26.06.2014 Views

Poly(2-oxazolines) in biological and biomedical application contexts

Poly(2-oxazolines) in biological and biomedical application contexts

Poly(2-oxazolines) in biological and biomedical application contexts

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1520 N. Adams, U.S. Schubert / Advanced Drug Delivery Reviews 59 (2007) 1504–1520<br />

[110] I.M. Klotz, G.P. Royer, A.R. Sloniewsky, Macromolecule — small<br />

molecule <strong>in</strong>teractions. Strong b<strong>in</strong>d<strong>in</strong>g <strong>and</strong> cooperativity <strong>in</strong> a model<br />

synthetic polymer, Biochemistry 8 (1969) 4752–4756.<br />

[111] Y. Akiyama, A. Harada, Y. Nagasaki, K. Kataoka, Synthesis of poly<br />

(ethylene glycol)-block-poly(ethylenim<strong>in</strong>e) possess<strong>in</strong>g an acetal group at<br />

the PEG end, Macromolecules 33 (16) (2000) 5841–5845.<br />

[112] J.H. Jeong, S.H. Song, D.W. Lim, H. Lee, T.G. Park, DNA transfection<br />

us<strong>in</strong>g l<strong>in</strong>ear poly(ethylenim<strong>in</strong>e) prepared by controlled acid hydrolysis of<br />

poly(2-ethyl-2-oxazol<strong>in</strong>e), J. Control. Release 73 (2-3) (2001) 391–399.<br />

[113] B. Abdalla, A. Hassan, D. Goula, C. Benoist, J.P. Behr, B. Demeneix, A<br />

powerful non-viral vector for <strong>in</strong> vivo gene transfer <strong>in</strong> the adult mammalian<br />

brian: polyethyleneim<strong>in</strong>e, Hum. Gene Ther. 7 (1996) 1947–1954.<br />

[114] C.-H. Wang, G.-H. Hsiue, <strong>Poly</strong>mer-DNA hybrid nanoparticles based on<br />

folate-polyethylenim<strong>in</strong>e-block-poly(L-lactide), Bioconjug. Chem. 16 (2)<br />

(2005) 391–396.<br />

[115] Z. Zhong, J. Feijen, M.C. Lok, W.E. Henn<strong>in</strong>k, L.V. Christensen, J.W.<br />

Yockman, Y.-H. Kim, S.W. Kim, Low molecular weight l<strong>in</strong>ear poly<br />

(ethyleneim<strong>in</strong>e)-b-poly(ethylene glycol)-b-poly(ethyleneim<strong>in</strong>e) triblock<br />

copolymers: synthesis, characterization <strong>and</strong> <strong>in</strong> vitro gene transfer<br />

properties, Biomacromolecules 6 (6) (2005) 3440–3448.<br />

[116] B. Brissault, A. Kichler, C. Leborgne, O. Danos, H. Cheradame, J. Gau,<br />

L. Auvray, C. Guis, Synthesis, characterization <strong>and</strong> gene transfer<br />

<strong>application</strong> of poly(ethylene glycol-b-ethylenim<strong>in</strong>e) with high molar<br />

mass polyam<strong>in</strong>e block, Biomacromolecules 7 (10) (2006) 2863–2870.<br />

[117] G.H. Hsiue, H.Z. Chiang, C.H. Wang, T.M. Juang, Nonviral gene carriers<br />

based on diblock copolymers of poly(2-ethyl-2oxazol<strong>in</strong>e) <strong>and</strong> l<strong>in</strong>ear<br />

polyethyleneim<strong>in</strong>e, Bioconjug. Chem. 17 (2006) 781–786.<br />

[118] T. Tanaka, Collapse of gels <strong>and</strong> the critrical endpo<strong>in</strong>t, Phys. Rev. Lett. 40<br />

(12) (1978) 820–823.<br />

[119] D. Schmaljohann, Thermo- <strong>and</strong> pH-responsive polymers <strong>in</strong> drug delivery,<br />

Adv. Drug Deliv. Rev. 58 (15) (2006) 1655–1670.<br />

[120] S.J. Kim, S.G. Yoon, S.M. Lee, S.H. Lee, S.I. Kim, Electrical sensitivity<br />

behavior of a hydrogel composed of poly(methacrylic acid)/poly(v<strong>in</strong>yl<br />

alcohol), J. Appl. <strong>Poly</strong>m. Sci. 91 (6) (2004) 3613–3617.<br />

[121] J. Chatterjee, Y. Haik, C.-J. Chen, pH-reversible magnetic gel with a<br />

biodegradable polymer, J. Appl. <strong>Poly</strong>m. Sci. 91 (5) (2004) 3337–3341.<br />

[122] G.D. Jaycox, Stimuli-responsive polymers. VII. Photomodulated chiroptical<br />

switches: periodic copolyaramides conta<strong>in</strong><strong>in</strong>g azobenzene,<br />

phenylene, <strong>and</strong> chiral b<strong>in</strong>aphthylene ma<strong>in</strong>-cha<strong>in</strong> l<strong>in</strong>kages, J. <strong>Poly</strong>m.<br />

Sci., A, <strong>Poly</strong>m. Chem. 42 (3) (2004) 566–577.<br />

[123] S.R. Lustig, G.J. Everlof, G.D. Jaycox, Stimuli-responsive polymers. 5.<br />

Azobenzene modified polyaramides conta<strong>in</strong><strong>in</strong>g atropisomeric b<strong>in</strong>aphthyl<br />

l<strong>in</strong>kages: tun<strong>in</strong>g chiroptical behavior with light <strong>and</strong> heat, Macromolecules<br />

34 (7) (2001) 2364–2372.<br />

[124] S.C. Lee, Y. Chang, Y. Yoon, C. Kim, I.C. Kwon, Y.H. Kim, S.Y. Jeong,<br />

Synthesis <strong>and</strong> micellar characterization of amphiphilic diblock copolymers<br />

based on poly(2-ethyl-2-oxazol<strong>in</strong>e) <strong>and</strong> aliphatic polyesters,<br />

Macromolecules 32 (6) (1999) 1847–1852.<br />

[125] C. Kim, S.C. Lee, J.H. Sh<strong>in</strong>, J.S. Yoon, I.C. Kwon, S.Y. Jeong,<br />

Amphiphilic diblock copolymers based on poly(2-ethyl-2-oxazol<strong>in</strong>e) <strong>and</strong><br />

poly(1,3-trimethylene carbonate): synthesis <strong>and</strong> micellar characteristics,<br />

Macromolecules 33 (20) (2000) 7448.<br />

[126] S.C. Lee, S.W. Kang, C. Kim, I.C. Kwon, S.Y. Jeong, Synthesis <strong>and</strong><br />

characterization of amphiphilic poly(2-ethyl-2-oxazol<strong>in</strong>e)/poly(e-caprolactone)<br />

alternat<strong>in</strong>g multiblock copolymers, <strong>Poly</strong>mer 41 (2000) 7091–7097.<br />

[127] C. Kim, S.C. Lee, S.W. Kang, I.C. Kwon, S.Y. Jeong, Phase transition<br />

characteristics of amphphilic poly(2-ethyl-2-oxazol<strong>in</strong>e)/poly(e-caprolactone)<br />

block copolymers <strong>in</strong> aqueous solution, J. <strong>Poly</strong>m. Sci., Part B, <strong>Poly</strong>m<br />

Phys. 38 (2000) 2400–2408.<br />

[128] M. Malmsten, B. L<strong>in</strong>dman, Self-assembly <strong>in</strong> aqueous block copolymer<br />

solutions, Macromolecules 25 (20) (1992) 5440–5445.<br />

[129] C. Kim, S.C. Lee, I.C. Kwon, H. Chung, S.Y. Jeong, Complexation of<br />

poly(2-ethyl-2-oxazol<strong>in</strong>e)-block-poly(e-caprolactone) micelles with multifunctional<br />

carboxylic acids, Macromolecules 35 (1) (2002) 193–200.<br />

[130] S.C. Lee, C. Kim, I.C. Kwon, H. Chung, S.Y. Jeong, <strong>Poly</strong>meric micelles<br />

of poly(2-ethyl-2-oxazol<strong>in</strong>e)-block-poly(e-caprolactone) copolymer as a<br />

carrier for paclitaxel, J. Control. Release 89 (3) (2003) 437.<br />

[131] B.G. Yu, T. Okano, K. Kataoka, G. Kwon, <strong>Poly</strong>meric micelles for drug<br />

delivery: solubilization <strong>and</strong> haemolytic activity of amphoteric<strong>in</strong> B,<br />

J. Control. Release 53 (1998) 1998.<br />

[132] C. Wang, G.H. Hsiue, Synthesis <strong>and</strong> characterization of temperature- <strong>and</strong><br />

pH-sensitive hydrogels based on poly(2-ethyl-2-oxazol<strong>in</strong>e) <strong>and</strong> poly(D,Llactide),<br />

J. <strong>Poly</strong>m. Sci., A, <strong>Poly</strong>m. Chem. 40 (2002) 1112.<br />

[133] D. Christova, R. Velichkova, W. Loos, E.J. Goethals, F.E. du Prez, New<br />

thermo-responsive polymer materials based on poly(2-ethyl-2-oxazol<strong>in</strong>e)<br />

segments, <strong>Poly</strong>mer 44 (2003) 2255–2261.<br />

[134] C.H. Wang, G.H. Hsiue, New amphiphilic poly(2-ethyl-2-oxazol<strong>in</strong>e)/<br />

poly(L-lactide) triblock copolymers, Biomacromolecules 4 (6) (2003)<br />

1487–1490.<br />

[135] C.-H. Wang, C.-H. Wang, G.-H. Hsiue, <strong>Poly</strong>meric micelles with a pHresponsive<br />

structure as <strong>in</strong>tracellular drug carriers, J. Control. Release 108<br />

(1) (2005) 140–149.<br />

[136] W.T. Godbey, K.K. Wu, A.G. Mikos, <strong>Poly</strong>(ethylenim<strong>in</strong>e) <strong>and</strong> its role <strong>in</strong><br />

gene delivery, J. Control. Release 60 (2-3) (1999) 149–160.<br />

[137] G.H. Hsiue, C.H. Wang, C.L. Lo, C.H. Wang, J.P. Li, J.L. Yang,<br />

Environmental sensitive micelles based on poly(2-ethyl-2-oxazol<strong>in</strong>e)-bpoly(L-lactide)<br />

diblock copolymer for <strong>application</strong> <strong>in</strong> drug delivery, Int. J.<br />

Pharm. 317 (2006) 69–75.<br />

[138] C.H. Wang, K.R. Fan, G.H. Hsiue, Enzymatic degradation of PLLA–<br />

PEOz–PLLA triblock copolymers, Biomaterials 26 (2005) 2803–2811.<br />

[139] C. Diab, Y. Akiyama, K. Kataoka, F.M. W<strong>in</strong>nik, Microcalorimetric study<br />

of the temperature-<strong>in</strong>duced phase separation <strong>in</strong> aqueous solutions of poly<br />

(2-isopropyl-2-<strong>oxazol<strong>in</strong>es</strong>), Macromolecules 37 (7) (2004) 2556–2562.<br />

[140] J.S. Park, Y. Akiyama, F.M. W<strong>in</strong>nik, K. Kataoka, Versatile synthesis of<br />

end-functionalized thermosensitive poly(2-isopropyl-2-<strong>oxazol<strong>in</strong>es</strong>),<br />

Macromolecules 37 (18) (2004) 6786.<br />

[141] J.S. Park, K. Kataoka, Precise control of lower critical solution<br />

temperature of thermosensitive poly(2-isopropyl-2-oxazol<strong>in</strong>e) via gradient<br />

copolymerisation with 2-ethyl-2-oxazol<strong>in</strong>e as a hydrophilic comonomer,<br />

Macromolecules 39 (19) (2006) 6622–6630.<br />

[142] J.C. Rueda, S. Zschoche, H. Komber, D. Schmaljohann, B. Voit,<br />

Synthesis <strong>and</strong> characterization of thermoresponsive graft copolymers of<br />

NIPAAm <strong>and</strong> 2-alkyl-2-<strong>oxazol<strong>in</strong>es</strong> by the “graft<strong>in</strong>g from” method,<br />

Macromolecules 38 (17) (2005) 7330–7336.<br />

[143] M. Meyer, H. Schlaad, <strong>Poly</strong>(2-isopropyl-2-oxazol<strong>in</strong>e)-poly(L-glutamate)<br />

block copolymers through ammonium-mediated NCA polymerisation,<br />

Macromolecules 39 (2006) 3967–3970.<br />

[144] Y. Yang, K. Kataoka, F.M. W<strong>in</strong>nik, Synthesis of diblock copolymers<br />

consist<strong>in</strong>g of hyaluronan <strong>and</strong> poly(2-ethyl-2-oxazol<strong>in</strong>e), Macromolecules<br />

38 (6) (2005) 2043.<br />

[145] D.J. Diekema, B.J. BootsMiller, T.E. Vaughn, R.F. Woolson, J.W.<br />

Yankey, E.J. Ernst, S.D. Flach, M.M. Ward, C.L.J. Franciscus, M.A.<br />

Pfaller, B.N. Doebell<strong>in</strong>g, Antimicrobial resistance tr<strong>and</strong>s <strong>and</strong> outbreak<br />

frequency <strong>in</strong> United States Hospitals, Cl<strong>in</strong>. Infect. Dis. 38 (2004) 78–85.<br />

[146] T. Ikeda, S. Tazuke, Biologically active polycations: antimicrobial<br />

activities of poly[trialkyl(v<strong>in</strong>ylbenzy1)ammonium chloride]-type polycations,<br />

Macromol. Chem., Rapid Commun. 4 (7) (1983) 459–461.<br />

[147] P. Broxton, P.M. Woodcock, J. Gilbert, Assessment of resistance towards<br />

biocides follow<strong>in</strong>g the attachment of micro-organisms to, <strong>and</strong> growth on,<br />

surfaces, J. Appl. Bacteriol. 91 (2) (1983) 248.<br />

[148] A. Kanazawa, T. Ikeda, T. Endo, <strong>Poly</strong>meric phosphonium salts as a novel<br />

class of cationic biocides. III. Immobilization of phosphonium salts by<br />

surface photograft<strong>in</strong>g <strong>and</strong> antibacterial activity of the surface-treated<br />

polymer films, J. <strong>Poly</strong>m. Sci., A, <strong>Poly</strong>m. Chem. 31 (6) (1993) 1467–1472.<br />

[149] A. Kanazawa, T. Ikeda, T. Endo, Antibacterial activity of polymeric sulfonium<br />

salts, J. <strong>Poly</strong>m. Sci., A, <strong>Poly</strong>m. Chem. 31 (11) (1993) 2873–2876.<br />

[150] C.J. Wasch<strong>in</strong>ski, J.C. Tiller, <strong>Poly</strong>(oxazol<strong>in</strong>e)s with telechelic antimicrobial<br />

functions, Biomacromolecules 6 (1) (2005) 235–243.<br />

[151] C.J. Wasch<strong>in</strong>ski, V. Herdes, F. Schueler, J.C. Tiller, Influence of satellite<br />

groups on telechelic antimicrobial functions of poly<strong>oxazol<strong>in</strong>es</strong>, Macromol.<br />

Biosci. 5 (2) (2005) 149–156.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!