13.07.2014 Views

Quadratic formula: Kinematics under constant acceleration: Average ...

Quadratic formula: Kinematics under constant acceleration: Average ...

Quadratic formula: Kinematics under constant acceleration: Average ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Angular velocity and <strong>acceleration</strong>:<br />

⇥ = d dt<br />

= d⇥<br />

dt<br />

Angular ↔ Linear analogies:<br />

Center of Mass, Momentum and Impulse:<br />

1D Collision, elastic:<br />

Angular motion at <strong>constant</strong> angular <strong>acceleration</strong>:<br />

⇥(t) =⇥(t 0 )+ [t t 0 ]<br />

⇤(t) 2 = ⇤(t 0 ) 2 +2 [⇥(t) ⇥(t 0 )]<br />

⇥(t) =⇥(t 0 )+⇤(t 0 )[t t 0 ]+ 1 2<br />

[t t 0 ] 2<br />

Since these equations describe rotation<br />

x v a m I<br />

Torque and angular momentum:<br />

⇥F ⇥ p L<br />

⇤⇥ = I⇤ = d⇤ L<br />

dt = ⇤r F ⇤ ⇥<br />

1<br />

L = I ⇥ = ⇥r ⇥p<br />

2 mv2 $ 1 2 I!2 Potential Energy & Energy Conservation: F = dU<br />

dx<br />

Z<br />

R center of mass = 1 m i r i = 1 xf<br />

Z ~r f<br />

M total<br />

M<br />

rdm<br />

U = U f U i = Fdx = F ~ · dr ~ = Wcons<br />

x i ~r i<br />

i<br />

~p = m~v<br />

Z<br />

K 1 + U 1 + W non-cons = K 2 + U 2 U gravity = mgy<br />

t2<br />

~J = ~p 2 ~p 1 = F ~ (t)dt<br />

~F U spring = 1 2 k(x x 0) 2 U gravity =<br />

GmM<br />

net = d~p<br />

t 1<br />

dt<br />

r<br />

Power:<br />

P average =<br />

W P = F · v<br />

v f = m 1v 1i + m 2 v 2i<br />

P = dW m 1 + m 2<br />

t<br />

dt P = ⇤ · ⇤⇥<br />

v 1f = m 1 m 2<br />

v 1i + 2m 2<br />

v<br />

The <strong>formula</strong> for v2f is obtained by swapping 1↔2 in<br />

2i<br />

m 1 + m 2 m 1 + m 2 the <strong>formula</strong> to the left.<br />

ring or hollow cylinder (about center): mr 2<br />

2<br />

solid sphere (about center):<br />

I = m i ri 2 = r 2 5<br />

dm<br />

mr2<br />

1<br />

i<br />

disc, solid cylinder (about center): 2 mr2 2<br />

hollow sphere (about center): 3 mr2<br />

I = I CoM + MD 2 1<br />

1<br />

thin rod (about center): 12 mL2 thin rod about end: 3 mL2<br />

1D Collision, totally inelastic:<br />

Moment of inertia:<br />

a tangential = ↵r<br />

v tangential = !r<br />

around a fixed axis, they involve the<br />

components of θ, ω and α along this axis.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!