13.10.2014 Views

8) Carbon Burning & Late Stellar Evolution - ISNAP

8) Carbon Burning & Late Stellar Evolution - ISNAP

8) Carbon Burning & Late Stellar Evolution - ISNAP

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Carbon</strong> <strong>Burning</strong> and <strong>Late</strong> <strong>Stellar</strong> <strong>Evolution</strong><br />

H-shell burning<br />

<strong>Carbon</strong>-core &<br />

shell burning<br />

• Dredge-up to the surface<br />

• mass loss by solar wind<br />

nucleosynthesis contribution?


Nuclear burning & stellar evolution<br />

10<br />

O-ignition<br />

Ne-ignition<br />

Si-ignition<br />

9<br />

C-ignition<br />

log (T c<br />

)<br />

He-ignition<br />

m/M <br />

8<br />

7<br />

H-ignition<br />

0 2 4 6 8 10<br />

log (ρ c<br />

)<br />

6 4 2 0 -2 -4 -6 -8<br />

log (time until core collapse) [y]<br />

Each burning phase is characterized in terms of nuclear particle configurations<br />

hydrogen burning ⇔ CNO proton capture reactions<br />

helium burning ⇔ alpha capture reactions<br />

carbon burning ⇔ C,O fusion reactions and capture reactio<br />

Mass<br />

cut


Subsequent burning sequences<br />

Takes place in environment of increasing density<br />

<strong>Carbon</strong> burning:<br />

Neon burning:<br />

heavy ion burning 12 C+ 12 C ➱ 24 Mg<br />

➱ 20 Ne+α and 23 Na+p<br />

photodissociation of 20 Ne to 16 O and 4 He<br />

because of low α binding energy of 20 Ne<br />

Oxygen burning: heavy ion burning 16 O+ 16 O➱ 28 Si<br />

➱ 24 Mg+α and 27 Al+p<br />

Silicon burning: photodissociation of weakly bound 28 Si<br />

with subsequent p-, α-capture to Fe


<strong>Carbon</strong> <strong>Burning</strong><br />

Conversion of 4 He into 12 C and 16 O<br />

depending on the 12 C(α,γ) 16 O reaction<br />

12<br />

12<br />

12<br />

16<br />

16<br />

16<br />

C(<br />

C(<br />

C(<br />

O(<br />

O(<br />

O(<br />

12<br />

12<br />

12<br />

16<br />

16<br />

16<br />

C,<br />

C,<br />

α)<br />

C,<br />

n)<br />

O,<br />

p)<br />

p)<br />

O,<br />

α)<br />

O,<br />

n)<br />

23<br />

20<br />

23<br />

31<br />

28<br />

31<br />

Na<br />

Ne<br />

Mg<br />

P<br />

Si<br />

S<br />

Q<br />

Q<br />

= 2.240 MeV<br />

= 4.617 MeV<br />

Q = −2.598MeV<br />

Q = 7.628 MeV<br />

Q = 9.594 MeV<br />

Q = 1.499 MeV<br />

16<br />

16<br />

16<br />

O(<br />

O(<br />

O(<br />

12<br />

12<br />

12<br />

C,<br />

p)<br />

C,<br />

α)<br />

C,<br />

n)<br />

27<br />

24<br />

27<br />

Al<br />

Mg<br />

Si<br />

Q<br />

Q<br />

= 7.170 MeV<br />

= 6.771MeV<br />

Q = −0.424<br />

MeV<br />

Wide range of possible<br />

heavy ion<br />

reactions at low energies


The Gamow window for<br />

heavy ion reactions<br />

E<br />

G<br />

ΔE<br />

= 0.122⋅<br />

G<br />

= 0.236⋅<br />

(<br />

2 2 2<br />

Z Z T )<br />

1/3<br />

⋅ ⋅ μ ⋅ [ MeV ]<br />

1<br />

(<br />

2 2 5<br />

Z Z T )<br />

1/ 6<br />

⋅ ⋅ μ ⋅ [ MeV ]<br />

1<br />

1<br />

1<br />

9<br />

9<br />

E G<br />

[MeV]<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

16O+16O<br />

12C+16O<br />

12C+12C<br />

0<br />

12<br />

C+<br />

12<br />

C<br />

:<br />

E<br />

G<br />

=<br />

2.42⋅T<br />

2/3<br />

9<br />

±<br />

0.75⋅T<br />

5/ 6<br />

9<br />

0 1 2 3<br />

temperature [GK]<br />

16<br />

O+<br />

12<br />

C<br />

:<br />

E<br />

G<br />

=<br />

3.06⋅T<br />

2/3<br />

9<br />

±<br />

0.86⋅T<br />

5/ 6<br />

9<br />

16<br />

O+<br />

16<br />

O<br />

:<br />

E<br />

G<br />

=<br />

3.90⋅T<br />

2/3<br />

9<br />

± 1.34⋅T<br />

5/ 6<br />

9


12<br />

C+ 12 C<br />

different reaction<br />

channels open at<br />

higher temperature<br />

dY<br />

12<br />

dt<br />

C<br />

= −Y<br />

12<br />

C<br />

⋅Y<br />

12<br />

C<br />

⎛<br />

⎜<br />

N<br />

A<br />

συ 12<br />

⋅ ρ ⋅<br />

⎜<br />

⎜<br />

+ N<br />

A<br />

συ<br />

⎜<br />

+ N<br />

⎝<br />

A<br />

συ<br />

C(<br />

12<br />

12<br />

12<br />

C,<br />

α )<br />

C (<br />

C(<br />

12<br />

12<br />

20<br />

C,<br />

p)<br />

C,<br />

n)<br />

Ne<br />

23<br />

23<br />

Na<br />

Mg<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />


Experimental status and goals<br />

unknown S-factor towards lower energies!<br />

new generation of initiatives has started!


S-factor extrapolations for different<br />

nuclear models<br />

The main uncertainty<br />

components are: overall<br />

S-factor extrapolation,<br />

low energy resonances,<br />

exit channel branching!<br />

Presently assumed is<br />

an overall uncertainty<br />

of a factor 2-5 in the<br />

total reaction rate!


Problems of heavy ion burning<br />

20<br />

Ne+α<br />

12<br />

C+ 12 C ⇒ 23 Na+p<br />

23<br />

Mg+n<br />

How to extrapolate, what are branchings<br />

28<br />

Si+α<br />

16<br />

O+ 16 O ⇒ 31 P+p<br />

31<br />

S+n<br />

Times scale for stellar C, O burning<br />

Neutron production in C-burning<br />

& weak s-process nucleosynthesis<br />

White dwarf abundance distribution<br />

& nucleosynthesis in Ne-novae<br />

Ignition conditions for type I SN<br />

Ignition condition for Superbursts


What potential model is appropriate?<br />

Different potential models leads<br />

to different extrapolation of low<br />

energy cross section (S-factor).<br />

Extreme case,<br />

standard potential model<br />

hindrance potential model<br />

Caughlan & Fowler 1988<br />

Gasques et al. 2005<br />

Yakovlev et al. 2006<br />

Jiang et al. 2007


Density & Screening Dependence of Fusion<br />

<br />

Towards higher densities there is an increase in the rate due to<br />

electron screening effects. The free electrons reduce the deflective<br />

Coulomb potential between the two fusioning ions.


Consequences for late stellar burning<br />

Simulations performed for 20 and 60 M ☼<br />

stars, no major differences for<br />

nucleosynthesis except a significant increase in abundance for the longlived<br />

radioactive isotopes 26 Al and 60 Fe and some s-process nuclei. This<br />

suggests impact on n production. That needs further investigation.


Production of Galactic Radioactivity?<br />

Standard<br />

Reduced rates<br />

Chieffi, Limongi 2006<br />

Gasques et al. 2007<br />

Gasques et al. PRC 2007 in print


Resonance Structures in 12 C+ 12 C<br />

Recent data suggest strong but<br />

narrow resonance structures in the<br />

12<br />

C+ 12 C reaction system, which may<br />

enhance the reaction rate<br />

substantially.<br />

Spillane et al. PRL 2007


Reaction rate formalism<br />

N<br />

A<br />

συ<br />

=<br />

N<br />

A<br />

⋅<br />

f<br />

screen<br />

⋅<br />

2<br />

⋅<br />

μ<br />

ΔE<br />

( kT )<br />

G<br />

3/ 2<br />

⋅<br />

S<br />

ij<br />

⋅<br />

e<br />

⎛ 3E<br />

⎜ −<br />

⎝ kT<br />

G<br />

⎞<br />

⎟<br />

⎠<br />

new resonance<br />

nonres<br />

total<br />

N<br />

A<br />

συ = N<br />

A<br />

⋅ f<br />

screen<br />

⋅<br />

2<br />

⋅<br />

μ<br />

ΔE<br />

( kT )<br />

G<br />

3/ 2<br />

⋅ S<br />

ij<br />

⋅e<br />

⎛ 3E<br />

⎜ − G<br />

⎝ kT<br />

⎞<br />

⎟<br />

⎠<br />

Additional resonance causes significant enhancement of low<br />

temperature rate, more resonances could contribute more strongly.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!