13.06.2014 Views

Chapter 12 Sequences; Induction; the Binomial Theorem

Chapter 12 Sequences; Induction; the Binomial Theorem

Chapter 12 Sequences; Induction; the Binomial Theorem

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chapter</strong> <strong>12</strong>: <strong>Sequences</strong>; <strong>Induction</strong>; <strong>the</strong> <strong>Binomial</strong> <strong>Theorem</strong><br />

100. 21<br />

We begin with an initial guess of a<br />

0<br />

= 5 .<br />

1⎛<br />

21⎞<br />

a1<br />

= ⎜5+ ⎟=<br />

4.625<br />

2⎝<br />

5 ⎠<br />

1⎛<br />

21 ⎞<br />

a2<br />

= ⎜4.625 + ⎟≈<br />

4.58277027<br />

2⎝<br />

4.625⎠<br />

1⎛<br />

21 ⎞<br />

a3<br />

= ⎜4.58277027<br />

+<br />

⎟<br />

2 ⎝<br />

4.58277027 ⎠<br />

≈ 4.582575699<br />

1⎛<br />

21 ⎞<br />

a4<br />

= ⎜4.582575699<br />

+<br />

⎟<br />

2 ⎝<br />

4.582575699 ⎠<br />

≈ 4.582575695<br />

1⎛<br />

21 ⎞<br />

a5<br />

= ⎜4.582575695<br />

+<br />

⎟<br />

2 ⎝<br />

4.582575695 ⎠<br />

≈ 4.582575695<br />

101. 89<br />

We begin with an initial guess of a<br />

0<br />

= 9 .<br />

1⎛<br />

89⎞<br />

a1<br />

= ⎜5 + ⎟≈9.444444444<br />

2⎝<br />

5 ⎠<br />

1⎛<br />

89 ⎞<br />

a2<br />

= ⎜9.444444444<br />

+<br />

⎟<br />

2 ⎝<br />

9.444444444 ⎠<br />

≈ 9.433986928<br />

1⎛<br />

89 ⎞<br />

a3<br />

= ⎜9.433986928<br />

+<br />

⎟<br />

2 ⎝<br />

9.433986928 ⎠<br />

≈ 9.433981132<br />

1⎛<br />

89 ⎞<br />

a4<br />

= ⎜9.433981132<br />

+<br />

⎟<br />

2 ⎝<br />

9.433981132 ⎠<br />

≈ 9.433981132<br />

1⎛<br />

89 ⎞<br />

a5<br />

= ⎜9.433981132<br />

+<br />

⎟<br />

2 ⎝<br />

9.433981132<br />

⎠<br />

≈ 9.433981132<br />

For both a<br />

5<br />

and <strong>the</strong> calculator approximation,<br />

we obtain 21 ≈ 4.582575695 .<br />

For both a<br />

5<br />

and <strong>the</strong> calculator approximation,<br />

we obtain 89 ≈ 9.433981132 .<br />

_________________________________________________________________________________________________<br />

102. To show that 1 2 3 ... ( n 1)<br />

( + 1)<br />

n n<br />

+ + + + − + n =<br />

2<br />

S = 1 + 2 + 3 + ... + n− 1 + n, we can reverse <strong>the</strong> order to get<br />

Let ( )<br />

+ S = n+ ( n− ) + ( n−<br />

)<br />

1 2 +...+ 2 + 1, now add <strong>the</strong>se two lines to get<br />

[ ] ⎡ ( ) ⎤ ⎡ ( ) ⎤ ⎡( ) ⎤ [ ]<br />

2S = 1+ n + ⎣2 + n− 1 ⎦+ ⎣3+ n− 2 ⎦+ ...... + ⎣ n− 1 + 2⎦+ n+<br />

1<br />

So we have 2S = [ 1+ n] + [ 1+ n] + [ 1 + n] + .... + [ n+ 1] + [ n+ 1] = n⋅ [ n+<br />

1]<br />

Thus, 2S<br />

= n( n+<br />

1)<br />

n⋅ ( n+<br />

1)<br />

S =<br />

103. Answers will vary.<br />

2<br />

<strong>12</strong>46<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!