08.09.2014 Views

Online Semi-radius Probe Tip Cleaning and Reshaping

Online Semi-radius Probe Tip Cleaning and Reshaping

Online Semi-radius Probe Tip Cleaning and Reshaping

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Online</strong> <strong>Semi</strong>-<strong>radius</strong> <strong>Probe</strong> <strong>Tip</strong> <strong>Cleaning</strong><br />

<strong>and</strong> <strong>Reshaping</strong><br />

Authors:<br />

Sam McKnight <strong>and</strong> Michael Agbesi<br />

June 3, 2007<br />

IEEE SW Test Workshop 1


Agenda<br />

Acknowledgements<br />

Background info<br />

Setup <strong>and</strong> measurement technique<br />

Contact resistance results<br />

<strong>Cleaning</strong> recipe parameters to consider<br />

Silicone vs polymer based materials<br />

Summary<br />

Future work<br />

June 3, 2007<br />

IEEE SW Test Workshop 2


Acknowledgements<br />

Jack Courtney<br />

John Cartier<br />

Steve Duda<br />

Les Griffith<br />

Rob Holwager<br />

Glen Langsman<br />

Josh Pendergast<br />

June 3, 2007<br />

IEEE SW Test Workshop 3


Basic cantilever probe types<br />

June 3, 2007<br />

IEEE SW Test Workshop 4


Why <strong>Semi</strong>-<strong>radius</strong>?<br />

Lower pad damage in general for today’s<br />

soft aluminum<br />

Approximately same scrub length as flat tip<br />

while reducing the amount of material<br />

removed from base material<br />

Equivalent contact resistance to flat or full<br />

<strong>radius</strong> tip<br />

Reflectivity similar to flat tip for prober <strong>and</strong><br />

probe metrology alignment (easier to align<br />

to vs. full <strong>radius</strong> material)<br />

June 3, 2007<br />

IEEE SW Test Workshop 5


Bonding – <strong>Semi</strong> <strong>radius</strong> tips<br />

Pad opening shown is 29X29 microns - running out of room!<br />

June 3, 2007<br />

IEEE SW Test Workshop 6


The problem with <strong>Semi</strong>-<br />

<strong>radius</strong>ed probes<br />

Variable tip geometry using st<strong>and</strong>ard<br />

material cleaning solutions<br />

No insitu solution – non silicone based<br />

Either flat tip or <strong>radius</strong>ed tip solution but no<br />

semi-<strong>radius</strong>ed solution<br />

June 3, 2007<br />

IEEE SW Test Workshop 7


Traditional way to maintain semi-<strong>radius</strong><br />

probe tips<br />

Use elastomeric abrasive i.e.<br />

polymer based material – continues<br />

to <strong>radius</strong> tips<br />

Remove periodically to reshape (put<br />

a flat back on it)<br />

June 3, 2007<br />

IEEE SW Test Workshop 8


The solution<br />

Two part cleaning – insitu<br />

‣ Abrasive material for flat tip – SiC<br />

‣ Elastomeric material for <strong>radius</strong> tip<br />

<strong>and</strong> removes stringers (contact<br />

pad <strong>and</strong> cleaning detritus)<br />

June 3, 2007<br />

IEEE SW Test Workshop 9


Two basic cleaning mediums<br />

Two part cleaning – insitu<br />

‣ Solid Abrasive material for flat tip – SiC<br />

(Silicon Carbide)<br />

‣ Elastomeric material for <strong>radius</strong> tip <strong>and</strong><br />

removes stringers (contact pad detritus)<br />

‣ Order is important – see data<br />

June 3, 2007<br />

IEEE SW Test Workshop 10


June 3, 2007<br />

Typical recipes<br />

5 -10 up/down touchdowns on each medium<br />

‣ SiC abrasive removes all detritus down to<br />

base material (flat tip)<br />

‣ Elastomeric abrasive -removes<br />

probing/cleaning detritus (<strong>radius</strong> tip)<br />

Use same OD as with product for SiC, OD +<br />

30% for elastomeric (typical) - pitch dependant<br />

Move to new location between Up/Down<br />

cycles<br />

IEEE SW Test Workshop 11


Polymer based abrasive clean<br />

Before clean<br />

After clean<br />

June 3, 2007<br />

IEEE SW Test Workshop 12


Contact resistance - Elastomeric<br />

5<br />

4.5<br />

4<br />

Elastomeric cleaner<br />

50um OD 25C clean freq 100 die<br />

Wafer average 0.59 ohms<br />

Cres(ohms)<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

Min<br />

Max<br />

Average<br />

1<br />

0.5<br />

<strong>Cleaning</strong> cycle<br />

0<br />

1<br />

501<br />

1001<br />

1501<br />

2001<br />

2501<br />

3001<br />

3501<br />

4001<br />

4501<br />

Test #<br />

5001<br />

5501<br />

6001<br />

6501<br />

7001<br />

7501<br />

June 3, 2007<br />

Each "test" represents 25 contacts (190K data points total)<br />

opens removed from average data – all CRES charts<br />

IEEE SW Test Workshop 13


Contact resistance – silicon carbid<br />

SIC abrasive<br />

50um OD 25C clean freq 100 die<br />

Cres(ohms)<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Wafer average 0.10 ohms<br />

Min<br />

Max<br />

Average<br />

<strong>Cleaning</strong> cycle<br />

1<br />

501<br />

1001<br />

1501<br />

2001<br />

2501<br />

3001<br />

3501<br />

4001<br />

4501<br />

5001<br />

5501<br />

6001<br />

6501<br />

7001<br />

7501<br />

Test #<br />

June 3, 2007<br />

IEEE SW Test Workshop 14


Contact resistance – dual clean<br />

JEM elsatomeric & SIC abrasive<br />

50um OD 25C clean freq 100 die<br />

Each "test" represents 25 contacts (190K data points)<br />

5<br />

4.5<br />

4<br />

Wafer average 0.40 ohms opens<br />

removed from average data<br />

Cres(ohms)<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

Min<br />

Max<br />

Average<br />

0.5<br />

0<br />

1<br />

501<br />

1001<br />

1501<br />

2001<br />

2501<br />

3001<br />

3501<br />

4001<br />

Test #<br />

4501<br />

5001<br />

5501<br />

6001<br />

6501<br />

7001<br />

7501<br />

S. McKnight<br />

05/02/2007<br />

<strong>Cleaning</strong> cycle<br />

June 3, 2007<br />

IEEE SW Test Workshop 15


Contact resistance setup <strong>and</strong><br />

measurement technique<br />

TEL P12XLN prober @ 25C, Maximum z velocity<br />

<strong>Probe</strong> – 50 micron pitch 1X25 tungsten rhenium<br />

material, 20 micron nominal tip diameter ~ 1gf/mil spring<br />

rate<br />

50 micron overdrive from first touch (contacts were<br />

within 9 microns from first to last touch)<br />

100 touchdowns between cleans<br />

Relative measurement – not 4 point<br />

All data “nulled” – path or bulk resistance removed<br />

300mm wafer – 1.2 micron as deposited aluminum –<br />

blanket deposition<br />

June 3, 2007<br />

IEEE SW Test Workshop 16


Measurement circuit<br />

• Test stimulus 10 ma forcing current – 5V clamp<br />

• Min - Max - Average data collected plus raw data<br />

• Keithley based matrix switch <strong>and</strong> source/measurement unit<br />

VI source<br />

Contact under<br />

test<br />

Return path<br />

June 3, 2007<br />

Shorted wafer<br />

Note: actual return path pins = 24<br />

IEEE SW Test Workshop 17


Polymer based abrasive clean<br />

SiC abrasive<br />

<strong>Probe</strong> tip<br />

Abraded area – largest area expose to cleaning medium<br />

June 3, 2007<br />

IEEE SW Test Workshop 18


SiC clean<br />

Typical flat tip Silicon Carbide abrasive – 3µm<br />

June 3, 2007<br />

IEEE SW Test Workshop 19


“Recipe” Considerations<br />

<strong>Probe</strong> characteristics<br />

‣ <strong>Tip</strong> diameter<br />

‣ <strong>Tip</strong> length<br />

‣ Taper<br />

‣ Spring rate<br />

‣ Material<br />

<strong>Cleaning</strong> order<br />

‣ Lowest CRES use SIC last<br />

June 3, 2007<br />

‣ Maximum particulate removal use<br />

Elastomeric last<br />

IEEE SW Test Workshop 20


Sequence <strong>and</strong> motion (use animation)<br />

Elastomeric<br />

material<br />

SIC material<br />

June 3, 2007<br />

IEEE SW Test Workshop 21


Benefits<br />

Low cost solution – use existing materials<br />

Comparable CRES to SiC material<br />

Non Silicone<br />

Uniform tip shape throughout life of probe<br />

Longer probe life<br />

June 3, 2007<br />

IEEE SW Test Workshop 22


Detractor<br />

Die Size limited – effectively cut cleaning<br />

area in half<br />

June 3, 2007<br />

IEEE SW Test Workshop 23


142 mm<br />

155 mm<br />

<strong>Cleaning</strong><br />

summary<br />

Flat material<br />

Radius material<br />

<strong>Semi</strong>-Radius tip<br />

+ =<br />

June 3, 2007<br />

IEEE SW Test Workshop 24


142 mm<br />

155 mm<br />

Future work<br />

Evaluate even lower cost materials<br />

Look for extension to other probe<br />

technologies i.e. Cobra, metrology usage<br />

Maximize cleaning medium lifetime<br />

Larger cleaning plate<br />

Thank you! Questions?<br />

June 3, 2007<br />

IEEE SW Test Workshop 25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!