21.06.2014 Views

H-Matrix approximation for the operator exponential with applications

H-Matrix approximation for the operator exponential with applications

H-Matrix approximation for the operator exponential with applications

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

H-<strong>Matrix</strong> <strong>approximation</strong> <strong>for</strong> <strong>the</strong> <strong>operator</strong> <strong>exponential</strong> <strong>with</strong> <strong>applications</strong> 87<br />

2.2 Examples<br />

As <strong>the</strong> first example let us consider <strong>the</strong> one-dimensional <strong>operator</strong> A :<br />

L 1 (0, 1) → L 1 (0, 1) <strong>with</strong><strong>the</strong> domain D(A) = H0 2 (0, 1) = {u : u ∈<br />

H 2 (0, 1), u(0)=0,u(1)=0} in <strong>the</strong> Sobolev space H 2 (0, 1) defined by<br />

Au = −u ′′<br />

<strong>for</strong> all u ∈ D(A).<br />

Here we set X = L 1 (0, 1) (see Definition 2.1). The eigenvalues λ k =<br />

k 2 π 2 (k =1, 2,...) of A lie on <strong>the</strong> real axis inside of <strong>the</strong> domain Ω Γ0<br />

enveloped by <strong>the</strong> path Γ 0 = {z = η 2 +1± iη}. The Green function <strong>for</strong> <strong>the</strong><br />

problem<br />

(zI − A)u ≡ u ′′ (x)+zu(x) =−f(x), x ∈ (0, 1); u(0) = u(1)=0<br />

is given by<br />

G(x, ξ; z) =<br />

i.e., we have<br />

1<br />

√ z sin<br />

√ z<br />

{<br />

sin<br />

√ zxsin<br />

√ z(1 − ξ) if x ≤ ξ,<br />

sin √ zξ sin √ z(1 − x) if x ≥ ξ,<br />

u(x) =(zI − A) −1 f =<br />

∫ 1<br />

0<br />

G(x, ξ; z)f(ξ)dξ.<br />

Estimating <strong>the</strong> absolute value of <strong>the</strong> Green function on <strong>the</strong> parabola z =<br />

η 2 +1± iη <strong>for</strong> |z| large enoughwe get that ‖u‖ L1 = ‖(zI − A) −1 f‖ L1 ≤<br />

M<br />

1+ √ |z| ‖f‖ L 1<br />

(f ∈ L 1 (0, 1), z∈ C \Ω Γ0 ), i.e., <strong>the</strong> <strong>operator</strong> A : L 1 → L 1<br />

is strongly P-positive in <strong>the</strong> sense of Definition 2.1. Similar estimates <strong>for</strong><br />

<strong>the</strong> Green function imply <strong>the</strong> strong positiveness of A also in L ∞ (0, 1) (see<br />

[5] <strong>for</strong> details).<br />

As <strong>the</strong> second example of a strongly P-positive <strong>operator</strong> one can consider<br />

<strong>the</strong> strongly elliptic differential <strong>operator</strong><br />

(2.3) L := −<br />

d∑<br />

j,k=1<br />

∂ j a jk ∂ k +<br />

d∑<br />

j=1<br />

b j ∂ j + c 0<br />

(<br />

∂ j :=<br />

∂ )<br />

∂x j<br />

<strong>with</strong>smooth(in general complex) coefficients a jk ,b j and c 0 in a domain<br />

Ω <strong>with</strong>a smoothboundary. For <strong>the</strong> ease of presentation, we consider <strong>the</strong><br />

case of Dirichlet boundary conditions. We suppose that a pq = a qp and <strong>the</strong><br />

following ellipticity condition holds<br />

d∑<br />

a ij y i y j ≥ C 1<br />

i,j=1<br />

d∑<br />

yi 2 .<br />

i=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!