21.06.2014 Views

H-Matrix approximation for the operator exponential with applications

H-Matrix approximation for the operator exponential with applications

H-Matrix approximation for the operator exponential with applications

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Numer. Math. (2002) 92: 83–111<br />

Digital Object Identifier (DOI) 10.1007/s002110100360<br />

Numerische<br />

Ma<strong>the</strong>matik<br />

H-<strong>Matrix</strong> <strong>approximation</strong><br />

<strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong><br />

Ivan P. Gavrilyuk 1 , Wolfgang Hackbusch 2 , Boris N. Khoromskij 2<br />

1 Berufsakademie Thüringen, Am Wartenberg 2, 99817 Eisenach, Germany;<br />

e-mail: ipg@ba-eisenach.de<br />

2 Max-Planck-Institute <strong>for</strong> Ma<strong>the</strong>matics in Sciences, Inselstr. 22–26, 04103 Leipzig,<br />

Germany; e-mail: {wh,bokh}@mis.mpg.de<br />

Received June 22, 2000 / Revised version received June 6, 2001 /<br />

Published online October 17, 2001 – c○ Springer-Verlag 2001<br />

Summary. We develop a data-sparse and accurate <strong>approximation</strong> to parabolic<br />

solution <strong>operator</strong>s in <strong>the</strong> case of a ra<strong>the</strong>r general elliptic part given by<br />

a strongly P-positive <strong>operator</strong> [4].<br />

In <strong>the</strong> preceding papers [12]–[17], a class of matrices (H-matrices) has<br />

been analysed which are data-sparse and allow an approximate matrix arithmetic<br />

<strong>with</strong>almost linear complexity. In particular, <strong>the</strong> matrix-vector/matrixmatrix<br />

product <strong>with</strong>suchmatrices as well as <strong>the</strong> computation of <strong>the</strong> inverse<br />

have linear-logarithmic cost. In <strong>the</strong> present paper, we apply <strong>the</strong> H-matrix<br />

techniques to approximate <strong>the</strong> exponent of an elliptic <strong>operator</strong>.<br />

Starting <strong>with</strong> <strong>the</strong> Dun<strong>for</strong>d-Cauchy representation <strong>for</strong> <strong>the</strong> <strong>operator</strong> exponent,<br />

we <strong>the</strong>n discretise <strong>the</strong> integral by <strong>the</strong> <strong>exponential</strong>ly convergent quadrature<br />

rule involving a short sum of resolvents. The latter are approximated by<br />

<strong>the</strong> H-matrices. Our algorithm inherits a two-level parallelism <strong>with</strong> respect<br />

to both <strong>the</strong> computation of resolvents and <strong>the</strong> treatment of different time<br />

values. In <strong>the</strong> case of smooth data (coefficients, boundaries), we prove <strong>the</strong><br />

linear-logarithmic complexity of <strong>the</strong> method.<br />

Ma<strong>the</strong>matics Subject Classification (1991): 65F50, 65F30, 15A09, 15A24,<br />

15A99<br />

Correspondence to: W. Hackbusch


84 I. P. Gavrilyuk et al.<br />

1 Introduction<br />

There are several sparse (n × n)-matrix <strong>approximation</strong>s which allow to<br />

construct optimal iteration methods to solve <strong>the</strong> elliptic/parabolic boundary<br />

value problems <strong>with</strong> O(n) arithmetic operations. But in many <strong>applications</strong><br />

one has to deal <strong>with</strong> full matrices arising when solving various problems<br />

discretised by <strong>the</strong> boundary element (BEM) or FEM methods. In <strong>the</strong> latter<br />

case <strong>the</strong> inverse of a sparse FEM matrix is a full matrix. A class of hierarchical<br />

(H) matrices has been recently introduced and developed in [12]-[17].<br />

These full matrices allow an approximate matrix arithmetic (including <strong>the</strong><br />

computation of <strong>the</strong> inverse) of almost linear complexity and can be considered<br />

as ”data-sparse”. Methods <strong>for</strong> approximating <strong>the</strong> action of matrix<br />

<strong>exponential</strong>s have been investigated since <strong>the</strong> 1970s, see [20]. The most<br />

commonly used algorithms are based on Krylov subspace methods [22,18].<br />

A class of effective algorithms based on <strong>the</strong> Cayley trans<strong>for</strong>m was developed<br />

in [8].<br />

Concerning <strong>the</strong> second order evolution problems and <strong>the</strong> <strong>operator</strong> cosine<br />

family new discretisation methods were recently developed in [4]- [5]<br />

in a framework of strongly P-positive <strong>operator</strong>s in a Banachspace. This<br />

framework turns out to be useful also <strong>for</strong> constructing efficient parallel <strong>exponential</strong>ly<br />

convergent algorithms <strong>for</strong> <strong>the</strong> <strong>operator</strong> exponent and <strong>the</strong> first<br />

order evolution differential equations [5]. Parallel methods <strong>with</strong> a polynomial<br />

convergence order 2 and 4 based on a contour integration <strong>for</strong> symmetric<br />

and positive definite <strong>operator</strong>s were proposed in [24].<br />

The aim of this paper is to combine <strong>the</strong> H-matrix techniques <strong>with</strong> <strong>the</strong><br />

contour integration to construct an explicit data-sparse <strong>approximation</strong> <strong>for</strong> <strong>the</strong><br />

<strong>operator</strong> exponent. Starting <strong>with</strong> <strong>the</strong> Dun<strong>for</strong>d-Cauchy representation <strong>for</strong> <strong>the</strong><br />

<strong>operator</strong> exponent and essentially using <strong>the</strong> strong P-positivity of <strong>the</strong> elliptic<br />

<strong>operator</strong> involved we discretise <strong>the</strong> integral by <strong>the</strong> <strong>exponential</strong>ly convergent<br />

trapezoidal rule based on <strong>the</strong> Sinc-<strong>approximation</strong> of integrals in infinite strip<br />

and involving a short sum of resolvents. Approximating <strong>the</strong> resolvents by<br />

<strong>the</strong> H-matrices, we obtain an algorithm <strong>with</strong> almost linear cost representing<br />

<strong>the</strong> non-local <strong>operator</strong> in question. This algorithm possesses two levels of<br />

parallelism <strong>with</strong>respect to both<strong>the</strong> computation of resolvents <strong>for</strong> different<br />

quadrature points and <strong>the</strong> treatment of numerous time values. Our parallel<br />

method has <strong>the</strong> <strong>exponential</strong> convergence due to <strong>the</strong> optimal quadrature rule<br />

in <strong>the</strong> contour integration <strong>for</strong> holomorphic function providing an explicit<br />

representation of <strong>the</strong> <strong>exponential</strong> <strong>operator</strong> in terms of data-sparse matrices<br />

of linear-logarithmic complexity.<br />

Our method applies to <strong>the</strong> matrix <strong>exponential</strong>s exp(A) <strong>for</strong> <strong>the</strong> class of<br />

matrices <strong>with</strong> Re(sp(A)) < 0, which allow <strong>the</strong> hierarchical data-sparse H-<br />

matrix <strong>approximation</strong> to <strong>the</strong> resolvent (zI − A) −1 , z /∈ sp(A). First, we<br />

discuss an application <strong>for</strong> solving linear parabolic problems <strong>with</strong>P-positive


H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 85<br />

elliptic part. Fur<strong>the</strong>r <strong>applications</strong> of our method <strong>for</strong> <strong>the</strong> fast parallel solving<br />

of linear dynamical systems of equations and <strong>for</strong> <strong>the</strong> stationary Lyapunov-<br />

Sylvester matrix equation AX + XB + C =0will also be discussed, see<br />

Sect. 4.<br />

2 Representation of exp(t L) by a sum of resolvents<br />

In this section we outline <strong>the</strong> description of <strong>the</strong> <strong>operator</strong> exponent <strong>with</strong> a<br />

strongly P-positive <strong>operator</strong>. As a particular case a second order elliptic differential<br />

<strong>operator</strong> will be considered. We derive <strong>the</strong> characteristics of this<br />

<strong>operator</strong> which are important <strong>for</strong> our representation and give <strong>the</strong> <strong>approximation</strong><br />

results.<br />

2.1 Strongly P-positive <strong>operator</strong>s<br />

Strongly P-positive <strong>operator</strong>s were introduced in [4] and play an important<br />

role in <strong>the</strong> <strong>the</strong>ory of <strong>the</strong> second order difference equations [23], evolution<br />

differential equations as well as <strong>the</strong> cosine <strong>operator</strong> family in a Banach space<br />

X [4] .<br />

Let A : X → X be a linear, densely defined, closed <strong>operator</strong> in X <strong>with</strong><br />

<strong>the</strong> spectral set sp(A) and <strong>the</strong> resolvent set ρ(A). Let Γ 0 = {z = ξ+iη : ξ =<br />

aη 2 + γ 0 } be a parabola, whose interior contains sp(A). In what follows we<br />

suppose that <strong>the</strong> parabola lies in <strong>the</strong> right half-plane of <strong>the</strong> complex plane,<br />

i.e., γ 0 > 0. We denote by Ω Γ0 = {z = ξ + iη : ξ>aη 2 + γ 0 }, a>0,<br />

<strong>the</strong> domain inside of <strong>the</strong> parabola. Now, we are in <strong>the</strong> position to give <strong>the</strong><br />

following definition.<br />

Definition 2.1 We say that an <strong>operator</strong> A : X → X is strongly P-positive<br />

if its spectrum sp(A) lies in <strong>the</strong> domain Ω Γ0 and <strong>the</strong> estimate<br />

(2.1) ‖(zI − A) −1 ‖ X→X ≤<br />

M<br />

1+ √ |z|<br />

<strong>for</strong> all z ∈ C\Ω Γ0<br />

holds true <strong>with</strong> a positive constant M.<br />

Next, we show that <strong>the</strong>re exist classes of strongly P-positive <strong>operator</strong>s<br />

which have important <strong>applications</strong>. Let V ⊂ X ≡ H ⊂ V ∗ be a triple of<br />

Hilbert spaces and let a(·, ·) be a sesquilinear <strong>for</strong>m on V . We denote by<br />

c e <strong>the</strong> constant from <strong>the</strong> imbedding inequality ‖u‖ X ≤ c e ‖u‖ V , ∀u ∈ V .<br />

Assume that a(·, ·) is bounded, i.e.,<br />

|a(u, v)| ≤c‖u‖ V ‖v‖ V <strong>for</strong> all u, v ∈ V.


86 I. P. Gavrilyuk et al.<br />

η<br />

Γ 0<br />

Γ δ<br />

ξ<br />

δ 1<br />

γ 0<br />

γ 1<br />

Fig. 1. Parabolae Γ δ and Γ 0<br />

The boundedness of a(·, ·) implies <strong>the</strong> well-posedness of <strong>the</strong> continuous<br />

<strong>operator</strong> A : V → V ∗ defined by<br />

a(u, v) = V ∗< Au, v > V <strong>for</strong> all ∈ V.<br />

As usual, one can restrict A to a domain D(A) ⊂ V and consider A as an<br />

(unbounded) <strong>operator</strong> in H. The assumptions<br />

Re a(u, u) ≥ δ 0 ‖u‖ 2 V − δ 1‖u‖ 2 X<br />

|Im a(u, u)| ≤κ‖u‖ V ‖u‖ X<br />

<strong>for</strong> all u ∈ V,<br />

<strong>for</strong> all u ∈ V<br />

guarantee that <strong>the</strong> numerical range {a(u, u) :u ∈ X <strong>with</strong> ‖u‖ X =1} of<br />

A (and sp(A)) lies in Ω Γ0 , where <strong>the</strong> parabola Γ 0 depends on <strong>the</strong> constants<br />

δ 0 ,δ 1 ,κ,c e . Actually, if a(u, u) =ξ u + iη u <strong>the</strong>n we get<br />

ξ u = Re a(u, u) ≥ δ 0 ‖u‖ 2 V − δ 1 ≥ δ 0 c −2<br />

e − δ 1 ,<br />

|η u | = |Im a(u, u)| ≤κ‖u‖ V .<br />

It implies<br />

(2.2) ξ u >δ 0 c −2<br />

e − δ 1 , ‖u‖ 2 V ≤ 1 √<br />

ξ + δ1<br />

(ξ u + δ 1 ), |η u |≤κ .<br />

δ 0 δ 0<br />

The first and <strong>the</strong> last inequalities in (2.2) mean that <strong>the</strong> parabola Γ δ = {z =<br />

ξ + iη : ξ = δ 0<br />

κ<br />

η 2 − δ 1 } contains <strong>the</strong> numerical range of A. Supposing that<br />

Re sp(A) >γ 1 >γ 0 one can easily see that <strong>the</strong>re exists ano<strong>the</strong>r parabola<br />

Γ 0 = {z = ξ + iη : ξ = aη 2 + γ 0 } <strong>with</strong> a = (γ 1−γ 0 )δ 0<br />

(γ 1 +δ 1 )κ<br />

in <strong>the</strong> right-half<br />

plane containing sp(A), see Fig. 1. Note that δ 0 c −2<br />

e −δ 1 > 0 is <strong>the</strong> sufficient<br />

condition <strong>for</strong> Resp(A) > 0 and in this case one can choose γ 1 = δ 0 c −2<br />

e −δ 1 .<br />

Analogously to [4] it can be shown that inequality (2.1) holds true in C\Ω Γ0<br />

(see <strong>the</strong> discussion in [4, pp. 330-331]). In <strong>the</strong> following, <strong>the</strong> <strong>operator</strong> A is<br />

strongly P-positive.


H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 87<br />

2.2 Examples<br />

As <strong>the</strong> first example let us consider <strong>the</strong> one-dimensional <strong>operator</strong> A :<br />

L 1 (0, 1) → L 1 (0, 1) <strong>with</strong><strong>the</strong> domain D(A) = H0 2 (0, 1) = {u : u ∈<br />

H 2 (0, 1), u(0)=0,u(1)=0} in <strong>the</strong> Sobolev space H 2 (0, 1) defined by<br />

Au = −u ′′<br />

<strong>for</strong> all u ∈ D(A).<br />

Here we set X = L 1 (0, 1) (see Definition 2.1). The eigenvalues λ k =<br />

k 2 π 2 (k =1, 2,...) of A lie on <strong>the</strong> real axis inside of <strong>the</strong> domain Ω Γ0<br />

enveloped by <strong>the</strong> path Γ 0 = {z = η 2 +1± iη}. The Green function <strong>for</strong> <strong>the</strong><br />

problem<br />

(zI − A)u ≡ u ′′ (x)+zu(x) =−f(x), x ∈ (0, 1); u(0) = u(1)=0<br />

is given by<br />

G(x, ξ; z) =<br />

i.e., we have<br />

1<br />

√ z sin<br />

√ z<br />

{<br />

sin<br />

√ zxsin<br />

√ z(1 − ξ) if x ≤ ξ,<br />

sin √ zξ sin √ z(1 − x) if x ≥ ξ,<br />

u(x) =(zI − A) −1 f =<br />

∫ 1<br />

0<br />

G(x, ξ; z)f(ξ)dξ.<br />

Estimating <strong>the</strong> absolute value of <strong>the</strong> Green function on <strong>the</strong> parabola z =<br />

η 2 +1± iη <strong>for</strong> |z| large enoughwe get that ‖u‖ L1 = ‖(zI − A) −1 f‖ L1 ≤<br />

M<br />

1+ √ |z| ‖f‖ L 1<br />

(f ∈ L 1 (0, 1), z∈ C \Ω Γ0 ), i.e., <strong>the</strong> <strong>operator</strong> A : L 1 → L 1<br />

is strongly P-positive in <strong>the</strong> sense of Definition 2.1. Similar estimates <strong>for</strong><br />

<strong>the</strong> Green function imply <strong>the</strong> strong positiveness of A also in L ∞ (0, 1) (see<br />

[5] <strong>for</strong> details).<br />

As <strong>the</strong> second example of a strongly P-positive <strong>operator</strong> one can consider<br />

<strong>the</strong> strongly elliptic differential <strong>operator</strong><br />

(2.3) L := −<br />

d∑<br />

j,k=1<br />

∂ j a jk ∂ k +<br />

d∑<br />

j=1<br />

b j ∂ j + c 0<br />

(<br />

∂ j :=<br />

∂ )<br />

∂x j<br />

<strong>with</strong>smooth(in general complex) coefficients a jk ,b j and c 0 in a domain<br />

Ω <strong>with</strong>a smoothboundary. For <strong>the</strong> ease of presentation, we consider <strong>the</strong><br />

case of Dirichlet boundary conditions. We suppose that a pq = a qp and <strong>the</strong><br />

following ellipticity condition holds<br />

d∑<br />

a ij y i y j ≥ C 1<br />

i,j=1<br />

d∑<br />

yi 2 .<br />

i=1


88 I. P. Gavrilyuk et al.<br />

This <strong>operator</strong> is associated <strong>with</strong> <strong>the</strong> sesquilinear <strong>for</strong>m<br />

⎛<br />

⎞<br />

∫ d∑<br />

d∑<br />

a(u, v) = ⎝ a ij ∂ i u ∂ j v + b j ∂ j u v + c 0 uv⎠ dΩ.<br />

Ω<br />

i,j=1<br />

Our algorithm needs explicit estimates <strong>for</strong> <strong>the</strong> parameters of <strong>the</strong> parabola<br />

which in this example have to be expressed by <strong>the</strong> coefficients of <strong>the</strong> differential<br />

<strong>operator</strong>. Let<br />

C 2 := inf<br />

x∈Ω<br />

1 ∑<br />

∣2<br />

j<br />

∂b j<br />

∂x j<br />

− c 0<br />

∣ ∣∣∣<br />

,<br />

j=1<br />

C 3 := √ d max |b j (x)|,<br />

x,j<br />

|u| 2 1 = ∑ j |∂ ju| 2 be <strong>the</strong> semi-norm of <strong>the</strong> Sobolev space H 1 (Ω), ‖·‖ k be <strong>the</strong><br />

norm of <strong>the</strong> Sobolev space H k (Ω) (k =0, 1,...) <strong>with</strong> H 0 (Ω) =L 2 (Ω),<br />

and C F <strong>the</strong> constant from <strong>the</strong> Friedrichs inequality<br />

|u| 2 1 ≥ C F ‖u‖ 2 0<br />

<strong>for</strong> all u ∈ H 1 0 (Ω).<br />

This constant can be estimated by C F =1/(4B 2 ), where B is <strong>the</strong> edge<br />

of <strong>the</strong> cube containing <strong>the</strong> domain Ω. It is easy to show that in this case<br />

<strong>with</strong> V = H0 1(Ω),H = L √ 2(Ω) it holds ξ u ≥ C 1 |u| 2 1 − C 2‖u‖ 0 ≥ C 1 C F −<br />

C 2 , |η u |≤C 3 |u| 1 ≤ C 3 (ξu + C 2 )/C 1 , so that <strong>the</strong> parabola Γ δ is defined<br />

by <strong>the</strong> parameters δ 0 = C 1 ,δ 1 = C 2 ,κ= C 3 and <strong>the</strong> lower bound of sp(A)<br />

can be estimated by γ 1 = C 1 C F − C 2 >γ 0 . Now, <strong>the</strong> desired parabola Γ 0<br />

is constructed as above by putting a = (γ 1−γ 0 )δ 0<br />

(γ 1 +δ 1 )κ<br />

, see Sect. 2.1.<br />

The third example is given by a matrix A ∈ R n×n whose spectrum<br />

satisfies Resp(A) > 0. In this case, <strong>the</strong> parameters of <strong>the</strong> parabola Γ 0 can be<br />

determined by means of <strong>the</strong> Gershgorin circles. Let A = {a ij } n i,j=1 , define<br />

C i = {z : |z − a ii |≤<br />

n ∑<br />

j=1,j≠i<br />

Then by Gershgorin’s <strong>the</strong>orem,<br />

a ij },D j = {z : |z − a jj |≤<br />

sp(A) ⊂C A := (∪ i C i ) ∩ (∪ j D j ) .<br />

n ∑<br />

i=1,i≠j<br />

a ij }.<br />

The corresponding parabola Γ 0 is obtained as <strong>the</strong> enveloping one <strong>for</strong> <strong>the</strong> set<br />

C A <strong>with</strong>simple modifications in <strong>the</strong> case Re(C A ) ∩ (−∞, 0] ≠ ∅.<br />

2.3 Representation of <strong>the</strong> <strong>operator</strong> exponent<br />

Let L be a linear, densely defined, closed, strongly P-positive <strong>operator</strong> in<br />

a Banachspace X. The <strong>operator</strong> exponent T (t) ≡ exp(−tL) (<strong>operator</strong>valued<br />

function or a continuous semigroup of bounded linear <strong>operator</strong>s on


H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 89<br />

X <strong>with</strong><strong>the</strong> infinitesimal generator L, see, e.g., [21]) satisfies <strong>the</strong> differential<br />

equation<br />

dT<br />

(2.4)<br />

+ LT =0, T(0) = I,<br />

dt<br />

where I is <strong>the</strong> identity <strong>operator</strong> (<strong>the</strong> last equality means that lim t→+0 T (t)<br />

u 0 = u 0 <strong>for</strong> all u 0 ∈ X). Given <strong>the</strong> <strong>operator</strong> exponent T (t) <strong>the</strong> solution of<br />

<strong>the</strong> first order evolution equation (parabolic equation)<br />

du<br />

dt + Lu =0, u(0) = u 0<br />

<strong>with</strong>a given initial vector u 0 and unknown vector valued function u(t) :<br />

R + → X can be represented as<br />

u(t) = exp(−tL)u 0 .<br />

Let Γ 0 = {z = ξ + iη : ξ = aη 2 + γ 0 } be <strong>the</strong> parabola defined as above<br />

and containing <strong>the</strong> spectrum sp(L) of <strong>the</strong> strongly P-positive <strong>operator</strong> L.<br />

Lemma 2.2 Choose a parabola (called <strong>the</strong> integration parabola) Γ ={z =<br />

ξ + iη : ξ =ãη 2 + b} <strong>with</strong> ã ≤ a, b ≤ γ 0 . Then <strong>the</strong> exponent exp(−tL)<br />

can be represented by <strong>the</strong> Dun<strong>for</strong>d-Cauchy integral [2]<br />

(2.5) exp(−tL) = 1 ∫<br />

e −zt (zI −L) −1 dz.<br />

2πi Γ<br />

Moreover, T (t) = exp(−tL) satisfies <strong>the</strong> differential equation (2.4).<br />

Proof. In fact, using <strong>the</strong> parameter representation z =ãη 2 + b ± iη, η ∈<br />

(0, ∞), of <strong>the</strong> path Γ and <strong>the</strong> estimate (2.1), we have<br />

‖ exp(−tL)‖ =<br />

‖ 1<br />

2πi<br />

+ 1<br />

2πi<br />

≤ C<br />

∫ 0<br />

∫∞<br />

∞<br />

e −(ãη2 +b+iη)t ((ãη 2 + b + iη)I − L) −1 (2ãη + i)dη<br />

0<br />

∫ ∞<br />

e −(ãη2 +b)t<br />

0<br />

e −(ãη2 +b−iη)t ((ãη 2 + b − iη)I − L) −1 (2ãη − i)dη‖<br />

√<br />

4ã 2 η 2 +1<br />

1+[(ãη 2 + b) 2 + η 2 dη.<br />

] 1/4<br />

Analogously, applying (2.1) we have <strong>for</strong> <strong>the</strong> derivative of T (t)=exp(−tL)<br />

‖L exp(−tL)‖ = ‖ 1 ∫<br />

ze −zt (tI −L) −1 )dz‖<br />

2πi Γ<br />

∫ ∞ √<br />

≤ C (ãη 2 + b) 2 + η 2 e −(ãη2 +b)t<br />

0<br />

√<br />

4ã<br />

·<br />

2 η 2 +1<br />

1+[(ãη 2 + b) 2 + η 2 dη,<br />

] 1/4


90 I. P. Gavrilyuk et al.<br />

where <strong>the</strong> integrals are finite <strong>for</strong> t>0. Fur<strong>the</strong>rmore, we have<br />

dT<br />

dt + LT = 1 ∫<br />

−ze −zt (zI −L) −1 dz<br />

2πi Γ<br />

( ∫<br />

)<br />

1<br />

+ L e −zt (zI −L) −1 dz<br />

2πi Γ<br />

= − 1 ∫<br />

ze −zt (zI −L) −1 dz<br />

2πi Γ<br />

+ 1 ∫<br />

ze zt (zI −L) −1 dz =0,<br />

2πi Γ<br />

i.e., T (t) = exp(−tL) satisfies <strong>the</strong> differential equation (2.4). This completes<br />

<strong>the</strong> proof.<br />

The parametrised integral (2.5) can be represented in <strong>the</strong> <strong>for</strong>m<br />

(2.6) exp(−tL) = 1 ∫ ∞<br />

F (η, t)dη<br />

2πi −∞<br />

<strong>with</strong><br />

F (η, t) =e −zt −1 dz<br />

(zI −L)<br />

dη , z =ãη2 + b − iη.<br />

2.4 The computational scheme and <strong>the</strong> convergence analysis<br />

Following [25], we construct a quadrature rule <strong>for</strong> <strong>the</strong> integral in (2.6) by<br />

using <strong>the</strong> Sinc <strong>approximation</strong> on (−∞, ∞). For1 ≤ p ≤∞, introduce <strong>the</strong><br />

family H p (D d ) of all <strong>operator</strong>-valued functions, which are analytic in <strong>the</strong><br />

infinite strip D d ,<br />

(2.7) D d = {z ∈ C : −∞ < Rez


H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 91<br />

be <strong>the</strong> kthSinc function <strong>with</strong>step size h, evaluated at x. GivenF ∈<br />

H p (D d ),h>0, and a positive integer N, let us use <strong>the</strong> notations<br />

∫<br />

I(F) = F(x)dx,<br />

T (F,h)<br />

C(F,h) =<br />

= h<br />

R<br />

∞∑<br />

k=−∞<br />

∞∑<br />

k=−∞<br />

F(kh),<br />

F(kh)S(k, h),<br />

T N (F,h)=h<br />

N∑<br />

k=−N<br />

F(kh),<br />

η N (F,h)=I(F) − T N (F,h), η(F,h) = I(F) − T (F,h).<br />

Adapting <strong>the</strong> ideas of [25,5], one can prove (see Appendix) <strong>the</strong> following<br />

<strong>approximation</strong> results <strong>for</strong> functions from H 1 (D d ).<br />

Lemma 2.3 For any <strong>operator</strong>-valued function f ∈ H 1 (D d ), <strong>the</strong>re holds<br />

η(f,h) = i ∫ { f(ξ − id) exp(−π(d + iξ)/h)<br />

2 R sin [π(ξ − id)/h]<br />

}<br />

f(ξ + id) exp(−π(d − iξ)/h)<br />

(2.11)<br />

− dξ<br />

sin [π(ξ + d)/h]<br />

providing <strong>the</strong> estimate<br />

(2.12) ‖η(f,h)‖ ≤ exp(−πd/h)<br />

2 sinh (πd/h) ‖f‖ H 1 (D d ).<br />

If, in addition, f satisfies on R <strong>the</strong> condition<br />

(2.13) ‖f(x)‖ 0,<br />

<strong>the</strong>n<br />

‖η N (f,h)‖ ≤c √ [<br />

exp(−2πd/h)<br />

π √ α(1 − exp (−2πd/h))<br />

+ exp[−α(N +1)2 h 2 ]<br />

]<br />

(2.14)<br />

.<br />

αh(N +1)<br />

Applying <strong>the</strong> quadrature rule T N <strong>with</strong><strong>the</strong> <strong>operator</strong>-valued function<br />

(2.15) F (η, t; L) =(2ãη − i)ϕ(η)(ψ(η)I −L) −1<br />

where<br />

(2.16) ϕ(η) =e −tψ(η) , ψ(η) =ãη 2 + b − iη,


92 I. P. Gavrilyuk et al.<br />

we obtain <strong>for</strong> integral (2.6)<br />

T (t) ≡ exp(−tL) ≈ T N (t) ≡ exp N (−tL)<br />

N∑<br />

(2.17)<br />

= h F (kh, t; L).<br />

k=−N<br />

Note that F satisfies (2.13) <strong>with</strong> α = t ã. The error analysis is given by <strong>the</strong><br />

following Theorem (see Appendix <strong>for</strong> <strong>the</strong> proof).<br />

Theorem 2.4 Choose k>1, ã = a/k, h = 3√ 2πdk/((N +1) 2 a), b=<br />

b(k) =γ 0 − (k − 1)/(4a) and <strong>the</strong> integration parabola Γ b(k) = {z =<br />

ãη 2 + b(k) − iη : η ∈ (−∞, ∞)}. Then <strong>the</strong>re holds<br />

‖T (t) − T N (t)‖ ≡‖exp(−tL) − exp N (−tL)‖<br />

(2.18)<br />

≤ Mc √ [<br />

π<br />

2 √ k exp[−s(N +1) 2/3 ]<br />

√<br />

at(1 − exp(−s(N +1) 2/3 ))<br />

]<br />

+ k exp[−ts(N +1)2/3 ]<br />

t(N +1) 1/3 3√ ,<br />

2πdka 2<br />

where<br />

s = 3√ (2πd) 2 a/k ,<br />

(2.19) c = M 1 e t[ad2 /k+d−b] , d =(1− √ 1 ) k<br />

k 2a ,<br />

|2 a k<br />

M 1 = max<br />

z − i|<br />

z∈D d 1+ √ | a k z2 + b − iz|<br />

and M is <strong>the</strong> constant from <strong>the</strong> inequality of <strong>the</strong> strong P-positiveness.<br />

The <strong>exponential</strong> convergence of our quadrature rule allows to introduce<br />

<strong>the</strong> following algorithm <strong>for</strong> <strong>the</strong> <strong>approximation</strong> of <strong>the</strong> <strong>operator</strong> exponent at a<br />

given time value t.<br />

Algorithm 2.5 1. Choose k>1, d =(1− √ 1<br />

k<br />

) k 2a , N and determine z p<br />

√<br />

(p = −N,...,N) by z p = a k (ph)2 + b − iph, where h = 3 2πdk<br />

a (N +<br />

1) −2/3 and b = γ 0 − k−1<br />

4a .<br />

2. Find <strong>the</strong> resolvents (z p I −L) −1 ,p= −N,...,N (note that it can be<br />

done in parallel).<br />

3. Find <strong>the</strong> <strong>approximation</strong> exp N (−tL) <strong>for</strong> <strong>the</strong> <strong>operator</strong> exponent exp(−tL)<br />

in <strong>the</strong> <strong>for</strong>m<br />

(2.20) exp N (−tL) = h<br />

2πi<br />

N∑<br />

p=−N<br />

e −tzp [<br />

2 a k ph − i ]<br />

(z p I −L) −1 .


H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 93<br />

Remark 2.6 The above algorithm possesses two sequential levels of parallelism:<br />

first, one can compute all resolvents at Step 2 in parallel and, second,<br />

each <strong>operator</strong> exponent at different time values (provided that we apply <strong>the</strong><br />

<strong>operator</strong> <strong>exponential</strong> <strong>for</strong> a given time vector (t 1 ,t 2 ,...,t M )).<br />

Note that <strong>for</strong> small parameters t ≪ 1, <strong>the</strong> numerical tests indicate that<br />

Step 3 in <strong>the</strong> algorithm above has slow convergence. In this case, we propose<br />

<strong>the</strong> following modification of Algorithm 2.5, which converges much faster<br />

than (2.20).<br />

√<br />

Algorithm 2.7 1 ′ . Determine h = 3 2πdk<br />

a<br />

(N +1)−2/3 ,z p (t) (p = −N,<br />

...,N) by z p (t) = a k (ph)2 + b(t) − iph, where <strong>the</strong> parameter b(t) is<br />

defined <strong>with</strong> respect to <strong>the</strong> location of sp(tL), i.e., b(t) =tb.<br />

2 ′ . Find <strong>the</strong> resolvents (z p (t)I − tL) −1 ,p= −N,...,N (it can be done<br />

in parallel).<br />

3 ′ . Find <strong>the</strong> <strong>approximation</strong> exp N (−tL) <strong>for</strong> <strong>the</strong> <strong>operator</strong> exponent exp(−tL)<br />

in <strong>the</strong> <strong>for</strong>m<br />

exp N (−tL) =<br />

h<br />

2πi<br />

N∑<br />

p=−N<br />

e −tzp(t) [ 2 a k ph − i ]<br />

(z p (t)I − tL) −1 .<br />

Though <strong>the</strong> above algorithm allows only a sequential treatment of different<br />

time values close to t =0, in many <strong>applications</strong> (e.g., <strong>for</strong> integration<br />

<strong>with</strong> respect to <strong>the</strong> time variable) we may choose <strong>the</strong> time-grid as t i = i∆t,<br />

i =1,...,n t . Then <strong>the</strong> <strong>exponential</strong>s <strong>for</strong> i =2,...,n t are easily obtained<br />

as <strong>the</strong> corresponding monomials from exp N (−∆tL).<br />

3 On <strong>the</strong> H-matrix <strong>approximation</strong> to <strong>the</strong> resolvent (zI −L) −1<br />

Below, we briefly discuss <strong>the</strong> main features of <strong>the</strong> H-matrix techniques to<br />

be used <strong>for</strong> data-sparse <strong>approximation</strong> of <strong>the</strong> <strong>operator</strong> resolvent in question.<br />

We recall <strong>the</strong> complexity bound <strong>for</strong> <strong>the</strong> H-matrix arithmetic and prove <strong>the</strong><br />

existence of <strong>the</strong> accurate H-matrix <strong>approximation</strong> to <strong>the</strong> resolvent of elliptic<br />

<strong>operator</strong> in <strong>the</strong> case of smooth data.<br />

Note that <strong>the</strong>re are different strategies to construct <strong>the</strong> H-matrix <strong>approximation</strong><br />

to <strong>the</strong> inverse A = L −1 of <strong>the</strong> elliptic <strong>operator</strong> L. The existence<br />

result is obtained <strong>for</strong> <strong>the</strong> direct Galerkin <strong>approximation</strong> A h to <strong>the</strong> <strong>operator</strong><br />

A provided that <strong>the</strong> Green function is given explicitly (we call this H-matrix<br />

<strong>approximation</strong> by A H ). In this paper, such an <strong>approximation</strong> has only <strong>the</strong><br />

<strong>the</strong>oretical significance. However, using this construction we prove <strong>the</strong> density<br />

of H-matrices <strong>for</strong> <strong>approximation</strong> to <strong>the</strong> inverse of elliptic <strong>operator</strong>s in<br />

<strong>the</strong> sense that <strong>the</strong>re exists <strong>the</strong> H-matrix A H suchthat


94 I. P. Gavrilyuk et al.<br />

||A h − A H || ≤ cη L , η < 1,<br />

where L = O(log N), N = dim V h , cf. Corollary 3.4.<br />

In practice, we start from certain FE Galerkin stiffness matrix L h corresponding<br />

to <strong>the</strong> elliptic <strong>operator</strong> involved, which has already <strong>the</strong> H-matrix<br />

<strong>for</strong>mat, i.e., we set L H := L h . Then using <strong>the</strong> H-matrix arithmetic, we<br />

compute <strong>the</strong> approximate H-matrix inverse ÃH to <strong>the</strong> exact fully populated<br />

matrix L −1<br />

H . The difference ||A H − ÃH|| will not be analysed in<br />

this paper. In turn, <strong>the</strong> numerical results in [9] exhibit <strong>the</strong> <strong>approximation</strong><br />

||L −1<br />

H − ÃH|| = O(ε) <strong>with</strong><strong>the</strong> block rank r = O(log d−1 ε −1 ) <strong>for</strong> d =2.<br />

We end up <strong>with</strong> a simple example of <strong>the</strong> hierarchical block partitioning<br />

to build <strong>the</strong> H-matrix inverse <strong>for</strong> <strong>the</strong> 1D Laplacian and <strong>for</strong> a singular integral<br />

<strong>operator</strong>.<br />

3.1 Problem classes<br />

Suppose we are given <strong>the</strong> second order elliptic <strong>operator</strong> (2.3). In our application,<br />

we look <strong>for</strong> a sufficiently accurate data-sparse <strong>approximation</strong> of<br />

<strong>the</strong> <strong>operator</strong> (zI −L) −1 : H −1 (Ω) → H0 1(Ω), Ω ∈ Rd , d ≥ 1, where<br />

z ∈ C, z /∈ sp(L), is given in Step 1 of Algorithm 2.5. Assume that Ω<br />

is a domain <strong>with</strong>smoothboundary. To prove <strong>the</strong> existence of an H-matrix<br />

<strong>approximation</strong> to exp(−tL), we use <strong>the</strong> classical integral representation <strong>for</strong><br />

(zI −L) −1 ,<br />

∫<br />

(3.1) (zI −L) −1 u = G(x, y; z)u(y)dy, u ∈ H −1 (Ω),<br />

Ω<br />

where Green’s function G(x, y; z) solves <strong>the</strong> equation<br />

(zI −L) x G(x, y; z) =δ(x − y) (x, y ∈ Ω),<br />

(3.2)<br />

G(x, y; z) =0<br />

(x ∈ ∂Ω, y ∈ Ω).<br />

Toge<strong>the</strong>r <strong>with</strong> an adjoint system of equations in <strong>the</strong> second variable y, equation<br />

(3.2) provides <strong>the</strong> base to prove <strong>the</strong> existence of <strong>the</strong> H-matrix <strong>approximation</strong><br />

of (zI −L) −1 which <strong>the</strong>n can be obtained by using <strong>the</strong> H-matrix<br />

arithmetic from [12,13].<br />

The error analysis <strong>for</strong> <strong>the</strong> H-matrix <strong>approximation</strong> to <strong>the</strong> integral <strong>operator</strong><br />

from (3.1) may be based on using degenerate expansions of <strong>the</strong> kernel,<br />

see Sect. 3.2. In this way, we use different smoothness prerequisites. In <strong>the</strong><br />

case of smooth boundaries and analytic coefficients <strong>the</strong> analyticity of <strong>the</strong><br />

Green’s function G(x, y; z) <strong>for</strong> x ≠ y is applied:<br />

Assumption 3.1 For any x 0 ,y 0 ∈ Ω, x 0 ≠ y 0 , <strong>the</strong> kernel function G(x, y;<br />

z) is analytic <strong>with</strong> respect to x and y at least in <strong>the</strong> domain {(x, y) ∈ Ω×Ω :<br />

|x − x 0 | + |y − y 0 | < |x 0 − y 0 |}.


H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 95<br />

An alternative (and weaker) assumption requires that <strong>the</strong> kernel function<br />

G is asymptotically smooth, i.e.,<br />

Assumption 3.2 For any m ∈ N, <strong>for</strong> all x, y ∈ R d ,x ≠ y, and all multiindices<br />

α, β <strong>with</strong> |α| = α 1 + ... + α d <strong>the</strong>re holds |∂x α ∂y β G(x, y; z)| ≤<br />

c(|α|, |β|; z)|x − y| 2−|α|−|β|−d <strong>for</strong> all |α|, |β| ≤m.<br />

The smoothness of Green’s function G(x, y; z) is determined by <strong>the</strong><br />

regularity of <strong>the</strong> problem (3.2).<br />

3.2 On <strong>the</strong> existence of H-matrix <strong>approximation</strong><br />

Let A := (zI −L) −1 . Given <strong>the</strong> Galerkin ansatz space V h ⊂ L 2 (Ω), consider<br />

<strong>the</strong> existence of a data-sparse <strong>approximation</strong> A H to <strong>the</strong> exact stiffness<br />

matrix (which is not computable in general)<br />

A h = 〈Aϕ i ,ϕ j 〉 i,j∈I , where V h = span{ϕ i } i∈I .<br />

Let I be <strong>the</strong> index set of unknowns (e.g., <strong>the</strong> FE-nodal points) and T (I)<br />

be <strong>the</strong> hierarchical cluster tree [12]. For each i ∈ I, <strong>the</strong> support of <strong>the</strong><br />

corresponding basis function ϕ i is denoted by X(i) := supp(ϕ i ) and <strong>for</strong><br />

eachcluster τ ∈ T (I) we define X(τ) = ⋃ i∈τ<br />

X(i). In <strong>the</strong> following we use<br />

only piecewise constant/linear finite elements defined on <strong>the</strong> quasi-uni<strong>for</strong>m<br />

grid.<br />

In a canonical way (cf. [13]), a block-cluster tree T (I × I) can be constructed<br />

from T (I), where all vertices b ∈ T (I ×I) are of <strong>the</strong> <strong>for</strong>m b = τ ×σ<br />

<strong>with</strong> τ,σ ∈ T (I). Given a matrix M ∈ R I×I , <strong>the</strong> block-matrix corresponding<br />

to b ∈ T (I × I) is denoted by M b =(m ij ) (i,j)∈b . An admissible block<br />

partitioning P 2 ⊂ T (I×I) is a set of disjoint blocks b ∈ T (I×I), satisfying<br />

<strong>the</strong> admissibility condition,<br />

(3.3) min{diam(σ), diam(τ)} ≤2 η dist(σ, τ),<br />

(σ, τ) ∈ P 2 , η 0}, <strong>the</strong> standard H-matrix <strong>approximation</strong> of <strong>the</strong> nonlocal<br />

<strong>operator</strong> A =(zI −L) −1 is based on using a separable expansion of<br />

<strong>the</strong> exact kernel,<br />

k∑<br />

G τ,σ (x, y; z) = a ν (x)c ν (y), (x, y) ∈ X(σ) × X(τ),<br />

ν=1


96 I. P. Gavrilyuk et al.<br />

of <strong>the</strong> order k ≪ N = dim V h <strong>for</strong> σ × τ ∈ P far , see [13]. The reduction<br />

<strong>with</strong> respect to <strong>the</strong> operation count is achieved by replacing <strong>the</strong> full matrix<br />

blocks A τ×σ (τ × σ ∈ P far ) by <strong>the</strong>ir low-rank <strong>approximation</strong><br />

k∑<br />

H := a ν · c T ν , a ν ∈ R nτ , c ν ∈ R nσ ,<br />

A τ×σ<br />

ν=1<br />

{ ∫ { ∫<br />

where a ν =<br />

X(τ) a ν(x)ϕ i (x)dx}<br />

, c ν =<br />

i∈τ<br />

X(σ) c ν(y)ϕ j (y)dy}<br />

.<br />

j∈σ<br />

There<strong>for</strong>e, we obtain <strong>the</strong> following storage and matrix-vector multiplication<br />

cost <strong>for</strong> <strong>the</strong> matrix blocks<br />

( ) ( )<br />

N st A<br />

τ×σ<br />

H = k(nτ + n σ ), N MV A<br />

τ×σ<br />

H =2k(nτ + n σ ),<br />

where n τ =#τ, n σ =#σ. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> <strong>approximation</strong> of <strong>the</strong><br />

order O(N −α ), α>0, is achieved <strong>with</strong> k = O(log d−1 N).<br />

3.3 The error analysis<br />

For <strong>the</strong> error analysis, we consider <strong>the</strong> uni<strong>for</strong>m hierarchical cluster tree T (I)<br />

(see [12,13] <strong>for</strong> more details) <strong>with</strong><strong>the</strong> depthL suchthat N =2 dL . Define<br />

P (l)<br />

2 := P 2 ∩ T2 l, where T 2 l is <strong>the</strong> set of clusters τ × σ ∈ T 2 suchthat blocks<br />

τ,σ belong to level l, <strong>with</strong> l =0, 1,...,L. We consider <strong>the</strong> expansions<br />

<strong>with</strong><strong>the</strong> local rank k l depending only on <strong>the</strong> level number l and defined by<br />

k l := min{2 d(L−l) ,m d−1<br />

l<br />

}, where m = m l is given by<br />

(3.4) m l = aL 1−q (L − l) q + b, 0 ≤ q ≤ 1, a,b > 0.<br />

Note that <strong>for</strong> q =0, we arrive at <strong>the</strong> constant order m = O(L), which<br />

leads to <strong>the</strong> <strong>exponential</strong> convergence of <strong>the</strong> H-matrix <strong>approximation</strong>, see<br />

[16].<br />

Introduce<br />

{<br />

N 0 = max max ∑<br />

max<br />

0≤l≤p<br />

τ∈T (l)<br />

τ:τ×σ∈P (l)<br />

2<br />

∑<br />

}<br />

1, max<br />

1 .<br />

σ∈T (l) σ:τ×σ∈P (l)<br />

2<br />

For <strong>the</strong> ease of exposition, we consider <strong>the</strong> only two special cases q =0<br />

and q =1. Denote by A h : V h → V<br />

h ′ <strong>the</strong> restriction of A onto <strong>the</strong> Galerkin<br />

subspace V h ⊂ L 2 (Ω) defined by 〈A h u, v〉 = 〈Au, v〉 <strong>for</strong> all u, v ∈ V h .The<br />

<strong>operator</strong> A H has <strong>the</strong> similar sense. The following statement is <strong>the</strong> particular<br />

case of [15, Lemma 2.4].<br />

Lemma 3.3 Let η =2 −α ,α>0, and<br />

|s(x, y) − s τσ (x, y)| η m l<br />

l 3−d dist(τ,σ) 2−d


H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 97<br />

<strong>for</strong> each τ × σ ∈ P (l)<br />

2 , where <strong>the</strong> order of expansion m l is defined by (3.4)<br />

<strong>with</strong> q =0, 1 and <strong>with</strong> a given a>0 such that −αa +2< 0. Then, <strong>for</strong> all<br />

u, v ∈ V h <strong>the</strong>re holds<br />

(3.5) 〈(A h − A H )u, v〉 h 2 N 0 δ(L, q)||u|| 0 ||v|| 0 ,<br />

where δ(L, 0) = η L and δ(L, 1)=1and d =2, 3.<br />

Note that in <strong>the</strong> case of constant order expansions, i.e., <strong>for</strong> q =0,we<br />

obtain <strong>the</strong> <strong>exponential</strong> convergence<br />

〈(A h − A H )u, v〉 N 0 L 4−d η L ||u|| 0 ||v|| 0 (u, v ∈ V h )<br />

<strong>for</strong> any a in (3.4).<br />

The first important consequence of Lemma 3.3 is that <strong>for</strong> <strong>the</strong> variable<br />

order expansions <strong>with</strong> q =1<strong>the</strong> asymptotically optimal convergence is<br />

verified only <strong>for</strong> trial functions from L 2 (Ω). On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> <strong>exponential</strong><br />

convergence in <strong>the</strong> <strong>operator</strong> norm ||·|| H −1 →H1 may be proven <strong>for</strong><br />

any 0 ≤ q


98 I. P. Gavrilyuk et al.<br />

case of Helmholtz’ equation, which potentially may lead to a “deterioration<br />

of data-sparsity” in <strong>the</strong> H-matrix <strong>approximation</strong>. We fur<strong>the</strong>r give arguments<br />

explaining that this is not <strong>the</strong> case.<br />

For <strong>the</strong> ease of exposition, consider <strong>the</strong> 3D Laplacian, L = −∆.Weuse<br />

<strong>the</strong> representation<br />

G(x, y; z) =s(x, y; z)+G 0 (x, y; z),<br />

where <strong>the</strong> fundamental solution s(x, y; z) is given by<br />

(3.8) s(x, y; z) = 1 e −√ z|x−y|<br />

4π |x − y|<br />

and <strong>the</strong> remainder G 0 satisfies <strong>the</strong> equation<br />

(x, y ∈ R 3 )<br />

(3.9)<br />

(zI −L) x G 0 (x, y; z) =0 (x, y ∈ Ω),<br />

G 0 (x, y; z) =−s(x, y; z) (x ∈ ∂Ω, y ∈ Ω).<br />

Here we assume that <strong>the</strong> principal singularity of G(x, y; z) is described<br />

by <strong>the</strong> fundamental solution s(x, y; z) though <strong>the</strong> component G 0 (x, y; z)<br />

also has a singular behaviour on <strong>the</strong> submanifold x = y, x, y ∈ Γ .The<br />

complexity of <strong>the</strong> H-matrix <strong>approximation</strong> to integral <strong>operator</strong>s <strong>with</strong><strong>the</strong><br />

Helmholtz kernel 1 exp(−κ|x−y|)<br />

4π |x−y|<br />

was analysed in [15] in <strong>the</strong> case of Reκ=<br />

0. However, <strong>the</strong> result remains verbatim in <strong>the</strong> general situation κ ∈ C. In<br />

our case, we set |κ| = N 1/3 and obtain that <strong>the</strong> order of expansion to<br />

approximate <strong>the</strong> matrix blocks <strong>with</strong> <strong>the</strong> accuracy O(η L ) will be estimated<br />

by O(L + |κ|) (see [15] <strong>for</strong> more details). Taking into account that L =<br />

O(log ε −1 ), we arrive at |κ| = O(L 1/3 ). This relation shows that one may<br />

expect a certain growth of <strong>the</strong> local rank; however, <strong>the</strong> total cost has <strong>the</strong><br />

same asymptotical estimate as in <strong>the</strong> case κ =0.<br />

Finally, we support <strong>the</strong>se arguments by <strong>the</strong> numerical results presented<br />

in Tables 1-3 below. Table 1 shows <strong>the</strong> <strong>approximation</strong> error <strong>for</strong> <strong>the</strong> different<br />

resolvents depending on <strong>the</strong> local rank k and actually indicates that, <strong>with</strong><br />

fixed ε>0, <strong>the</strong> local rank k does not grow <strong>with</strong>respect to ν. Table 2 illustrates<br />

<strong>the</strong> <strong>exponential</strong> convergence of <strong>the</strong> quadrature rule T N <strong>with</strong>respect to<br />

k. Table 3 presents <strong>the</strong> weights γ p in front of <strong>the</strong> resolvents in <strong>the</strong> quadrature<br />

<strong>for</strong>mula (2.20), decaying <strong>exponential</strong>ly <strong>with</strong>respect to p (= ν).<br />

Fur<strong>the</strong>r numerical results will be presented in Sect. 5.<br />

3.4 Complexity estimate and fur<strong>the</strong>r discussion of H-matrices<br />

The linear-logarithmic complexity O(kN log N) of <strong>the</strong> H-matrix arithmetic<br />

is proven in [12–14]. In <strong>the</strong> special case of regular tensor-product grids <strong>the</strong><br />

following sharp estimate is valid: <strong>for</strong> any H-matrix M ∈ R I×I <strong>with</strong>rank-k


H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 99<br />

Table 1. Approximation <strong>the</strong> resolvents <strong>for</strong> different z ν, ν =0, ..., 10, vs. <strong>the</strong> local rank k<br />

ν 0 1 2 3 4 6 8 10<br />

k =1 19.0 6.4 1.1 0.29 0.08 0.09 0.03 0.02<br />

k =3 0.71 0.33 0.07 0.02 0.00 0.00 0.00 0.00<br />

k =5 0.06 0.03 0.00 0.00 0.00 0.00 0.00 0.00<br />

k =10 3.4e-4 1.6e-4 3.3e-5 8.7e-6 5.4e-6 1.3e-6 9.3e-7 7.0e-7<br />

Table 2. Approximation <strong>the</strong> exponent T = exp(−L) vs. local rank k<br />

k 1 2 3 4 5 6 10<br />

||T −T N ||<br />

||T ||<br />

3.47 2.73 0.53 0.046 0.011 0.0045 0.00011<br />

Table 3. Coefficients γν in front of <strong>the</strong> resolvents in (2.20) <strong>for</strong> ν =0, ..., 10<br />

ν 0 1 2 4 6 8 10<br />

z ν (0.29,0) (0.35,0.28) (0.54,0.56) (1.31,1.13) (2.58,1.69) (4.36,2.26) (6.65,2,82)<br />

Reγ ν -0.03 -0.026 -0.009 0.015 0.009 0.0019 0.0001<br />

Imγ ν 0.00 0.022 0.034 0.020 0.002 -0.0008 -0.0002<br />

blocks <strong>the</strong> storage and matrix-vector multiplication complexity is bounded<br />

by<br />

N st (M) ≤ (2 d − 1)( √ dη −1 +1) d kLN,<br />

N MV (M) ≤ 2N st (M).<br />

Here, as above, L denotes <strong>the</strong> depth of <strong>the</strong> hierarchical cluster tree T (I)<br />

<strong>with</strong> N =#I =2 dL and η


100 I. P. Gavrilyuk et al.<br />

<strong>with</strong>asymptotically smoothkernels. The inversion in <strong>the</strong> H-matrix arithmetic<br />

to <strong>the</strong> given M ∈M H,k (I × I,P 2 ) is discussed in [12,13]. In <strong>the</strong><br />

general case of quasiuni<strong>for</strong>m meshes <strong>the</strong> complexity O(k 2 N) of matrix inversion<br />

is proven. It is worth to note that <strong>the</strong> FE Galerkin matrix <strong>for</strong> <strong>the</strong><br />

second order elliptic <strong>operator</strong> in R d , d ≥ 1, belongs to M H,k (I × I,P 2 ) <strong>for</strong><br />

each k ∈ N. In particular, <strong>for</strong> d =1<strong>the</strong> tridiagonal stiffness matrix corresponding<br />

to <strong>the</strong> <strong>operator</strong> − d2 : H 1 dx 2 0 (Ω) → H−1 (Ω), Ω =(0, 1), belongs<br />

to M H,1 (I × I,P 2 ) <strong>with</strong><strong>the</strong> partitioning P 2 depicted in Fig. 2a. There<strong>for</strong>e,<br />

each matrix block involved in <strong>the</strong> above partitioning has <strong>the</strong> rank equals<br />

one. It is a particular 1D-effect that <strong>the</strong> inverse to this tridiagonal matrix has<br />

<strong>the</strong> same <strong>for</strong>mat, i.e., <strong>the</strong> inverse is exactly reproduced by an H-matrix (see<br />

[12] <strong>for</strong> more details).<br />

(a)<br />

(b)<br />

Fig. 2a,b. Block partitioning P 2 in <strong>the</strong> case of 1D differential <strong>operator</strong> (a) and <strong>for</strong> <strong>the</strong> integral<br />

<strong>operator</strong> <strong>with</strong>a singular kernel (b)<br />

In general, <strong>the</strong> admissibility condition is intended to provide <strong>the</strong> hierarchical<br />

<strong>approximation</strong> <strong>for</strong> <strong>the</strong> asymptotically smooth kernel G(x, y), see<br />

Assumption 3.2, which is singular on <strong>the</strong> diagonal x = y. Thus, an admissible<br />

block partitioning includes only “nontouching blocks” belonging to<br />

P far and leaves of T (I × I), see Fig. 2b corresponding to <strong>the</strong> case η = 1 2 ,<br />

N =2 4 , <strong>for</strong> an 1D index set. In <strong>the</strong> case d =2, 3 <strong>the</strong> admissible block<br />

partitioning is defined recursively, see [13], using <strong>the</strong> block cluster tree<br />

T (I × I). The numerical experiments <strong>for</strong> <strong>the</strong> 2D Laplacian illustrate <strong>the</strong><br />

efficiency of <strong>the</strong> H-matrix inversion. Improved data-sparsity is achieved by<br />

using <strong>the</strong> H 2 -matrix <strong>approximation</strong> [17] based on <strong>the</strong> block representation<br />

(3.10) <strong>with</strong>fixed bases of V a and V c <strong>for</strong> all admissible matrix blocks.


H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 101<br />

4 Applications<br />

4.1 Parabolic problems<br />

In <strong>the</strong> first example, we consider an application to parabolic problems. Using<br />

semigroup <strong>the</strong>ory (see [21] <strong>for</strong> more details), <strong>the</strong> solution of <strong>the</strong> first order<br />

evolution equation<br />

du<br />

dt + Lu = f, u(0) = u 0,<br />

<strong>with</strong>a known initial vector u 0 ∈ L 2 (Ω) and <strong>with</strong> <strong>the</strong> given right-hand side<br />

f ∈ L 2 (Q T ), Q T := (0,T) × Ω, can be represented as<br />

∫ t<br />

(4.1) u(t) = exp(−tL)u 0 +<br />

0<br />

exp(−(t − s)L)f(s)ds <strong>for</strong> t ∈ (0,T] .<br />

The uni<strong>for</strong>m <strong>approximation</strong> to e −tL <strong>with</strong>respect to <strong>the</strong> integration parameter<br />

t ∈ [0, ∞) is based on a decomposition [0, ∞) = ∪ J α=0 δ α by<br />

a hierarchical time grid defined as follows. Let ∆t = 2 −J > 0 be <strong>the</strong><br />

minimal time step, <strong>the</strong>n we define δ 0 := [0,∆t], δ α := [∆t2 α ,∆t2 α+1 ],<br />

α =1, ..., J −1 and δ J := [1, ∞). Let M jα be <strong>the</strong> H-matrix <strong>approximation</strong><br />

of <strong>the</strong> resolvent (z jα I −L) −1 in (2.20) associated <strong>with</strong><strong>the</strong> Galerkin ansatz<br />

space V h ⊂ L 2 (Ω), where we choose different parabolas Γ α <strong>for</strong> different<br />

time intervals δ α . Careful analysis of <strong>the</strong> error estimate (2.18) ensures <strong>the</strong><br />

uni<strong>for</strong>m H-matrix <strong>approximation</strong> to <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> in <strong>the</strong> <strong>for</strong>m<br />

exp H (−tL) =<br />

N∑<br />

j=−N<br />

γ jα e −z jαt M jα , γ jα = h<br />

2πi (2a α<br />

k α<br />

jh − i),<br />

t ∈ δ α , α =1, ..., J.<br />

Now, we consider <strong>the</strong> following semi-discrete scheme. Let u 0 , f be <strong>the</strong><br />

vector representations of <strong>the</strong> corresponding Galerkin projections of u 0 and<br />

f onto <strong>the</strong> spaces V h and V h × [0,T], respectively, and let [0,t]=∪ J 0<br />

α=0 δ α,<br />

J 0 ≤ J. Substitution of <strong>the</strong> above representations into (4.1) leads to <strong>the</strong><br />

entirely parallelisable scheme<br />

⎛<br />

N∑<br />

u H (t) = ⎝γ jJ0 e −z jJ<br />

(4.2)<br />

t 0 M jJ0 u 0<br />

j=−N<br />

∑J 0<br />

∫<br />

+ γ jα e −zjαt M jα<br />

α=1<br />

δ α<br />

⎞<br />

e z jα s f(s)ds⎠


102 I. P. Gavrilyuk et al.<br />

<strong>with</strong>respect to j = −N,...,N, to compute <strong>the</strong> <strong>approximation</strong> u H (t).<br />

The second level of parallelisation appears if we are interested to calculate<br />

<strong>the</strong> right-hand side of (4.2) <strong>for</strong> different time values.<br />

4.2 Dynamical systems and control <strong>the</strong>ory<br />

In <strong>the</strong> second example, we consider <strong>the</strong> linear dynamical system of equations<br />

dX(t)<br />

= AX(t)+X(t)B + C(t), X(0) = X 0 ,<br />

dt<br />

where X, A, B, C ∈ R n×n . The solution is given by<br />

∫ t<br />

X(t) =e tA X 0 e tB +<br />

0<br />

e (t−s)A C(s)e (t−s)B ds.<br />

Suppose that we can construct <strong>the</strong> H-matrix <strong>approximation</strong>s of <strong>the</strong> corresponding<br />

matrix exponents<br />

exp H (tA) =<br />

2N∑<br />

0 −1<br />

l=1<br />

γ al e −a lt A l , exp H (tB) =<br />

A l , B j ∈M H,k (I × I,P 2 ).<br />

2N∑<br />

0 −1<br />

j=1<br />

γ bj e −b jt B j ,<br />

Then <strong>the</strong> approximate solution X H (t) may be computed in parallel as in <strong>the</strong><br />

first example,<br />

[<br />

N∑<br />

X H (t) = γ alJ0 γ bjJ0 e −(a lJ 0<br />

+b jJ0 )t A lJ0 X 0 B jJ0<br />

l,j=−N<br />

∑J 0<br />

∫<br />

+ γ alα γ bjα e −(a lα+b jα )t A lα<br />

α=1<br />

δ α<br />

e (a lα+b jα )s C(s)dsB jα<br />

]<br />

Let C be constant and <strong>the</strong> eigenvalues of A, B have negative real parts, <strong>the</strong>n<br />

X(t) → X ∞ as t →∞, where<br />

X ∞ =<br />

∫ ∞<br />

satisfies <strong>the</strong> Lyapunov-Sylvester equation<br />

0<br />

e tA Ce tB dt<br />

AX ∞ + X ∞ B + C =0.<br />

.


H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 103<br />

Assume we are given hierarchical <strong>approximation</strong>s to e tA and e tB on each<br />

time interval δ α as above. Then <strong>the</strong>re holds<br />

X H,∞ =<br />

(4.3)<br />

⎡<br />

∑<br />

(<br />

∑ N<br />

⎣<br />

∫ ∞ J 0<br />

0<br />

α=1<br />

J 0<br />

∑<br />

=<br />

N∑<br />

α=1 l,j=−N<br />

l=−N<br />

γ alα e −a lαt A lα<br />

)<br />

C H<br />

(<br />

N<br />

∑<br />

j=−N<br />

γ alα γ bjα<br />

∫δ α<br />

e −(a lα+b jα )t dt A lα C H B jα ,<br />

γ bjα e −b jαt B jα<br />

) ⎤ ⎦dt<br />

where C H stands <strong>for</strong> <strong>the</strong> H-matrix <strong>approximation</strong> to C if available. Taking<br />

into account that <strong>the</strong> H-matrix multiplication has <strong>the</strong> complexity O(k 2 n),<br />

we <strong>the</strong>n obtain a fully parallelisable scheme of complexity O(NJ 0 kn) (but<br />

not O(n 3 ) as in <strong>the</strong> standard linear algebra) <strong>for</strong> solving <strong>the</strong> matrix Lyapunov<br />

equation.<br />

In many <strong>applications</strong> <strong>the</strong> right-hand side is given by a low rank matrix,<br />

rank(C) =k ≪ n. In this case we immediately obtain <strong>the</strong> explicit low rank<br />

<strong>approximation</strong> <strong>for</strong> <strong>the</strong> solution of <strong>the</strong> Lyapunov equation.<br />

Lemma 4.1 Let C = ∑ k<br />

α=1 a α · c T α. Moreover, we assume B = A T . Then<br />

<strong>the</strong> solution of <strong>the</strong> Lyapunov-Sylvester equation is approximated by<br />

(4.4)<br />

k∑ N∑ J∑ e −(a lα+b jα )∆t2 α − e −(a lα+b jα )∆t2 α+1<br />

X H =<br />

a lα + b jα<br />

β=1 l,j=−N α=1<br />

·(A lα a β ) · (A jα c β ) T ,<br />

such that ||X ∞ − X H || ∞ ≤ ε, <strong>with</strong> N = O(log ε −1 ) and rank(X H )=<br />

k (2N − 1)J.<br />

Proof. In fact, substitution of <strong>the</strong> rank-k matrix C into (4.3) leads to (4.4).<br />

Due to <strong>the</strong> <strong>exponential</strong> convergence in (2.18), we obtain N = O(log ε −1 ),<br />

where ε is <strong>the</strong> <strong>approximation</strong> error. Combining all terms in (4.4) corresponding<br />

to <strong>the</strong> same index l = −N,...,N proves that X H has <strong>the</strong> rank<br />

k(2N − 1)J.<br />

Various techniques were considered <strong>for</strong> numerical solution of <strong>the</strong> Lyapunov<br />

equation, see, e.g., [3], [7], [20] and <strong>the</strong> references <strong>the</strong>rein. Among<br />

o<strong>the</strong>rs, Lemma 4.1 proves <strong>the</strong> non-trivial fact that <strong>the</strong> solution X ∞ of our<br />

matrix equation admits an accurate low rank <strong>approximation</strong> if this is <strong>the</strong><br />

case <strong>for</strong> <strong>the</strong> right-hand side C. We refer to [9] <strong>for</strong> a more detailed analysis<br />

and numerical results concerning <strong>the</strong> H-matrix techniques <strong>for</strong> solving <strong>the</strong><br />

matrix Riccati and Lyapunov equations.


104 I. P. Gavrilyuk et al.<br />

5 On <strong>the</strong> choice of computational parameters and numerics<br />

In this section we discuss how <strong>the</strong> parameters of <strong>the</strong> parabola influence our<br />

method.<br />

Let Γ 0 = {z = ξ ± iη = aη 2 + γ 0 ± iη} be <strong>the</strong> parabola containing <strong>the</strong><br />

spectrum of L whose parameters a, γ 0 are determined by <strong>the</strong> coefficients of<br />

L. Given a, we choose <strong>the</strong> integration path Γ b(k) = {z = ξ 1 ± iη 1 = a k η2 1 +<br />

b ± iη 1 : η 1 ∈ (−∞, ∞)} <strong>with</strong> b(k) =γ 0 − k−1<br />

4a<br />

. In this case<br />

(<br />

<strong>the</strong> integrand<br />

)<br />

can be extended analytically into <strong>the</strong> strip D d <strong>with</strong> d = 1 − √ 1 k<br />

k 2a and<br />

<strong>the</strong> estimate (2.18) holds <strong>with</strong> constants given by (2.19).<br />

First, let us estimate <strong>the</strong> constant M 1 in (2.19). Since <strong>the</strong> absolute value<br />

of an analytic function attains its maximum on <strong>the</strong> boundary, we have<br />

{<br />

}<br />

(5.1) M 1 = max<br />

where<br />

(5.2) f ± (η) =<br />

It is easy to see that<br />

sup<br />

η∈(−∞,∞)<br />

f − (η),<br />

sup<br />

η∈(−∞,∞)<br />

f + (η)<br />

|2 a k<br />

(η ± id) − i|<br />

∣∣<br />

a<br />

1+√<br />

k (η ± id)2 + b − i(η ± id) ∣ .<br />

(5.3) f± 2 (2 a k<br />

≤<br />

η)2 +(2 a k d ∓ 1)2<br />

1+ ∣ a<br />

k (η2 ± 2ηdi − d 2 )+b + d ∓ iη ∣ .<br />

Fur<strong>the</strong>r we have <strong>for</strong> <strong>the</strong> function f +<br />

f+(η) 2 ≤<br />

4 a2 η 2 +(2 a k 2 k d − 1)2<br />

1+ √ ( a k (η2 − d 2 )+b + d) 2 +(2 a k d − 1)2 η 2<br />

(5.4) ≤<br />

4 a2 η 2 +(2 a k 2 k d − 1)2<br />

1+ a k (η2 − d 2 )+b + d = 4 a2 η 2 + 1 k 2 k<br />

a<br />

k η2 +1+γ 0<br />

= 4a +4γ 0 − 1<br />

k(ξ +1+γ 0 ) 2 ,<br />

where ξ = aη 2 /k, ξ ∈ (0, ∞). The latter function increases monotonically<br />

and max f + = f + (∞) = 4a/k provided that 4a +4γ 0 > 1, while it<br />

decreases monotonically and max f + = f + (0) =<br />

1<br />

k(1+γ 0 )<br />

provided that<br />

0 < 4a +4γ 0 < 1. Similarly one can see that max f − = f − (∞) =4a/k<br />

provided that 4a(1 − γ 0 )/k > (2 − 1/k) 2 , while max f − = f − (0) =<br />

(2 − 1/ √ k) 2 /(1 + γ 0 ) if 4a(1 − γ 0 )/k < (2 − 1/k) 2 . Thus, we have<br />

{<br />

}<br />

4a<br />

(5.5) M 1 ≤ max<br />

k , 1<br />

k(1 + γ 0 ) , (2 − 1/√ k) 2<br />

.<br />

1+γ 0<br />

,


H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 105<br />

O<strong>the</strong>r constants can be rewrite as<br />

(5.6)<br />

c = M 1 e t[ad2 /k+d−b] = M 1 e tk(1−1/√ k)/a ,<br />

s = 3 √π 2 k(1 − 1/ √ k) 2 /a ≍ 3√ k/a.<br />

One can see that <strong>the</strong> multiplicative constant c in <strong>the</strong> estimate (2.18) increases<br />

linearly as a →∞, whereas <strong>the</strong> multiplicative coefficient s in <strong>the</strong> front of<br />

(N +1) 2/3 in <strong>the</strong> exponent tends to zero, i.e., <strong>the</strong> convergence rate becomes<br />

worse. On <strong>the</strong> o<strong>the</strong>r hand, s tends to infinity as a tends to zero, but <strong>the</strong><br />

constant c tends <strong>exponential</strong>ly to infinity.<br />

Given a, we can influence <strong>the</strong> efficacy of our method by changing <strong>the</strong><br />

parameter k>1. Denoting t ∗ = min {1,t}, we see that <strong>for</strong> k large enough,<br />

<strong>the</strong> leading term of <strong>the</strong> error is<br />

(5.7) e −[ 3√ k/at ∗(N+1) 2/3 −tk/a] .<br />

In order to arrive at a given tolerance ε>0, we have to choose<br />

( 1<br />

N ≍ ln 1 ) 3/2<br />

mt ∗ ε + tm2 /t ∗ ,<br />

where m = 3√ k/a. It is easy to find that N (i.e., <strong>the</strong> number of resolvent<br />

inversions <strong>for</strong> various z i ) becomes minimal if we choose k ≍ a 2t ln 1 ε<br />

. In this<br />

case <strong>the</strong> number of resolvent inversions is estimated by<br />

N min ≍ 3√ (<br />

t/t ∗ ln 1 ) 2/3<br />

.<br />

ε<br />

To complete this section, we present numerical examples on <strong>the</strong> H-<br />

matrix <strong>approximation</strong> of <strong>the</strong> <strong>exponential</strong> <strong>for</strong> <strong>the</strong> finite difference Laplacian<br />

∆ h on Ω =(0, 1) d , d =1, 2 (<strong>with</strong>zero boundary conditions) defined on <strong>the</strong><br />

uni<strong>for</strong>m grid <strong>with</strong> <strong>the</strong> mesh-size h =1/(n +1), where n d is <strong>the</strong> problem<br />

size. Table 4 presents <strong>the</strong> relative error of <strong>the</strong> H-matrix <strong>approximation</strong> <strong>for</strong><br />

1D Laplacian by Algorithm 2.3 versus <strong>the</strong> number N of resolvents involved.<br />

The relative error is measured by<br />

‖ exp(−t∆ h ) − exp N (−t∆ h )‖ 2 /‖ exp(−t∆ h )‖ 2 .<br />

The local rank is chosen as k 0 =8, while b =0.9 λ min (∆ h ),a=4.0, k =<br />

5.0. Our calculations indicate <strong>the</strong> robust <strong>exponential</strong> convergence of (2.18)<br />

<strong>with</strong>respect to N <strong>for</strong> <strong>the</strong> range of parameters b ∈ (0, 0.95λ min (∆ h )) and<br />

a ∈ (0,a 0 ) <strong>with</strong> a 0 = O(1) and confirm our analysis. The computational<br />

time (in sec.) corresponding to <strong>the</strong> H-matrix evaluation of eachresolvent<br />

in (2.18) at a 450MHz SUN-UltraSPARC2 station is presented in <strong>the</strong> last


106 I. P. Gavrilyuk et al.<br />

Table 4. Approximation to <strong>the</strong> <strong>exponential</strong> of ∆ h <strong>with</strong> d =1, where n = dimV h and N is<br />

defined from (2.20)<br />

n\N 1 4 7 10 20 30 40 time/N(sec)<br />

256 6.0 e-2 8.7 e-3 1.7 e-3 3.8 e-4 5.6 e-6 1.5 e-7 5.9 e-9 0.5<br />

1024 6.4 e-2 9.6 e-3 1.9 e-3 4.4 e-4 6.9 e-6 2.0 e-7 7.3 e-9 3.7<br />

4096 6.5 e-2 9.8 e-3 1.9 e-3 4.6 e-4 7.4 e-6 2.5 e-7 (3.6 e-8) 21<br />

16384 6.6 e-2 9.9 e-3 2.0 e-3 4.6 e-4 7.0 e-6 (1.3 e-6) (1.9 e-7) 118<br />

Table 5. Approximation to <strong>the</strong> <strong>exponential</strong> of ∆ h <strong>with</strong> d =2, where n = dimV h and N is<br />

defined from (2.20)<br />

n\N 1 4 7 10 20 30 40 time/N(sec)<br />

256 5.5 e-2 7.9 e-3 1.5 e-3 3.3 e-4 4.5 e-6 1.1 e-7 4.3 e-9 0.5<br />

1024 6.3 e-2 9.3 e-3 1.8 e-3 4.2 e-4 6.5 e-6 1.9 e-7 (5.2 e-8) 51<br />

4096 6.5 e-2 9.7 e-3 1.9 e-3 4.5 e-4 7.2 e-6 (4.5 e-7) (3.0 e-7) 379<br />

column. The numbers in brackets “()” indicate that <strong>the</strong> best possible accuracy<br />

<strong>with</strong>rank =8is already achieved.<br />

The results have been obtained using <strong>the</strong> general HMA1 code implementing<br />

<strong>the</strong> H-matrix arithmetic, see also [9] <strong>for</strong> more details.<br />

Table 5 presents <strong>the</strong> results <strong>for</strong> <strong>the</strong> 2D Laplacian on Ω =(0, 1) 2 obtained<br />

on 300MHz SUN UltraSPARC2. Parameters a, k, b are chosen as in <strong>the</strong><br />

previous example. In bothcases <strong>the</strong> efficacy appears to be not sensitive to<br />

<strong>the</strong> choice of a and k, but <strong>the</strong> parameter b has to approach λ min (∆ h ) from<br />

below.<br />

6 Appendix: Proof of Lemma 2.3 and Theorem 2.4<br />

First, we prove Lemma 2.3.<br />

Proof. Let E(f,h) be defined as follows<br />

E(f,h)(z) =f(z) − C(f,h)(z).<br />

Analogously to [25] (see Theorem 3.1.2) one can get<br />

(6.1)<br />

(6.2)<br />

E(f,h)(z) =f(z) − C(f,h)(z)<br />

∫ {<br />

sin (πz/h)<br />

f(ξ − id)<br />

=<br />

2πi R (ξ − z − id) sin [π(ξ − id)/h]<br />

}<br />

f(ξ + id)<br />

−<br />

dξ<br />

(ξ − z + id) sin [π(ξ + id)/h]


H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 107<br />

and upon replacing z by x we have<br />

∫<br />

(6.3) η(f,h) =<br />

R<br />

E(f,h)(x)dx.<br />

After interchanging <strong>the</strong> order of integration and using <strong>the</strong> identities<br />

∫<br />

1 sin (πx/h)<br />

(6.4)<br />

2πi ±(ξ − x) − id dx = i 2 e−π(d±iξ)/h ,<br />

R<br />

we obtain (2.11). Using <strong>the</strong> estimate (see [25], p.133) sinh (πd/h) ≤<br />

| sin [π(ξ ± id)/h]| ≤cosh (πd/h), <strong>the</strong> assumption f ∈ H 1 (D d ) and <strong>the</strong><br />

identity (2.11), we obtain <strong>the</strong> desired bound (2.12). The assumption (2.13)<br />

now implies<br />

(6.5) ‖η N (f,h)‖ ≤‖η(f,h)‖ + h ∑<br />

‖f(kh)‖<br />

|k|>N<br />

≤ exp(−πd/h)<br />

2 sinh (πd/h) ‖f‖ H 1 (D d ) + ch ∑<br />

For <strong>the</strong> last sum we use <strong>the</strong> simple estimate<br />

|k|>N<br />

exp[−α(kh) 2 ].<br />

(6.6)<br />

(6.7)<br />

∑<br />

|k|>N<br />

e −α(kh)2 =2<br />

∞∑<br />

k=N+1<br />

∫ ∞<br />

e −α(kh)2 ≤ 2 e −αh2 x 2 dx<br />

N+1<br />

= √ 2 ∫ ∞<br />

e −x2 dx<br />

αh<br />

√ αh(N+1)<br />

√ π<br />

= √ erfc( √ αh(N + 1))<br />

αh<br />

=<br />

√ π<br />

√ αh<br />

e −(N+1)2 αh 2 ψ<br />

( 1<br />

2 , 1 2 ;(N +1)2 αh 2 )<br />

,<br />

where ψ( 1 2 , 1 2 ;(N +1)2 αh 2 ) is <strong>the</strong> Whittecker function <strong>with</strong> <strong>the</strong> asymptotics<br />

[1]<br />

( 1<br />

(6.8) ψ<br />

2 , 1 )<br />

2 ; x2 =<br />

This yields<br />

M∑<br />

n=0<br />

( ) −1 n<br />

x −(2n+1) + O(|x| −2M−3 ).<br />

2<br />

(6.9)<br />

∑<br />

|k|>N<br />

e −α(kh)2 ≤<br />

√ π<br />

αh 2 (N +1) e−α(N+1)2 h 2 .


108 I. P. Gavrilyuk et al.<br />

It follows from (2.13) that<br />

(6.10) ‖f‖ H 1 (D d ) ≤ 2c<br />

∫ ∞<br />

−∞<br />

which toge<strong>the</strong>r <strong>with</strong> (6.5) and (6.9) implies<br />

‖η N (f,h)‖ ≤c √ [ exp(−πd/h)<br />

π<br />

which completes <strong>the</strong> proof.<br />

e −αx2 dx = 2c √ α<br />

√ π<br />

√ α sinh (πd/h)<br />

+ exp[−α(N +1)2 h 2 ]<br />

αh(N +1)<br />

Now, we conclude <strong>with</strong> <strong>the</strong> proof of Theorem 2.4.<br />

Proof. First, we note that one can choose as integration path any parabola<br />

(6.11) Γ b = {z = a k η2 + b + iη : η ∈ (−∞, ∞),k >1,b0<br />

suchthat <strong>for</strong> |ν|


H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 109<br />

<strong>the</strong>n<br />

{<br />

Γ b(k) (−d) = z = a k η2 + b + k − 1<br />

4a<br />

+ i η<br />

{<br />

(6.17) = z = aη∗ 2 + γ 0 + iη ∗ : η ∗ ≡<br />

≡ Γ 0 .<br />

}<br />

√ : η ∈ (−∞, ∞)<br />

k<br />

}<br />

η √<br />

k<br />

∈ (−∞, ∞)<br />

From (6.15), one can see that a ′ → 0, b ′ → 0 monotonically <strong>with</strong>respect<br />

to ν as ν →∞, i.e. <strong>the</strong> parabolae from Γ b (ν) move away from <strong>the</strong> spectral<br />

parabola Γ 0 monotonically. This means that <strong>the</strong> parabolae set Γ b (ν) <strong>for</strong><br />

b = b(k), |ν| 0.<br />

and<br />

We have also<br />

(6.20) ‖F (η, t; L)‖


110 I. P. Gavrilyuk et al.<br />

Using Lemma 2.3 and setting in (2.14) α = t a k<br />

, we get<br />

(6.22) ‖η N (F, h)‖ ≤<br />

Mc √ [<br />

π<br />

2 √ k exp(−2πd/h)<br />

√ + k exp[−(N +1)2 h 2 a k t]<br />

at(1 − exp(−2πd/h)) ath(N +1)<br />

Equalising<br />

√<br />

<strong>the</strong> exponents by setting −2πd/h = −(N +1) 2 h 2 a/k, weget<br />

h = 3 2πdk<br />

a<br />

(N +1)−2/3 . Substituting this value into (6.22) leads to <strong>the</strong><br />

estimate<br />

‖η N (F, h)‖ ≤<br />

Mc √ [<br />

(6.23) π<br />

2 √ ke −s(N+1)2/3<br />

√<br />

at(1 − e −s(N+1) 2/3 ) +<br />

]<br />

.<br />

]<br />

ke −ts(N+1)2/3<br />

t(N +1) 1/3 3√ ,<br />

2πdka 2<br />

which completes our proof.<br />

1<br />

Note that our estimate implies ‖η N (F, h)‖ = O( ) as t → 0,<br />

t(N+1) 1/3<br />

1<br />

but numerical tests even indicate an error order O( ) as t → 0.<br />

(N+1) 1/3<br />

Acknowledgements. The authors would like to thank Prof. C. Lubich (University Tübingen)<br />

<strong>for</strong> valuable comments und useful suggestions. We appreciate Lars Grasedyck (University<br />

of Kiel) <strong>for</strong> providing <strong>the</strong> numerical computations.<br />

References<br />

1. H.Bateman, A.Erdelyi: Higher transcendental functions, Vol. 1, Mc Graw-Hill Book<br />

Company, Inc. (1953)<br />

2. R. Dautray, J.-L. Lions: Ma<strong>the</strong>matical analysis and numerical methods <strong>for</strong> science and<br />

technology, Vol. 5, Evolutions problems I, Springer (1992)<br />

3. Z. Gajić, M.T.J. Qureshi: Lyapunov matrix equation in system stability and control,<br />

Academic Press, San Diego (1995)<br />

4. I.P. Gavrilyuk: Strongly P-positive <strong>operator</strong>s and explicit representation of <strong>the</strong> solutions<br />

of initial value problems <strong>for</strong> second order differential equations in Banachspace. Journ.<br />

of Math. Analysis and Appl. 236 (1999), 327–349<br />

5. I.P. Gavrilyuk, V.L. Makarov: Exponentially convergent parallel discretization methods<br />

<strong>for</strong> <strong>the</strong> first order evolution equations, Preprint NTZ 12/2000, Universität Leipzig<br />

6. I.P. Gavrilyuk, V.L. Makarov: Explicit and approximate solutions of second order elliptic<br />

differential equations in Hilbert- and Banachspaces, Numer. Funct. Anal. Optimization<br />

20 (1999), 695–717<br />

7. I.P. Gavrilyuk, V.L. Makarov: Exact and approximate solutions of some <strong>operator</strong> equations<br />

based on <strong>the</strong> Cayley trans<strong>for</strong>m, Linear Algebra and its Applications 282 (1998),<br />

97–121<br />

8. I.P. Gavrilyuk, V.L. Makarov: Representation and <strong>approximation</strong> of <strong>the</strong> solution of an<br />

initial value problem <strong>for</strong> a first order differential eqation in Banachspace, Z. Anal.<br />

Anwend. 15 (1996), 495–527


H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 111<br />

9. L. Grasedyck, W. Hackbusch, B.N. Khoromskij: Application of H-matrices in control<br />

<strong>the</strong>ory, Preprint MPI Leipzig, 2000, in progress<br />

10. W. Hackbusch: Integral equations. Theory and numerical treatment, ISNM 128,<br />

Birkhäuser, Basel (1995)<br />

11. W. Hackbusch: Elliptic differential equations. Theory and numerical treatment, Berlin:<br />

Springer (1992)<br />

12. W. Hackbusch: A sparse matrix arithmetic based onH-matrices. Part I: Introduction to<br />

H-matrices. Computing 62 (1999), 89–108<br />

13. W. Hackbusch, B. N. Khoromskij: A sparse H-matrix arithmetic. Part II: Application<br />

to multi-dimensional problems, Computing 64 (2000), 21–47<br />

14. W. Hackbusch, B. N. Khoromskij: A sparse H-matrix arithmetic: General complexity<br />

estimates, J. Comp. Appl. Math. 125 (2000), 479–501<br />

15. W. Hackbusch, B.N. Khoromskij: On blended FE/polynomial kernel <strong>approximation</strong> in<br />

H-matrix techniques. To appear in Numer. Lin. Alg. <strong>with</strong> Appl.<br />

16. W. Hackbusch, B.N. Khoromskij: Towards H-matrix <strong>approximation</strong> of <strong>the</strong> linear complexity.<br />

Operator Theory: Advances and Applications, Vol. 121, Birkhäuser Verlag,<br />

2001, 194–220<br />

17. W. Hackbusch, B. N. Khoromskij, S. Sauter: On H 2 -matrices. In: Lectures on Applied<br />

Ma<strong>the</strong>matics (H.-J. Bungartz, R. Hoppe, C. Zenger, eds.), Berlin: Springer, 2000, 9–30<br />

18. M. Hochbruck, C. Lubich: On Krylov subspace <strong>approximation</strong>s to <strong>the</strong> matrix <strong>exponential</strong><br />

<strong>operator</strong>, SIAM J. Numer. Anal. 34 (1997), 1911–1925<br />

19. R. Kress: Linear integral equations, Berlin: Springer (1999)<br />

20. C. Moler, C. Van Loan: Nineteen dubious ways to compute <strong>the</strong> <strong>exponential</strong> of a matrix,<br />

SIAM Rev. 20 (1978), 801–836<br />

21. A. Pazy: Semigroups of linear <strong>operator</strong> and <strong>applications</strong> to partial differential equations,<br />

Springer (1983)<br />

22. Y. Saad: Analysis of some Krylov subspace <strong>approximation</strong>s to <strong>the</strong> matrix <strong>exponential</strong><br />

<strong>operator</strong>, SIAM J. Numer. Anal. 29 (1992), 209–228<br />

23. A.A. Samarskii, I.P. Gavrilyuk, V.L. Makarov: Stability and regularization of three-level<br />

difference schemes <strong>with</strong> unbounded <strong>operator</strong> coefficients in Banach spaces, Preprint<br />

NTZ 39/1998, University of Leipzig (see a short version in Dokl. Ros. Akad. Nauk,<br />

v.371, No.1, 2000; to appear in SIAM J. on Num. Anal.)<br />

24. D. Sheen, I. H. Sloan, V. Thomée: A parallel method <strong>for</strong> time-discretization of parabolic<br />

problems based on contour integral representation and quadrature, Math. of Comp. 69<br />

(2000), 177–195<br />

25. F. Stenger: Numerical methods based on Sinc and analytic functions. Springer (1993)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!