08.09.2014 Views

Online Semi-radius Probe Tip Cleaning and Reshaping

Online Semi-radius Probe Tip Cleaning and Reshaping

Online Semi-radius Probe Tip Cleaning and Reshaping

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Online</strong> <strong>Semi</strong>-<strong>radius</strong> <strong>Probe</strong> <strong>Tip</strong> <strong>Cleaning</strong><br />

<strong>and</strong> <strong>Reshaping</strong><br />

Authors:<br />

Sam McKnight <strong>and</strong> Michael Agbesi<br />

June 3, 2007<br />

IEEE SW Test Workshop 1


Agenda<br />

Acknowledgements<br />

Background info<br />

Setup <strong>and</strong> measurement technique<br />

Contact resistance results<br />

<strong>Cleaning</strong> recipe parameters to consider<br />

Silicone vs polymer based materials<br />

Summary<br />

Future work<br />

June 3, 2007<br />

IEEE SW Test Workshop 2


Acknowledgements<br />

Jack Courtney<br />

John Cartier<br />

Steve Duda<br />

Les Griffith<br />

Rob Holwager<br />

Glen Langsman<br />

Josh Pendergast<br />

June 3, 2007<br />

IEEE SW Test Workshop 3


Basic cantilever probe types<br />

June 3, 2007<br />

IEEE SW Test Workshop 4


Why <strong>Semi</strong>-<strong>radius</strong>?<br />

Lower pad damage in general for today’s<br />

soft aluminum<br />

Approximately same scrub length as flat tip<br />

while reducing the amount of material<br />

removed from base material<br />

Equivalent contact resistance to flat or full<br />

<strong>radius</strong> tip<br />

Reflectivity similar to flat tip for prober <strong>and</strong><br />

probe metrology alignment (easier to align<br />

to vs. full <strong>radius</strong> material)<br />

June 3, 2007<br />

IEEE SW Test Workshop 5


Bonding – <strong>Semi</strong> <strong>radius</strong> tips<br />

Pad opening shown is 29X29 microns - running out of room!<br />

June 3, 2007<br />

IEEE SW Test Workshop 6


The problem with <strong>Semi</strong>-<br />

<strong>radius</strong>ed probes<br />

Variable tip geometry using st<strong>and</strong>ard<br />

material cleaning solutions<br />

No insitu solution – non silicone based<br />

Either flat tip or <strong>radius</strong>ed tip solution but no<br />

semi-<strong>radius</strong>ed solution<br />

June 3, 2007<br />

IEEE SW Test Workshop 7


Traditional way to maintain semi-<strong>radius</strong><br />

probe tips<br />

Use elastomeric abrasive i.e.<br />

polymer based material – continues<br />

to <strong>radius</strong> tips<br />

Remove periodically to reshape (put<br />

a flat back on it)<br />

June 3, 2007<br />

IEEE SW Test Workshop 8


The solution<br />

Two part cleaning – insitu<br />

‣ Abrasive material for flat tip – SiC<br />

‣ Elastomeric material for <strong>radius</strong> tip<br />

<strong>and</strong> removes stringers (contact<br />

pad <strong>and</strong> cleaning detritus)<br />

June 3, 2007<br />

IEEE SW Test Workshop 9


Two basic cleaning mediums<br />

Two part cleaning – insitu<br />

‣ Solid Abrasive material for flat tip – SiC<br />

(Silicon Carbide)<br />

‣ Elastomeric material for <strong>radius</strong> tip <strong>and</strong><br />

removes stringers (contact pad detritus)<br />

‣ Order is important – see data<br />

June 3, 2007<br />

IEEE SW Test Workshop 10


June 3, 2007<br />

Typical recipes<br />

5 -10 up/down touchdowns on each medium<br />

‣ SiC abrasive removes all detritus down to<br />

base material (flat tip)<br />

‣ Elastomeric abrasive -removes<br />

probing/cleaning detritus (<strong>radius</strong> tip)<br />

Use same OD as with product for SiC, OD +<br />

30% for elastomeric (typical) - pitch dependant<br />

Move to new location between Up/Down<br />

cycles<br />

IEEE SW Test Workshop 11


Polymer based abrasive clean<br />

Before clean<br />

After clean<br />

June 3, 2007<br />

IEEE SW Test Workshop 12


Contact resistance - Elastomeric<br />

5<br />

4.5<br />

4<br />

Elastomeric cleaner<br />

50um OD 25C clean freq 100 die<br />

Wafer average 0.59 ohms<br />

Cres(ohms)<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

Min<br />

Max<br />

Average<br />

1<br />

0.5<br />

<strong>Cleaning</strong> cycle<br />

0<br />

1<br />

501<br />

1001<br />

1501<br />

2001<br />

2501<br />

3001<br />

3501<br />

4001<br />

4501<br />

Test #<br />

5001<br />

5501<br />

6001<br />

6501<br />

7001<br />

7501<br />

June 3, 2007<br />

Each "test" represents 25 contacts (190K data points total)<br />

opens removed from average data – all CRES charts<br />

IEEE SW Test Workshop 13


Contact resistance – silicon carbid<br />

SIC abrasive<br />

50um OD 25C clean freq 100 die<br />

Cres(ohms)<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Wafer average 0.10 ohms<br />

Min<br />

Max<br />

Average<br />

<strong>Cleaning</strong> cycle<br />

1<br />

501<br />

1001<br />

1501<br />

2001<br />

2501<br />

3001<br />

3501<br />

4001<br />

4501<br />

5001<br />

5501<br />

6001<br />

6501<br />

7001<br />

7501<br />

Test #<br />

June 3, 2007<br />

IEEE SW Test Workshop 14


Contact resistance – dual clean<br />

JEM elsatomeric & SIC abrasive<br />

50um OD 25C clean freq 100 die<br />

Each "test" represents 25 contacts (190K data points)<br />

5<br />

4.5<br />

4<br />

Wafer average 0.40 ohms opens<br />

removed from average data<br />

Cres(ohms)<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

Min<br />

Max<br />

Average<br />

0.5<br />

0<br />

1<br />

501<br />

1001<br />

1501<br />

2001<br />

2501<br />

3001<br />

3501<br />

4001<br />

Test #<br />

4501<br />

5001<br />

5501<br />

6001<br />

6501<br />

7001<br />

7501<br />

S. McKnight<br />

05/02/2007<br />

<strong>Cleaning</strong> cycle<br />

June 3, 2007<br />

IEEE SW Test Workshop 15


Contact resistance setup <strong>and</strong><br />

measurement technique<br />

TEL P12XLN prober @ 25C, Maximum z velocity<br />

<strong>Probe</strong> – 50 micron pitch 1X25 tungsten rhenium<br />

material, 20 micron nominal tip diameter ~ 1gf/mil spring<br />

rate<br />

50 micron overdrive from first touch (contacts were<br />

within 9 microns from first to last touch)<br />

100 touchdowns between cleans<br />

Relative measurement – not 4 point<br />

All data “nulled” – path or bulk resistance removed<br />

300mm wafer – 1.2 micron as deposited aluminum –<br />

blanket deposition<br />

June 3, 2007<br />

IEEE SW Test Workshop 16


Measurement circuit<br />

• Test stimulus 10 ma forcing current – 5V clamp<br />

• Min - Max - Average data collected plus raw data<br />

• Keithley based matrix switch <strong>and</strong> source/measurement unit<br />

VI source<br />

Contact under<br />

test<br />

Return path<br />

June 3, 2007<br />

Shorted wafer<br />

Note: actual return path pins = 24<br />

IEEE SW Test Workshop 17


Polymer based abrasive clean<br />

SiC abrasive<br />

<strong>Probe</strong> tip<br />

Abraded area – largest area expose to cleaning medium<br />

June 3, 2007<br />

IEEE SW Test Workshop 18


SiC clean<br />

Typical flat tip Silicon Carbide abrasive – 3µm<br />

June 3, 2007<br />

IEEE SW Test Workshop 19


“Recipe” Considerations<br />

<strong>Probe</strong> characteristics<br />

‣ <strong>Tip</strong> diameter<br />

‣ <strong>Tip</strong> length<br />

‣ Taper<br />

‣ Spring rate<br />

‣ Material<br />

<strong>Cleaning</strong> order<br />

‣ Lowest CRES use SIC last<br />

June 3, 2007<br />

‣ Maximum particulate removal use<br />

Elastomeric last<br />

IEEE SW Test Workshop 20


Sequence <strong>and</strong> motion (use animation)<br />

Elastomeric<br />

material<br />

SIC material<br />

June 3, 2007<br />

IEEE SW Test Workshop 21


Benefits<br />

Low cost solution – use existing materials<br />

Comparable CRES to SiC material<br />

Non Silicone<br />

Uniform tip shape throughout life of probe<br />

Longer probe life<br />

June 3, 2007<br />

IEEE SW Test Workshop 22


Detractor<br />

Die Size limited – effectively cut cleaning<br />

area in half<br />

June 3, 2007<br />

IEEE SW Test Workshop 23


142 mm<br />

155 mm<br />

<strong>Cleaning</strong><br />

summary<br />

Flat material<br />

Radius material<br />

<strong>Semi</strong>-Radius tip<br />

+ =<br />

June 3, 2007<br />

IEEE SW Test Workshop 24


142 mm<br />

155 mm<br />

Future work<br />

Evaluate even lower cost materials<br />

Look for extension to other probe<br />

technologies i.e. Cobra, metrology usage<br />

Maximize cleaning medium lifetime<br />

Larger cleaning plate<br />

Thank you! Questions?<br />

June 3, 2007<br />

IEEE SW Test Workshop 25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!