br />

n<br />

Sn<br />

= ( a+<br />

an)<br />

2<br />

S 5<br />

5 = ( 100 + 220) = 5<br />

2 2( 320)<br />

= 800<br />

Since he performs 10 repetitions in each set, we<br />

multiply <strong>the</strong> sum by 10 to obtain <strong>the</strong> total weight<br />

lifted.<br />

10( 800)<br />

= 8000<br />

The weightlifter will have lifted a total of 8000<br />

pounds after 5 sets.<br />

<strong>12</strong>83<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

<strong>Chapter</strong> <strong>12</strong> Cumulative Review<br />

1.<br />

2. a.<br />

2<br />

x = 9<br />

2 2<br />

x = 9 or x =−9<br />

x =± 3 or x =± 3i<br />

The solution set is { −3,3, − 3,3} i i .<br />

b.<br />

x<br />

2 2<br />

+ y = 100 and<br />

2<br />

y = 3x<br />

.<br />

2 2<br />

⎪<br />

⎧ x + y =<br />

3<br />

⎯⎯→<br />

2<br />

x +<br />

2<br />

y =<br />

2 2<br />

100 3 3 300<br />

⎨<br />

⎪⎩<br />

y = 3 x ⎯⎯→− 3 x + y = 0<br />

2<br />

3y<br />

+ y = 300<br />

2<br />

2<br />

3y<br />

+ y− 300=<br />

0<br />

( )( )<br />

( )<br />

− 1± 1 −4 3 −300 − 1±<br />

3601<br />

y = =<br />

23 6<br />

Substitute and solve for x:<br />

− 1+ 3601 2 − 1+<br />

3601<br />

y = ⇒ 3x<br />

=<br />

6 6<br />

2 − 1+ 3601 − 1+<br />

3601<br />

x = ⇒ x =±<br />

18 18<br />

or<br />

−1−<br />

3601 2 −1−<br />

3601<br />

y = ⇒ 3x<br />

=<br />

6 6<br />

2 −1−<br />

3601 −1−<br />

3601<br />

x = ⇒ x = ±<br />

18 18<br />

−1−<br />

3601<br />

which is not real since < 0<br />

18<br />

Therefore, <strong>the</strong> system has solutions:<br />

⎧⎛<br />

⎪ − 1+ 3601 − 1+<br />

3601<br />

⎞<br />

⎨ ⎜<br />

, ⎟ ,<br />

⎪ ⎜ 18 6 ⎟<br />

⎩ ⎝<br />

⎠<br />

⎛<br />

⎜−<br />

⎜<br />

⎝<br />

− 1+ 3601 − 1+<br />

3601 ⎞⎫<br />

, ⎟ ⎪ ⎬<br />

18 6 ⎟<br />

⎠⎭ ⎪<br />

c. The graphs of <strong>the</strong> circle and parabola<br />

intersect at <strong>the</strong> points<br />

⎛ − 1+ 3601 − 1+<br />

3601 ⎞<br />

⎜<br />

, ⎟≈ 1.81,9.84<br />

⎜ 18 6 ⎟<br />

⎝<br />

⎠<br />

⎛<br />

−<br />

⎜<br />

⎝<br />

x<br />

3. 2e = 5<br />

x 5<br />

e =<br />

2<br />

x ⎛5<br />

⎞<br />

ln ( e ) = ln ⎜ ⎟<br />

⎝ 2 ⎠<br />

⎛5<br />

⎞<br />

x = ln ⎜ ⎟≈0.916<br />

⎝2<br />

⎠<br />

− 1+ 3601 − 1+<br />

3601 ⎞<br />

, ⎟≈ −<br />

18 6 ⎟<br />

⎠<br />

⎧ ⎛5<br />

⎞⎫<br />

The solution set is ⎨ln ⎜ ⎟⎬<br />

⎩ ⎝ 2 ⎠⎭ .<br />

( )<br />

( 1.81,9.84)<br />

4. slope = m = 5 ; Since <strong>the</strong> x-intercept is 2, we<br />

know <strong>the</strong> point ( 2,0 ) is on <strong>the</strong> graph of <strong>the</strong> line<br />

and is a solution to <strong>the</strong> equation y = 5x+ b.<br />

y = 5x+<br />

b<br />

0= 5( 2)<br />

+ b<br />

0= 10+<br />

b<br />

− 10 = b<br />

Therefore, <strong>the</strong> equation of <strong>the</strong> line with slope 5<br />

and x-intercept 2 is y = 5x− 10.<br />

5. Given a circle with center (–1, 2) and containing<br />

<strong>the</strong> point (3, 5), we first use <strong>the</strong> distance formula<br />

to determine <strong>the</strong> radius.<br />

( ( )) ( )<br />

2 2 2 2<br />

r = 3− − 1 + 5− 2 = 4 + 3<br />

= 16 + 9 = 25 = 5<br />

Therefore, <strong>the</strong> equation of <strong>the</strong> circle is given by<br />

2 2 2<br />

x− − 1 + y− 2 = 5<br />

( ( )) ( )<br />

( x ) ( y )<br />

2 2 2<br />

+ 1 + − 2 = 5<br />

2 2<br />

x + 2x+ 1+ y − 4y+ 4=<br />

25<br />

2 2<br />

x + y + 2x−4y− 20=<br />

0<br />

<strong>12</strong>84<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong> Cumulative Review<br />

3x<br />

x 2<br />

6. f ( x)<br />

= , g ( x) = 2x+<br />

1<br />

−<br />

a. g ( ) ( )<br />

f ( )<br />

( )<br />

2 = 2 2 + 1=<br />

5<br />

35 15<br />

5 = = = 5<br />

5−<br />

2 3<br />

( f g)( ) f ( g( )) f ( )<br />

b. f ( )<br />

2 = 2 = 5 = 5<br />

( )<br />

34 <strong>12</strong><br />

4 = = = 6<br />

4−<br />

2 2<br />

g ( 6) = 2( 6)<br />

+ 1=<br />

13<br />

( g<br />

f )( ) g( f ( )) g( )<br />

4 = 4 = 6 = 13<br />

c. ( f g)( x) = f ( g( x)<br />

)<br />

32 ( x + 1)<br />

=<br />

( x + ) −<br />

2 1 2<br />

6x<br />

+ 3<br />

=<br />

2x<br />

−1<br />

d. To determine <strong>the</strong> domain of <strong>the</strong> composition<br />

( f g)( x)<br />

, we start with <strong>the</strong> domain of g<br />

and exclude any values in <strong>the</strong> domain of g<br />

that make <strong>the</strong> composition undefined.<br />

g x is defined for all real numbers and<br />

( )<br />

( f g)( x)<br />

is defined for all real numbers<br />

except<br />

1<br />

x = . Therefore, <strong>the</strong> domain of <strong>the</strong><br />

2<br />

⎧ 1 ⎫<br />

composite ( f g)( x)<br />

is<br />

e. ( g<br />

f )( x)<br />

⎛ 3x<br />

⎞<br />

= 2⎜<br />

⎟+<br />

1<br />

⎝ x − 2 ⎠<br />

6x<br />

= + 1<br />

x − 2<br />

6x+ x−2<br />

=<br />

x − 2<br />

7x<br />

− 2<br />

=<br />

x − 2<br />

⎨xx≠<br />

⎬<br />

⎩ 2⎭ .<br />

f. To determine <strong>the</strong> domain of <strong>the</strong> composition<br />

( g f )( x)<br />

, we start with <strong>the</strong> domain of f<br />

and exclude any values in <strong>the</strong> domain of f<br />

that make <strong>the</strong> composition undefined.<br />

f ( x ) is defined for all real numbers except<br />

2 g f x is defined for all real<br />

x = and ( )( )<br />

numbers except x = 2 . Therefore, <strong>the</strong><br />

domain of <strong>the</strong> composite ( g f )( x)<br />

is<br />

{ x| x ≠ 2}<br />

.<br />

g. g ( x) = 2x+<br />

1<br />

1<br />

2<br />

y = 2x+<br />

1<br />

x = 2y<br />

+ 1<br />

x − 1=<br />

2y<br />

( x 1)<br />

− = y<br />

−<br />

g ( x) = ( x−<br />

1)<br />

2<br />

−1<br />

The domain of g ( x)<br />

1 1<br />

numbers.<br />

3x<br />

f x =<br />

x − 2<br />

3x<br />

y =<br />

x − 2<br />

3y<br />

x =<br />

y − 2<br />

x( y− 2)<br />

= 3y<br />

xy− 2x = 3y<br />

xy− 3y = 2x<br />

y( x− 3)<br />

= 2x<br />

2x<br />

y =<br />

x − 3<br />

−1 2x<br />

f ( x)<br />

=<br />

x − 3<br />

f<br />

h. ( )<br />

−1<br />

The domain of ( x)<br />

is <strong>the</strong> set of all real<br />

is { x| x ≠ 3}<br />

.<br />

7. Center: (0, 0); Focus: (0, 3); Vertex: (0, 4);<br />

Major axis is <strong>the</strong> y-axis; a = 4; c = 3 .<br />

2 2 2<br />

Find b: b = a − c = 16 − 9 = 7 ⇒ b=<br />

7<br />

Write <strong>the</strong> equation using rectangular coordinates:<br />

2 2<br />

x y<br />

+ = 1<br />

7 16<br />

Parametric equations for <strong>the</strong> ellipse are:<br />

x = 7cos π t ; y = 4sin π t ; 0≤t<br />

≤ 2<br />

( ) ( )<br />

<strong>12</strong>85<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

8. The focus is ( − 1, 3)<br />

and <strong>the</strong> vertex is ( 1, 2)<br />

− .<br />

Both lie on <strong>the</strong> vertical line x =− 1. We have<br />

a = 1 since <strong>the</strong> distance from <strong>the</strong> vertex to <strong>the</strong><br />

−1, 3 is above<br />

focus is 1 unit, and since ( )<br />

( − 1, 2)<br />

, <strong>the</strong> parabola opens up. The equation of<br />

<strong>the</strong> parabola is:<br />

2<br />

( x− h) = 4a( y−k)<br />

2<br />

( x−( − 1)<br />

) = 4⋅1⋅( y−2)<br />

2<br />

( x+ 1) = 4( y−2)<br />

9. Center point (0, 4); passing through <strong>the</strong> pole<br />

(0,4) implies that <strong>the</strong> radius = 4 using rectangular<br />

coordinates:<br />

2 2 2<br />

( x − h) + ( y− k)<br />

= r<br />

2 2 2<br />

x− 0 + y− 4 = 4<br />

10.<br />

( ) ( )<br />

2<br />

x ( y )<br />

+ − 4 = 16<br />

2 2<br />

x + y − 8y+ 16=<br />

16<br />

2 2<br />

x + y − 8y<br />

= 0<br />

converting to polar coordinates:<br />

2<br />

r − 8rsinθ<br />

= 0<br />

2<br />

r = 8rsinθ<br />

r = 8sinθ<br />

2<br />

2<br />

2sin x−sin x− 3= 0, 0≤ x≤<br />

2π<br />

( x )( x )<br />

2sin − 3 sin + 1 = 0<br />

3<br />

2sin x− 3 = 0 ⇒ sin x = , which is impossible<br />

2<br />

3π<br />

sin x+ 1 = 0 ⇒ sin x = −1⇒ x =<br />

2<br />

⎧3π<br />

⎫<br />

The solution set ⎨ ⎬<br />

⎩ 2 ⎭ .<br />

−1<br />

11. cos ( − 0.5)<br />

We are finding <strong>the</strong> angle θ, −π ≤θ ≤ π,<br />

whose<br />

cosine equals − 0.5 .<br />

cosθ =−0.5<br />

−π ≤θ ≤π<br />

2π<br />

− 1 2π<br />

θ = ⇒cos ( − 0.5)<br />

=<br />

3 3<br />

<strong>12</strong>.<br />

1<br />

sin θ = , θ is in Quadrant II<br />

4<br />

a. θ is in Quadrant II ⇒ cosθ<br />

< 0<br />

b.<br />

⎞<br />

cosθ<br />

=− 1− sin θ =− 1− ⎜ ⎟<br />

⎝4<br />

⎠<br />

1 15 15<br />

=− 1− =− =−<br />

16 16 4<br />

2 ⎛1<br />

⎛1<br />

⎞<br />

sinθ<br />

⎜ ⎟<br />

4 ⎛1 ⎞⎛ 4 ⎞<br />

tanθ<br />

= =<br />

⎝ ⎠<br />

= ⎜ ⎟⎜ − ⎟<br />

cosθ<br />

⎛ 15 ⎞ ⎝4 ⎠⎝ 15 ⎠<br />

⎜<br />

−<br />

4 ⎟<br />

⎝ ⎠<br />

1 15 15<br />

=− ⋅ =−<br />

15 15 15<br />

c. sin(2 θ ) = 2sinθcosθ<br />

⎛1⎞⎛ 15⎞<br />

= 2⎜ ⎜−<br />

⎝ 4<br />

⎟⎜ 4 ⎟<br />

⎠⎝ ⎠<br />

15<br />

=−<br />

8<br />

d.<br />

e.<br />

2 2<br />

cos(2 θ) = cos θ −sin<br />

θ<br />

2 2<br />

⎛ 15 ⎞ ⎛1<br />

⎞<br />

= ⎜<br />

− 4 ⎟<br />

−⎜ ⎟<br />

⎝ ⎠ ⎝4⎠<br />

15 1 14 7<br />

= − = =<br />

16 16 16 8<br />

π π θ π<br />

< θ < π ⇒ < <<br />

2 4 2 2<br />

θ<br />

⎛θ<br />

⎞<br />

⇒ is in Quadrant I ⇒ sin ⎜ ⎟><br />

0<br />

2<br />

⎝2<br />

⎠<br />

⎛ 15 ⎞<br />

1− θ 1 cosθ<br />

⎜<br />

−<br />

4 ⎟<br />

⎛ ⎞ −<br />

sin<br />

⎝ ⎠<br />

⎜ ⎟= =<br />

⎝ 2 ⎠ 2 2<br />

⎛4+<br />

15⎞<br />

⎜<br />

4 ⎟<br />

4+<br />

15<br />

=<br />

⎝ ⎠<br />

=<br />

2 8<br />

4+<br />

15<br />

=<br />

2 2<br />

2<br />

<strong>12</strong>86<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong> Projects<br />

<strong>Chapter</strong> <strong>12</strong> Projects<br />

Project I<br />

Answers will vary based on <strong>the</strong> year that is used. Data<br />

used in <strong>the</strong>se solutions will be from 2001.<br />

1. Race Birth rate Death rate<br />

White 0.0118 0.00991<br />

African-American 0.116 0.007758<br />

American Indian/<br />

Alaska native<br />

0.0137 0.00392<br />

Asian/Pacific<br />

Islander<br />

0.0164 0.003047<br />

Hispanic 0.0230 0.00306<br />

Total 0.141 0.008485<br />

I = net immigration = 973,206<br />

Population for 2001 = 285,545,000<br />

2. r = 0.0141 – 0.008485 = 0.005615<br />

3. pn<br />

= (1 + 0.005615) pn−1<br />

+ 973206<br />

pn<br />

= (1.005615) pn−1<br />

+ 973206<br />

p = 285545000<br />

0<br />

4. p1 p0<br />

= (1.005615) + 973206<br />

p1<br />

= (1.005615)(285545000) + 973206<br />

p = 288,<strong>12</strong>1,541<br />

1<br />

The population is predicted to be 288,<strong>12</strong>1,541 in<br />

2002.<br />

5. Actual population in 2002: 288,600,000. The<br />

formula’s prediction was lower but fairly close.<br />

6. Birth rate: 47.52 per 1000 population (0.04752)<br />

Death rate: 17.97 per 1000 population (0.01797)<br />

Population for 2001: 23,985,7<strong>12</strong><br />

I = net immigration = − 6956<br />

r = 0.04752 − 0.01797 = 0.02955<br />

pn<br />

= (1 + 0.02955) pn−1<br />

−6956<br />

pn<br />

= (1.02955) pn−1<br />

−6956<br />

p0<br />

= 23,985,7<strong>12</strong><br />

p1 = (1.02955) p0<br />

−6956<br />

p1<br />

= (1.02955)(239857<strong>12</strong>) −6956<br />

p1<br />

= 24,687,534<br />

The population is predicted to be 24,687,534 in<br />

2002.<br />

Actual population in 2002: 24,699,073.<br />

The formula’s prediction was higher but fairly<br />

close.<br />

7. Answers will vary. This appears to support <strong>the</strong><br />

article. The growth rate for <strong>the</strong> U.S. is much<br />

smaller than <strong>the</strong> growth rate for Uganda.<br />

8. It could be but one must consider trends in each<br />

of <strong>the</strong> pieces of data to find if <strong>the</strong> growth rate is<br />

increasing or decreasing over time. The same<br />

thing must be examined with respect to <strong>the</strong> net<br />

immigration.<br />

Project II<br />

1. 2, 4, 8, 16, 32, 64<br />

2. length n 2 n levels<br />

This is a geometric sequence: a 2 n<br />

n =<br />

Recursive expression: an<br />

= 2 an−1, a0<br />

= 1<br />

3.<br />

n<br />

256 = 2<br />

8 n<br />

2 = 2<br />

n = 8<br />

Project III<br />

1. Qst = − 3+ 2 Pt−<br />

1, Qdt = 18−3Pt<br />

P0<br />

= 2, b= 2, d = 3, c = 18<br />

− a = −3 → a = 3<br />

2.<br />

3+ 18−2P<br />

21−2P<br />

Pt<br />

= =<br />

3 3<br />

2<br />

Pt<br />

= 7 − Pt−<br />

1, P0<br />

= 2<br />

3<br />

−10<br />

t−1 t−1<br />

7<br />

−9<br />

P t<br />

10<br />

Pt<br />

− 1<br />

<strong>12</strong>87<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.


<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

3. P1<br />

=<br />

Q<br />

Q<br />

17<br />

3<br />

=− 3+ 2(2) Q<br />

⎛17<br />

⎞<br />

= 18−3 ⎜ ⎟<br />

⎝ 3 ⎠<br />

= 1 Q = 1<br />

s1 d1<br />

s1 d1<br />

29<br />

P2<br />

=<br />

9<br />

⎛17 ⎞ ⎛29<br />

⎞<br />

Qs2 =− 3+ 2⎜ ⎟ Qd2<br />

= 18−3⎜ ⎟<br />

⎝ 3 ⎠ ⎝ 9 ⎠<br />

25 25<br />

Qs2 = Qd2<br />

=<br />

3 3<br />

The market (supply and demand) are getting<br />

closer to being <strong>the</strong> same.<br />

4. The equilibrium price is 4.20.<br />

5. It takes 17 time periods.<br />

6. Qd17<br />

Q<br />

s17<br />

Project IV<br />

= 18 − 3(4.20) = 5.40<br />

=− 3+ 2(4.20) = 5.40<br />

The equilibrium quantity is 5.4.<br />

1. 1, 2, 4, 7, 11, 16, 22, 29<br />

2. It is not arithmetic because <strong>the</strong>re is no common<br />

difference. It is not geometric because <strong>the</strong>re is no<br />

common ration.<br />

3. 15<br />

−2<br />

−2<br />

4. y = 2.5x−<br />

2.5<br />

The graph does not pass through any of <strong>the</strong><br />

points.<br />

y6<br />

= <strong>12</strong>.5<br />

y7<br />

= 15<br />

y = 17.5<br />

8<br />

6<br />

5.<br />

y1<br />

= 0<br />

y2<br />

= 2.5<br />

y3<br />

= 5<br />

y4<br />

= 7.5<br />

y = 10<br />

5<br />

5<br />

∑<br />

i=<br />

1<br />

( y − y )<br />

r<br />

i<br />

i<br />

= (0 − 1) + (2.5 − 2) + (5 − 4) + (7.5 − 7) + (10 −11)<br />

=−1<br />

This is <strong>the</strong> sum of <strong>the</strong> errors.<br />

2<br />

y = 0.5x − 0.5x+<br />

1<br />

The graph passes through all of <strong>the</strong> points.<br />

y6<br />

= 16<br />

y7<br />

= 22<br />

y = 29<br />

8<br />

y1<br />

= 1<br />

y2<br />

= 2<br />

y3<br />

= 4<br />

y4<br />

= 7<br />

y = 11<br />

5<br />

5<br />

∑<br />

i=<br />

1<br />

( y − y ) = 0<br />

r<br />

i<br />

i<br />

The sum of <strong>the</strong> errors is zero.<br />

6. When trying to obtain <strong>the</strong> cubic and quartic<br />

polynomials of best fit, <strong>the</strong> cubic and quartic<br />

terms have coefficient zero and <strong>the</strong> polynomial<br />

of best fit is given as <strong>the</strong> quadratic in part e.<br />

For <strong>the</strong> exponential function of best fit,<br />

(0.59)(1.83) x<br />

y = .<br />

y6 = 22.2 y7 = 40.6 y8<br />

= 74.2<br />

The sum of <strong>the</strong>se errors becomes quite large.<br />

This error shows that <strong>the</strong> function does not fit <strong>the</strong><br />

data very well as x gets larger.<br />

7. The quadratic function is best.<br />

8. The data does not appear to be ei<strong>the</strong>r logarithmic<br />

or sinusoidal in shape, so it does not make sense<br />

to try to fit one of those functions to <strong>the</strong> data.<br />

<strong>12</strong>88<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!