25.07.2014 Views

WindPRO / PARK - EMD International AS.

WindPRO / PARK - EMD International AS.

WindPRO / PARK - EMD International AS.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Introduction to the Ainslie Wake Model (Eddy Viscosity Model)<br />

D<br />

M<br />

= C<br />

b =<br />

8D<br />

M<br />

T<br />

− 0.05 − (16C<br />

3.56C<br />

T<br />

(1 − 0.5) D<br />

M<br />

T<br />

− 0.5) A /1000<br />

Other authors specify a boundary condition where the initiation position (downwind position) varies. In Lange<br />

et al [4] reference to a study made by Vermeulen [5] is made. Vermeulen suggests that the near wake length is<br />

modeled through contributions from ambient turbulence, rotor generated turbulence and shear generated<br />

turbulence. The near wake length is divided into two regions; the first x h is modeled as:<br />

x<br />

h<br />

= r<br />

0<br />

⎡⎛<br />

dr ⎞<br />

⎢⎜<br />

⎟<br />

⎢⎣<br />

⎝ dx ⎠<br />

2<br />

a<br />

⎛ dr ⎞<br />

+ ⎜ ⎟<br />

⎝ dx ⎠<br />

2<br />

λ<br />

⎛ dr ⎞<br />

+ ⎜ ⎟<br />

⎝ dx ⎠<br />

2<br />

m<br />

⎤<br />

⎥<br />

⎥⎦<br />

−0.5<br />

where r 0 is an ‘effective’ radius of an expanded rotor disc, = [ D / 2] ( m 1) / 2<br />

D is the rotor diameter<br />

C t the thrust coefficient<br />

The different contributions in the equation above are calculated as:<br />

⎛ dr ⎞<br />

⎜ ⎟<br />

⎝ dx ⎠<br />

⎛ dr ⎞<br />

⎜ ⎟<br />

⎝ dx ⎠<br />

⎛ dr ⎞<br />

⎜ ⎟<br />

⎝ dx ⎠<br />

2<br />

a<br />

2<br />

λ<br />

2<br />

m<br />

⎧2.5I<br />

+ 0.05<br />

= ⎨<br />

⎩5I<br />

= 0.012Bλ<br />

=<br />

for I ≥ 0.02<br />

for I < 0.02<br />

r 0 + and m = 1 / 1− Ct<br />

ambient turbulence<br />

rotor generated turbulence<br />

[(1<br />

− m)<br />

1.49 + m ]/ (9.76(1+<br />

m)) shear - generated turbulence<br />

where<br />

I is the ambient turbulence intensity<br />

B is the number of rotor blades<br />

λ is the tip speed ratio<br />

Page 3-3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!