13.06.2014 Views

Chapter 12 Sequences; Induction; the Binomial Theorem

Chapter 12 Sequences; Induction; the Binomial Theorem

Chapter 12 Sequences; Induction; the Binomial Theorem

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Section <strong>12</strong>.4: Ma<strong>the</strong>matical <strong>Induction</strong><br />

21. I:<br />

2<br />

n = 1: 1 − 1+ 2 = 2 is divisible by 2<br />

2<br />

II: If k − k + 2 is divisible by 2 , <strong>the</strong>n<br />

2 2<br />

( k + 1) − ( k+ 1) + 2= k + 2k+ 1−k− 1+<br />

2<br />

2<br />

= ( k − k+ 2) + (2 k)<br />

2<br />

Since k − k + 2 is divisible by 2 and 2k is<br />

2<br />

divisible by 2, <strong>the</strong>n ( k + 1) − ( k + 1) + 2 is<br />

divisible by 2.<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

22. I: n = 1: 1(1 + 1)(1 + 2) = 6 is divisible by 6<br />

23. I:<br />

24. I:<br />

II: If kk ( + 1)( k+ 2) is divisible by 6 , <strong>the</strong>n<br />

( k + 1)( k+ 1+ 1)( k+ 1+<br />

2)<br />

= ( k + 1)( k+ 2)( k+<br />

3)<br />

= kk ( + 1)( k+ 2) + 3( k+ 1)( k+<br />

2).<br />

Now, kk ( + 1)( k+<br />

2) is divisible by 6;<br />

and since ei<strong>the</strong>r k + 1 or k + 2 is even,<br />

3( k + 1)( k + 2)<br />

is divisible by 6.<br />

Thus, ( k + 1)( k+ 2)( k+<br />

3)<br />

= k k+ 1 k+ 2 + 3 k+ 1 k+<br />

2<br />

( )( ) ( )( )<br />

is divisible by 6.<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

n= 1: If x > 1<strong>the</strong>n x = x > 1.<br />

II: Assume, for some natural number k, that if<br />

k<br />

x > 1 , <strong>the</strong>n x > 1 .<br />

k + 1<br />

Then x > 1, for x > 1,<br />

k+<br />

1 k<br />

x = x ⋅ x > 1⋅ x = x > 1<br />

↑<br />

k<br />

( x > 1)<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

n= 1: If 0 < x< 1<strong>the</strong>n 0 < x < 1.<br />

II: Assume, for some natural number k, that if<br />

k<br />

0< x < 1, <strong>the</strong>n 0< x < 1.<br />

Then, for 0 < x < 1,<br />

k+<br />

1 k<br />

0< x = x ⋅ x< 1⋅ x = x<<br />

1<br />

k + 1<br />

Thus, 0 < x < 1.<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

1<br />

1<br />

25. I:<br />

1 1<br />

n= 1: a−bis a factor of a − b = a−<br />

b.<br />

II: If a− b is a factor of a − b , show that<br />

a− b is a factor of a − b .<br />

k+ 1 k+<br />

1 k k<br />

a − b = a⋅a −b⋅b<br />

= aa ⋅ −ab ⋅ + ab ⋅ −bb<br />

⋅<br />

k k k<br />

= a a − b + b ( a−b)<br />

k<br />

( )<br />

k<br />

k+ 1 k+<br />

1<br />

k k k k<br />

Since a− b is a factor of a − b and a−<br />

b<br />

is a factor of a− b, <strong>the</strong>n a− b is a factor of<br />

a<br />

k+ 1 k+<br />

1<br />

− b .<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

26. I: n = 1:<br />

21 ⋅+ 1 21 ⋅+ 1 3 3<br />

a+ bis a factor of a + b = a + b .<br />

⎡ 3 3 2 2<br />

a + b = ( a+ b)( a − ab+<br />

b )<br />

⎤<br />

⎣<br />

⎦<br />

II:<br />

k<br />

k<br />

2k+ 1 2k+<br />

1<br />

If a+ b is a factor of a + b ,<br />

show that a+ b is a factor of<br />

2( k+ 1) + 1 2( k+ 1)<br />

+ 1<br />

a + b .<br />

2( k+ 1) + 1 2( k+ 1) + 1 2k+ 3 2k+<br />

3<br />

a + b = a + b<br />

= a ⋅ a + a ⋅b −a ⋅ b + b ⋅b<br />

2 2k+ 1 2k+ 1 2k+<br />

1 2 2<br />

= a a + b −b ( a −b<br />

)<br />

2 2k+ 1 2 2k+ 1 2 2k+ 1 2 2k+<br />

1<br />

( )<br />

2k+ 1 2k+<br />

1<br />

Since a+ b is a factor of a + b and<br />

2 2<br />

a+ b is a factor of a − b [( a− b)( a+ b)<br />

] ,<br />

2k+ 3 2k+<br />

3<br />

<strong>the</strong>n a+ b is a factor of a + b .<br />

Conditions I and II are satisfied; <strong>the</strong> statement is<br />

true.<br />

27. I: 1<br />

n = : ( ) 1<br />

1+ a = 1+ a ≥ 1+ 1⋅<br />

a<br />

II: Assume that <strong>the</strong>re is an integer k for which<br />

<strong>the</strong> inequality holds. We need to show that if<br />

k<br />

1+ a ≥ 1+ ka <strong>the</strong>n<br />

( )<br />

k + 1<br />

( 1+ a) ≥ 1+ ( k+ 1)<br />

a.<br />

k+<br />

1<br />

k<br />

( 1+ a) = ( 1+ a) ( 1+<br />

a)<br />

≥ ( 1+ ka)( 1+<br />

a)<br />

2<br />

= 1+ ka + a + ka<br />

= 1+ k+ 1 a+<br />

ka<br />

( )<br />

( k )<br />

≥ 1+ + 1 a<br />

Conditions I and II are satisfied, <strong>the</strong> statement is<br />

true.<br />

2<br />

<strong>12</strong>67<br />

© 2009 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as <strong>the</strong>y currently<br />

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from <strong>the</strong> publisher.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!