13.10.2014 Views

Advances in Mass Concrete Technology – The Hoover Dam Studies

Advances in Mass Concrete Technology – The Hoover Dam Studies

Advances in Mass Concrete Technology – The Hoover Dam Studies

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Advances</strong> <strong>in</strong> <strong>Mass</strong> <strong>Concrete</strong><br />

<strong>Technology</strong> – <strong>The</strong> <strong>Hoover</strong> <strong>Dam</strong><br />

<strong>Studies</strong><br />

Timothy P. Dolen, P.E.


Evolution of <strong>Mass</strong><br />

<strong>Concrete</strong> <strong>Dam</strong><br />

Construction


Introduction<br />

• <strong>The</strong> Problem – Strength vs. Heat<br />

• Investigations of Portland Cements<br />

– Chemical Composition of Portland Cements<br />

– Strength Development<br />

– Heat of Hydration / Temperature Rise<br />

• <strong>The</strong> <strong>Mass</strong> <strong>Concrete</strong> “Recipe for Success”<br />

– Mixture Proportion<strong>in</strong>g and Properties of Fresh <strong>Concrete</strong><br />

– Compressive Strength and Elastic Properties<br />

– Size Effects<br />

– Permeability<br />

• <strong>The</strong>rmal Properties of <strong>Mass</strong> <strong>Concrete</strong><br />

• Bond Strength of Lift L<strong>in</strong>es<br />

• Construction Firsts<br />

• Conclusions


<strong>The</strong> giant leap forward!<br />

Buffalo Bill<br />

1905-1910<br />

350 ft<br />

87,515 yd 3<br />

Owyhee<br />

1928-1932<br />

417 ft<br />

537,500 yd 3<br />

<strong>Hoover</strong><br />

1931-1936<br />

726 ft<br />

4,400,000 yd 3


<strong>The</strong> Problem - Strength vs. Heat<br />

Portland cement ga<strong>in</strong>s strength through<br />

the chemical process of “hydration.”<br />

But, hydration of cement is an exothermic<br />

reaction that generates heat.<br />

<strong>The</strong> <strong>in</strong>ability of such a massive structure<br />

to dissipate heat leads to the potential for<br />

thermal crack<strong>in</strong>g.


Cement Investigations<br />

Great collaboration between government,<br />

academia, manufacturers and trade<br />

associations.<br />

• Chemical composition of cement<br />

• Heat of hydration of cement<br />

• Physical properties and strength of mortar<br />

• Durability <strong>in</strong>vestigations<br />

• Manufactur<strong>in</strong>g processes<br />

Berkley cement <strong>in</strong>vestigations – 15,429 tests!


Composition of Portland Cement<br />

Component Elements (raw feed)<br />

Clay, limestone, iron + = “”cl<strong>in</strong>ker”<br />

“Cl<strong>in</strong>ker”<br />

Compound Oxides (CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 )<br />

Cement Compounds<br />

C 3 S C 2 S C 3 A C 4 AF<br />

b<strong>in</strong>der – “gel”<br />

(strength)<br />

Hydration Products<br />

Ca(OH) 2 – lime<br />

HEAT


Hydration of Portland Cement<br />

Cement Compounds<br />

C 3 S C 2 S C 3 A C 4 AF<br />

+ = +<br />

Cement “gel” + lime


Strength Development of Portland Cement<br />

C 3 A (


Heat of Hydration of Portland Cement<br />

C 3 A ( 7 days)<br />

C 4 AF


Chemical Composition of Cements<br />

C 3 S C 2 S C 3 A C 4 AF<br />

Low Heat 23 50 5 14<br />

Standard 50 25 10 8<br />

“Modified<br />

GCD”<br />

46 30 5 13


Physical Properties of Mortar<br />

Compressive<br />

Strength (psi)<br />

Heat of Hydration<br />

(cal/g)<br />

7 day 28 day 7 day 28 day<br />

Low Heat 1,770 3,760 55 64<br />

Standard 2,660 3,350 85 97<br />

“Modified<br />

GCD”<br />

2,720 5,030 75 82


<strong>Concrete</strong> Mixture Proportion<strong>in</strong>g<br />

Investigations<br />

0.5 Water : 1 Cement : 2.45 Sand : 7.05 Aggregate<br />

• Nom<strong>in</strong>al maximum size aggregate (NMSA)<br />

• Aggregate grad<strong>in</strong>g / sand – aggregate ratio<br />

• NMSA vs. paste volume<br />

• Properties of fresh concrete<br />

• Properties of hardened concrete


Nom<strong>in</strong>al Maximum Size Aggregate<br />

6 ft !<br />

Elephant Butte <strong>Dam</strong><br />

“plum stones” 1916


Arizona<br />

Gravel<br />

Deposit<br />

NMSA = 8-9 <strong>in</strong>


<strong>Mass</strong> <strong>Concrete</strong> Fresh Properties<br />

Slump – 3 <strong>in</strong>.


NMSA vs.<br />

Paste<br />

Content<br />

Paste<br />

(Cement + Water)<br />

F<strong>in</strong>e<br />

Aggregate<br />

Coarse<br />

Aggregate


Effect of NMSA on Paste Content<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

0.53 0.49 0.47<br />

0.28<br />

0.27<br />

0.25<br />

0.19 0.24 0.28<br />

8 <strong>in</strong> NMSA<br />

380 lb / cy<br />

3 <strong>in</strong> NMSA<br />

460 lb/cy<br />

1-1/2 <strong>in</strong> NMSA<br />

560 lb/cy<br />

Coarse Aggregate Volume<br />

Sand Volume<br />

Paste Volume<br />

3 <strong>in</strong>ch slump<br />

Cement content<br />

lb per cubic yard


Compressive Strength and Elastic<br />

Properties of <strong>Mass</strong> <strong>Concrete</strong><br />

• Effect of cement type<br />

• Effect of NMSA<br />

• Test age<br />

• Water / cement (W/C) ratio<br />

• Cur<strong>in</strong>g condition<br />

• Plac<strong>in</strong>g temperature<br />

• Cyl<strong>in</strong>der size (effect of wet screen<strong>in</strong>g)


Compressive Strength - psi<br />

Compressive Strength vs. W/C ratio<br />

5000<br />

Compressive Strength of <strong>Mass</strong> <strong>Concrete</strong><br />

<strong>Hoover</strong> <strong>Dam</strong> Laboratory Test Program<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Note - average core compressive<br />

strength at 60 years age - 7,410 psi<br />

0 100 200 300 400<br />

Test Age - days<br />

W/C - 0.66<br />

W/C - 0.54<br />

W/C - 0.47<br />

Power (W/C - 0.66)<br />

Power (W/C - 0.54)<br />

Power (W/C - 0.47)


NMSA vs. Test Specimen Size


Test Specimen Size


Compressive Strength of <strong>Mass</strong> <strong>Concrete</strong><br />

Size Effects


NMSA vs. Test Specimen Size<br />

NMSA<br />

(<strong>in</strong>)<br />

Test Cyl<strong>in</strong>der<br />

Size (<strong>in</strong>)<br />

Volume<br />

(ft 3 )<br />

<strong>Mass</strong><br />

(lb)<br />

“9” 36 x 72 42.4 6,530 *<br />

6 24 x 48 12.6 1,935<br />

3 12 x 24 1.6 240<br />

1-1/2 6 x 12 0.2 30<br />

3/4 3 x 6 0.03 4<br />

* Approximately 250 shovels full of aggregate


Batch<strong>in</strong>g <strong>Mass</strong> <strong>Concrete</strong> <strong>in</strong> the<br />

Laboratory


6,530 lbs. - approximately 250 shovels<br />

full of aggregate per test specimen!<br />

Grant Wood - 1930


Elastic Properties of <strong>Concrete</strong>


Modulus of Elasticity - 10 6 psi<br />

Modulus of Elasticity of <strong>Mass</strong> <strong>Concrete</strong><br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Modulus of Elasticity of <strong>Mass</strong> <strong>Concrete</strong><br />

<strong>Hoover</strong> <strong>Dam</strong> Laboratory Test Program<br />

Note - average coremodulus of elasticity<br />

at 60 years age - 6.65 X 10 6 psi<br />

0 100 200 300 400<br />

Test Age - days<br />

W/C - 0.66<br />

W/C - 0.54<br />

W/C - 0.47<br />

Power (W/C - 0.66)<br />

Power (W/C - 0.54)<br />

Power (W/C - 0.47)


<strong>The</strong>rmal Properties<br />

• Conductivity<br />

• Specific heat<br />

• Diffusivity<br />

• <strong>The</strong>rmal Expansion<br />

• Adiabatic Temperature Rise


Test Conditions<br />

Conductivity<br />

(Btu/(ft-hr- o F)<br />

<strong>The</strong>rmal Properties<br />

Specific Heat<br />

(Btu/(lb- o F)<br />

Diffusivity<br />

(ft 2 /hr)<br />

Type of coarse<br />

aggregate varied<br />

through range of tests.<br />

1.2 to 2.0<br />

Varied as much<br />

as 42 percent<br />

0.23 to 0.245<br />

Varied as much<br />

as 8 percent<br />

0.032 to 0.058<br />

Varied as much<br />

as 47 per cent<br />

Water content<br />

<strong>in</strong>creased from 4 to 8<br />

per cent of the<br />

concrete by weight.<br />

(1.7 to 1.55)<br />

Decreased as<br />

much as 10<br />

percent<br />

(0.22 to 0.24)<br />

Increased as<br />

much as 12<br />

percent<br />

(0.049 to 0.042)<br />

Decreased as<br />

much as 16<br />

per cent<br />

Mean temperature of<br />

concrete <strong>in</strong>creased<br />

from 50 to 150 o F.<br />

Increased as<br />

much as 12 per<br />

cent and<br />

decreased as<br />

much as 6<br />

percent<br />

Increased as<br />

much as 24<br />

percent<br />

Decreased as<br />

much as 21<br />

per cent


<strong>The</strong>rmal Conductivity Test<strong>in</strong>g Equipment


<strong>The</strong>rmal Expansion 10 -6 <strong>in</strong>/<strong>in</strong> per o F<br />

<strong>The</strong>rmal Expansion of <strong>Mass</strong> <strong>Concrete</strong><br />

5.5<br />

5<br />

4.92<br />

Quartzose<br />

Sandstone<br />

4.8<br />

5.18<br />

5.01<br />

5.2 5.27<br />

4.5<br />

4<br />

3.9<br />

Granite<br />

3.98 4<br />

4.3<br />

4.4<br />

3.97<br />

3.5<br />

3<br />

Vesicular<br />

Basalt<br />

3.01<br />

3.33<br />

2.5<br />

2<br />

2.1<br />

1.5<br />

1<br />

<strong>The</strong>rmal Expansion <strong>Mass</strong><br />

<strong>The</strong>rmal Expansion RCC


Adiabatic *<br />

Temperature<br />

Rise of <strong>Mass</strong><br />

<strong>Concrete</strong><br />

* No heat loss or ga<strong>in</strong>


Temperature Rise - o F<br />

Temperature Rise of <strong>Mass</strong> <strong>Concrete</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Adiabatic Temperature Rise<br />

<strong>Hoover</strong> <strong>Dam</strong> <strong>Mass</strong> <strong>Concrete</strong><br />

0 5 10 15 20 25 30<br />

Test Age - days<br />

Low Heat Cement<br />

Standard Cement<br />

Modified Cement


Permeability of <strong>Mass</strong> <strong>Concrete</strong>


Bond Strength of <strong>Mass</strong> <strong>Concrete</strong> Lift<br />

L<strong>in</strong>es<br />

• Effect of concrete<br />

strength<br />

• Time between plac<strong>in</strong>g<br />

lifts<br />

• Cur<strong>in</strong>g of lift l<strong>in</strong>es<br />

• Temperature dur<strong>in</strong>g lift<br />

exposure<br />

• Method of lift l<strong>in</strong>e<br />

clean<strong>in</strong>g<br />

• Bond<strong>in</strong>g mortar


Recipe for Success - <strong>The</strong> solution – Low<br />

heat cement for <strong>Hoover</strong> <strong>Dam</strong> mass<br />

concrete – 8 <strong>in</strong> NMSA – Post cool<strong>in</strong>g<br />

Strength (psi) to Heat (cal/g) ratio<br />

3 days 7 days 28 days<br />

Low Heat 32 46 65<br />

Standard 41 46 50<br />

“Modified<br />

GCD”<br />

42 53 60


<strong>Hoover</strong> <strong>Dam</strong> Historic Firsts


<strong>Concrete</strong> batch<strong>in</strong>g and plac<strong>in</strong>g


Over 100 years to cool down!


“Chut<strong>in</strong>g” concrete <strong>in</strong>to place - ~1908 – 1928)<br />

(the flatter the slope – the more water added)


Highl<strong>in</strong>e – bucket plac<strong>in</strong>g


Block plac<strong>in</strong>g and post cool<strong>in</strong>g


Post cool<strong>in</strong>g and grout<strong>in</strong>g<br />

Closure<br />

Slot


Black Canyon <strong>Dam</strong> - 1924<br />

Bleed<strong>in</strong>g<br />

Segregation


Lower slump mass concrete


Unsung hero – the <strong>in</strong>ternal vibrator<br />

6 <strong>in</strong> > 2-3 <strong>in</strong> slump<br />

10 – 20 % less water<br />

25 – 50 lb less cement<br />

10 – 15 °F less heat


Conclusions – <strong>Mass</strong> <strong>Concrete</strong><br />

• Unprecedented <strong>in</strong> scope<br />

Investigations<br />

• Unprecedented <strong>in</strong> complexity<br />

• Unprecedented <strong>in</strong> difficulty<br />

• Verification followed each stage of laboratory test<strong>in</strong>g<br />

and large scale mass concrete construction<br />

• <strong>The</strong> systematic methodology of mixture<br />

proportion<strong>in</strong>g <strong>in</strong>vestigation still followed today<br />

• Database of materials thermal properties still used<br />

today<br />

• Construction <strong>in</strong>novations still followed today


Special thanks to all of the eng<strong>in</strong>eers and laboratory<br />

technicians for their achievements, especially anyone<br />

who has ever had to manipulate a 12 <strong>in</strong>ch diameter<br />

(or larger) test specimen!


Thank you<br />

for your<br />

attention

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!