13.07.2014 Views

Quadratic formula: Kinematics under constant acceleration: Average ...

Quadratic formula: Kinematics under constant acceleration: Average ...

Quadratic formula: Kinematics under constant acceleration: Average ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Average</strong> & instantaneous velocity<br />

and <strong>acceleration</strong>:<br />

~v average =<br />

! x<br />

t<br />

~v = d~x<br />

dt<br />

<strong>Kinematics</strong> <strong>under</strong> <strong>constant</strong> <strong>acceleration</strong>:<br />

~v (t) =~v (t 0 )+~a [t t 0 ] v x (t) 2 = v x (t 0 ) 2 +2a x [x(t) x(t 0 )]<br />

~r (t) =~r (t 0 )+~v (t 0 )[t t 0 ]+ 1 2 ~a [t t 0] 2 ...and similarly for y and z components.<br />

~a average =<br />

! v<br />

t<br />

~a = d~v<br />

dt = d 2 ~x<br />

dt 2<br />

~r (t) =~r (t 0 )+ 1 2 [~v (t)+~v (t 0)] t<br />

Vectors:<br />

Forces:<br />

F net = ma<br />

⇥A · ⇥B = AB cos<br />

= A x B x + A y B y + A z B z<br />

|F gravity | = mg<br />

F kinetic friction = µ k N<br />

A = |A| = A 2 x + A 2 y + A 2 z A x = A cos A y = A sin<br />

Where θ for components is measured<br />

counter-clockwise from the î direction.<br />

F spring = k(x x 0 ) F static friction µ s N<br />

F gravity = GmM<br />

r 2<br />

(between two point masses)<br />

Uniform circular<br />

motion:<br />

a centripetal = v2<br />

r<br />

v =<br />

r<br />

T = 2 r<br />

v<br />

<strong>Quadratic</strong> <strong>formula</strong>:<br />

ax 2 + bx + c =0 x = b ± ⇥ b 2 4ac<br />

2a<br />

Drag Forces:<br />

~F = bv ˆv<br />

~F = 1 2 C⇢Av2 ˆv<br />

(low speed)<br />

(high speed)<br />

(v with a hat on it is a unit vector<br />

in the direction of the velocity).<br />

Work and kinetic<br />

energy (linear and<br />

rotational):<br />

r f<br />

K = 1 W = F · dr<br />

2 mv2 W = K f K i<br />

K = 1 2 I 2 W =<br />

r i<br />

f<br />

i<br />

⇤⇥ · ⇤d


Angular velocity and <strong>acceleration</strong>:<br />

⇥ = d dt<br />

= d⇥<br />

dt<br />

Angular ↔ Linear analogies:<br />

Center of Mass, Momentum and Impulse:<br />

1D Collision, elastic:<br />

Angular motion at <strong>constant</strong> angular <strong>acceleration</strong>:<br />

⇥(t) =⇥(t 0 )+ [t t 0 ]<br />

⇤(t) 2 = ⇤(t 0 ) 2 +2 [⇥(t) ⇥(t 0 )]<br />

⇥(t) =⇥(t 0 )+⇤(t 0 )[t t 0 ]+ 1 2<br />

[t t 0 ] 2<br />

Since these equations describe rotation<br />

x v a m I<br />

Torque and angular momentum:<br />

⇥F ⇥ p L<br />

⇤⇥ = I⇤ = d⇤ L<br />

dt = ⇤r F ⇤ ⇥<br />

1<br />

L = I ⇥ = ⇥r ⇥p<br />

2 mv2 $ 1 2 I!2 Potential Energy & Energy Conservation: F = dU<br />

dx<br />

Z<br />

R center of mass = 1 m i r i = 1 xf<br />

Z ~r f<br />

M total<br />

M<br />

rdm<br />

U = U f U i = Fdx = F ~ · dr ~ = Wcons<br />

x i ~r i<br />

i<br />

~p = m~v<br />

Z<br />

K 1 + U 1 + W non-cons = K 2 + U 2 U gravity = mgy<br />

t2<br />

~J = ~p 2 ~p 1 = F ~ (t)dt<br />

~F U spring = 1 2 k(x x 0) 2 U gravity =<br />

GmM<br />

net = d~p<br />

t 1<br />

dt<br />

r<br />

Power:<br />

P average =<br />

W P = F · v<br />

v f = m 1v 1i + m 2 v 2i<br />

P = dW m 1 + m 2<br />

t<br />

dt P = ⇤ · ⇤⇥<br />

v 1f = m 1 m 2<br />

v 1i + 2m 2<br />

v<br />

The <strong>formula</strong> for v2f is obtained by swapping 1↔2 in<br />

2i<br />

m 1 + m 2 m 1 + m 2 the <strong>formula</strong> to the left.<br />

ring or hollow cylinder (about center): mr 2<br />

2<br />

solid sphere (about center):<br />

I = m i ri 2 = r 2 5<br />

dm<br />

mr2<br />

1<br />

i<br />

disc, solid cylinder (about center): 2 mr2 2<br />

hollow sphere (about center): 3 mr2<br />

I = I CoM + MD 2 1<br />

1<br />

thin rod (about center): 12 mL2 thin rod about end: 3 mL2<br />

1D Collision, totally inelastic:<br />

Moment of inertia:<br />

a tangential = ↵r<br />

v tangential = !r<br />

around a fixed axis, they involve the<br />

components of θ, ω and α along this axis.


Equation of motion of mass-spring system:<br />

kx m d2 x<br />

dt 2 = =<br />

General solution:<br />

x(t) =x m cos(!t + )<br />

k<br />

m<br />

T = 1 f = 2 ⇥<br />

Simple pendulum:<br />

E = K + U = 1 2 kx2 m<br />

= g L<br />

Solution for a damped oscillator: x(t) =x = b<br />

m e<br />

t cos(!t + )<br />

2m<br />

Traveling simple harmonic wave: y(x, t) =y m sin(kx !t + )<br />

Period: T = 2 ⇥ = 1 f<br />

k = 2⇥<br />

Wave on string:<br />

Some potentially useful mathematics:<br />

sin 30 =0.5<br />

d<br />

cos 30 ⇡ 0.866<br />

dt (atn )=an t n 1<br />

sin(90 ✓) = cos ✓<br />

Z<br />

at n dt =<br />

a<br />

n +1 tn+1<br />

tan ✓ = sin ✓<br />

cos ✓<br />

v wave = T<br />

= ⇥ k<br />

! =<br />

v wave =<br />

(sin ✓) 2 + (cos ✓) 2 =1<br />

r<br />

k<br />

m<br />

T string<br />

µ<br />

sin(A ± B) =sinA cos B ± cos A sin B<br />

cos(A ± B) = cos A cos B ⌥ sin A sin B<br />

2


Gravitational Constant G : 6.67259 × 10 -11 N m 2 /kg 2<br />

Acceleration due to gravity (g) : 9.80 m/s 2<br />

<strong>Average</strong> earth-moon distance : 3.84 × 10 8 m<br />

<strong>Average</strong> earth-sun distance : 1.49 × 10 11 m<br />

<strong>Average</strong> radius of the earth : 6.37 × 10 6 m<br />

<strong>Average</strong> radius of Mars : 3.37 × 10 6 m<br />

Mass of the earth : 5.97 × 10 24 kg<br />

Mass of the moon : 7.36 × 10 22 kg<br />

Mass of the sun : 1.99 × 10 30 kg<br />

Mass of Mars : 6.42 × 10 23 kg<br />

Force<br />

1 N = 10 5 dyne<br />

1 N = 0.2248 lb<br />

Power<br />

1 hp = 550 ft lb/s<br />

1 W = 1 J/s<br />

1 W = 0.738 ft lb/s<br />

Time<br />

60 s = 1 min.<br />

60 min. = 1 hr.<br />

Mass<br />

1000 kg = 1 metric ton<br />

1000 g = 1 kg<br />

1 slug = 14.59 kg<br />

Length<br />

1 in. = 2.54 cm<br />

1 ft. = 12 in.<br />

1 yd. = 3 ft.<br />

1 m = 39.37 in.<br />

1 mile = 1.609 km<br />

1 Å = 10 -10 m<br />

1 lightyear = 9.461 × 10 15 m<br />

1 µm = 10 -6 m<br />

1 u = 1.66 × 10 -27 kg<br />

Energy<br />

1 J = 10 7 erg<br />

1 J = 0.738 ft lb<br />

1 cal = 4.186 J<br />

1 Btu = 252 cal<br />

1 eV = 1.6 × 10 -19 J<br />

1 kWh = 3.6 × 10 6 J<br />

931.5 MeV = 1 u

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!