29.10.2014 Views

The early evolution of animals

The early evolution of animals

The early evolution of animals

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>early</strong> <strong>evolution</strong> <strong>of</strong> <strong>animals</strong><br />

Livets tidiga utveckling och uppblomstring<br />

Graham Budd<br />

Graham.Budd@pal.uu.se


Animal <strong>evolution</strong><br />

INTENDED LEARNING OUTCOMES:<br />

• Describe the key factors involved in causing<br />

the <strong>early</strong> <strong>evolution</strong> <strong>of</strong> animal life.<br />

• Distinguish between the various types <strong>of</strong><br />

evidence for the oldest <strong>animals</strong>.<br />

• Explain the stem and crown group concept<br />

and apply it to enigmatic fossils in the<br />

Cambrian Explosion.


<strong>The</strong> origin and <strong>evolution</strong> <strong>of</strong> <strong>animals</strong><br />

What are the <strong>animals</strong>?<br />

1. Classification and relationships between<br />

animal groups<br />

2. Invertebrate body plans<br />

What are the earliest <strong>animals</strong>?<br />

3. Evidence for the earliest metazoans<br />

What is the timing <strong>of</strong> <strong>early</strong> animal<br />

<strong>evolution</strong>?<br />

4. Precambrian-Cambrian <strong>animals</strong><br />

5. Cambrian Explosion<br />

6. Ordovician Radiation


<strong>The</strong> tree <strong>of</strong> life


Metazoa<br />

“Porifera”<br />

Cnidarians<br />

Ecydosozoa<br />

Deuterostomes<br />

Bilaterians<br />

Lophotrochozoa<br />

Protostomes


Animal classification<br />

• Animalia– all <strong>animals</strong>, with 35 separate<br />

phyla<br />

• Eumetazoa – all <strong>animals</strong> except sponges<br />

• Radiata – Ctenophores and corals<br />

• Bilateria – All <strong>animals</strong> except sponges,<br />

corals and ctenophores<br />

– Divided into Deuterostomes and<br />

Protostomes<br />

– Protostomes divided into Lophotrochozoa<br />

(or spiralia) and Ecdysozoa


Animalia<br />

• Eukaryotic and multicellular<br />

• Heterotrophic<br />

• Lack cell walls<br />

• Usually motile at some stage<br />

• Embryos pass through a blastula stage


Animal body plans<br />

• Despite a seemingly high<br />

diversity <strong>of</strong> form, there are<br />

only a few basic types <strong>of</strong><br />

animal body plans<br />

• Defined by:<br />

– number and types <strong>of</strong> enveloping<br />

tissue<br />

– Presence or absence <strong>of</strong> a<br />

celom<br />

• Evolved from a flagellated<br />

eukaryote, similar to the<br />

choan<strong>of</strong>lagellates


Sponge with choanocytes<br />

Choan<strong>of</strong>lagellates


Animal body plans<br />

• Parazoan – sponges. 2 layers <strong>of</strong> cells separated<br />

by jelly-like material, punctuated by wandering<br />

cells. No tissues or organs.<br />

• Diploblastic – cnidarians and ctenophores. Two<br />

layers = outer ectoderm and inner endoderm +<br />

epithelia. Separated by gelatinous mesogloea.<br />

• Triploblastic – bilaterians. 3 layers = outer<br />

ectoderm, mesoderm and inner endoderm. Also<br />

has bilateral symmetry and a celom (body cavity).


Animal body plans<br />

Group Grade Symmetry Key character Larvae<br />

Porifera Parazoan Bilateral<br />

and radial<br />

Choanocytes<br />

Blastual<br />

larva<br />

Cnidaria<br />

Bilateria<br />

Diploblasti<br />

c<br />

Triploblasti<br />

c<br />

Radial Cnidoblasts Planula<br />

larva<br />

Bilateral Digestive tract Various<br />

types


Metazoa<br />

“Porifera”<br />

Cnidarians<br />

Deuterostomes<br />

Ecydosozoa<br />

Bilaterians<br />

Lophotrochozoa<br />

Protostomes


Bilaterians<br />

• Divided into Protostomes and<br />

Deuterostomes<br />

• Protostomes – mouth develops directly<br />

from first opening in blastula (blastopore).<br />

Spiral cleavage.<br />

• Deuterostomes – mouth develops from<br />

second opening with blastospore giving<br />

rise to the anus. Radial cleavage.


Bilaterians<br />

• Protostomes<br />

– Mollusks<br />

– Lophophorates<br />

– Annelids<br />

– Arthropods<br />

• Deuterostomes<br />

– Echinoderms<br />

– Hemichordates<br />

– Chordates


Stem and Crown groups<br />

• crown group is the smallest monophyletic<br />

group, or “clade” to contain the last common<br />

ancester <strong>of</strong> all extant members, and all <strong>of</strong> that<br />

ancestor’s descendents<br />

• Stem groups fall close to but outside a<br />

particular crown group. E.g. Archaeopteryx


Stem and crown groups


Stems and crowns


What are the <strong>animals</strong>?<br />

SUMMARY<br />

• Animalia includes sponges plus Eumetazoa<br />

• Radiata are ctenophores and corals<br />

• Most animal phyla fall into Bilateria<br />

subdivided into Deuterostomes and<br />

Protostomes<br />

• Animal body plans vary in number <strong>of</strong> tissues<br />

layers and presence/absence <strong>of</strong> celom –<br />

Parazoan, Diploblastic, Triploblastic<br />

• Fossils should be considered using the stem<br />

and crown group concept


<strong>The</strong> origin and <strong>evolution</strong> <strong>of</strong> <strong>animals</strong><br />

What are the <strong>animals</strong>?<br />

1. Classification and relationships between<br />

animal groups<br />

2. Invertebrate body plans<br />

What are the earliest <strong>animals</strong>?<br />

3. Evidence for the earliest metazoans<br />

What is the timing <strong>of</strong> <strong>early</strong> animal<br />

<strong>evolution</strong>?<br />

4. Precambrian-Cambrian <strong>animals</strong><br />

5. Cambrian Explosion<br />

6. Ordovician Radiation


<strong>The</strong> earliest metazoans<br />

• Life began ≈ 4 billion years ago<br />

• Metazoans evolved ≈ 600 myr<br />

(molecular data)<br />

• Timing <strong>of</strong> the origin <strong>of</strong><br />

metazoans is controversial<br />

• <strong>The</strong> “Cambrian explosion”<br />

at 530 mya was a seemingly<br />

rapid appearance <strong>of</strong> <strong>animals</strong>


<strong>The</strong> old camps<br />

•Animals evolve <strong>early</strong>, were small and s<strong>of</strong>tbodied,<br />

planktonic or mei<strong>of</strong>aunal until the<br />

Cambrian explosion: the Cambrian explosion<br />

is an explosion <strong>of</strong> fossils, not <strong>animals</strong> per se.<br />

•Animals evolve late, and their <strong>early</strong> <strong>evolution</strong><br />

can be traced by studying the fossils around<br />

the Precambrian/Cambrian boundary.


<strong>The</strong> Cambrian explosion<br />

• Explosion <strong>of</strong><br />

fossils<br />

OR<br />

• An explosion <strong>of</strong><br />

<strong>animals</strong>??


<strong>The</strong> earliest metazoans<br />

• 5 lines <strong>of</strong> evidence for earliest<br />

metazoans<br />

– Body fossils<br />

– Trace fossils<br />

– Fossil embryos<br />

– Molecular clock<br />

– Biomarkers


Decline in the Stromatolites?


Metazoan evidence 1: Body Fossils<br />

Ediacaran Biota<br />

• <strong>The</strong> first assemblage <strong>of</strong> complex, multicellular<br />

organisms<br />

• Existed before the Cambrian Explosion, around 580<br />

million years ago<br />

• Affinities enigmatic and<br />

highly uncertain<br />

• Most disappeared<br />

before the Cambrian<br />

explosion<br />

• Fossils in Australia,<br />

Canada, Namibia,<br />

Russia…


Metazoan evidence 1: Body Fossils<br />

• Can be roughly divided into two groups:<br />

– Radial<br />

– Bilateral


<strong>The</strong> controversy<br />

• Older views (e.g. Glaessner, Dawn <strong>of</strong><br />

Animal Life in the <strong>early</strong> 80s) viewed the<br />

Ediacaran biota as simply old versions <strong>of</strong><br />

modern <strong>animals</strong>, and thus assigned them<br />

to sea pens, arthropods, annelids, jellyfish<br />

etc<br />

• But Seilacher and others from the mid-80s<br />

onwards questioned this view - argued<br />

lack <strong>of</strong> symmetry, preservation,<br />

construction (“Pneu” etc).<br />

• This opened a controversy still ongoing!


Ctenophores??<br />

CAMBRIAN<br />

Stromatoveris<br />

Shu et al.<br />

2006,<br />

Science 312<br />

Chen, Jun-Yuan et<br />

al. (2007) Proc.<br />

Natl. Acad. Sci.<br />

USA 104, 6289-<br />

6292<br />

Rangea<br />

Dickinsonia<br />

Zhang & Reitner 2006,<br />

Acta. Geol. Sin. 80<br />

Narbonne 2004, Science 305<br />

EDIACARAN (Dzik 2002, J. Morph. 252)


Molluscs??<br />

Conway Morris & Caron 2007, Science 315<br />

Caron et al. 2006, Nature 442<br />

Odontogriphus (Cambrian)<br />

Kimberella (Ediacaran)


Metazoan evidence 1: Body<br />

Fossils<br />

• <strong>The</strong>re are some possible metazoans in the<br />

Ediacaran, but hard to say conclusively<br />

• Taphonomy is a problem here – must treat<br />

all conclusions with caution!


Metazoan evidence 2: Trace<br />

Fossils<br />

• Trace fossils are hard to convincingly<br />

identify at metazoan<br />

• Locomotion and digestive tracts would be<br />

a good indication – burrows and trails with<br />

fecal pellets<br />

• No convincing trace fossils from older than<br />

555 Ma (White Sea area)


Oldest metazoan trace fossils?<br />

1 Ga, India 1.2 Ga, Australia<br />

Probably not!


Metazoan evidence 2: Trace Fossils<br />

Locomotory traces, 550<br />

Ma<br />

• Fecal strings, 600 Ma (Brasier<br />

and McIlroy, 1998) – first<br />

evidence <strong>of</strong> a gut? BUT fossils<br />

are questionable due to<br />

taphonomy<br />

• Trace fossils increase in<br />

complexity, 3-D exploitation, and<br />

diversity immediately before<br />

Cambrian<br />

•But – are they metazoan?<br />

Droser et al. 2002. Newfoundland<br />

Brasier and McIlroy, 1998.<br />

Scotland


Metazoan evidence 3: Fossil<br />

Embryos<br />

• Doushantou Formation in South China<br />

• 630 Ma to 580 Ma (but dates uncertain)<br />

• Marine, microscopic fossils<br />

• Sponges and corals at least, maybe<br />

bilaterians?


Yin et al. 2007 Nature 446


Doushantuo sponges?<br />

Li et al. 1998, Science 279


Metazoan evidence 3: Fossil<br />

Embryos<br />

•Taphonomy complex and not all claimed fossils<br />

are what they seem!<br />

Vernanimalcula<br />

Not a bilaterian?<br />

Chen et al.<br />

2004, Science<br />

305<br />

Bengtson &<br />

Budd 2004,<br />

Science 306


Acritarchs as animal<br />

embryos?<br />

Shuhai Xiao<br />

Yin et al. 2007 Nature 446


Metazoan evidence 3: Fossil<br />

Embryos<br />

• Doushantou embryos – cell divisions and<br />

cleavage obvious but…<br />

– Difficult to assign to distinct metazoan groups<br />

without juvenile or adult forms<br />

– Lack <strong>of</strong> clusters <strong>of</strong> 1000 cells<br />

– Could instead be stem-group metazoans<br />

– Or even fungi or rangeomorphs


Metazoan evidence 4: Molecular<br />

• Molecular clock<br />

Data<br />

– Genes accumulate changes with time<br />

– Can extrapolate back to see when lineages<br />

diverged<br />

– BUT the rates is not constant!<br />

– Bilaterians calculated to diverge anywhere<br />

between 900 and 570 Ma!<br />

– More recent values tend to value a bilaterian<br />

divergence <strong>of</strong> 570 Ma, closely matching the<br />

fossil record (sponges recently argued to be<br />

earlier - raises taphonomic “issues”)


Bilaterian origins


Time scale <strong>of</strong> animal<br />

divergences


Metazoan evidence 5:<br />

Biomarkers<br />

• Biochemical fingerprints <strong>of</strong> life<br />

• Amino acids, hopanes, hydrocarbons,<br />

isotopic fractionation <strong>of</strong> carbon, bi<strong>of</strong>ilms<br />

• Love et al. 2008 found evidence <strong>of</strong> fossil<br />

steroids from demosponges in the<br />

Cryogenian period


Love et al. 2008<br />

Sponges at 635 Ma


Metazoan evidence 5: Biomarkers<br />

• Love et al. 2008 found evidence <strong>of</strong> fossil<br />

steroids from demosponges in the<br />

Cryogenian period<br />

• But sponges are paraphyletic, which<br />

means that this type <strong>of</strong> sponge might not<br />

be a eumetazoan


What are the earliest <strong>animals</strong>?<br />

SUMMARY<br />

• <strong>The</strong> earliest records <strong>of</strong> <strong>animals</strong> are highly<br />

controversial<br />

– Bilaterian origins particularly hard to decipher<br />

• Ediacaran body fossils at best represent<br />

stem-groups<br />

• Trace fossils present but<br />

bilaterian/metazoan affinity unclear<br />

• Best evidence comes from Doushantou<br />

embryos - suggest <strong>animals</strong> (stem?)<br />

around 630 Ma<br />

• Biomarkers show at least sponges at 635<br />

Ma


<strong>The</strong> origin and <strong>evolution</strong> <strong>of</strong><br />

<strong>animals</strong><br />

What are the <strong>animals</strong>?<br />

1. Classification and relationships between<br />

animal groups<br />

2. Invertebrate body plans<br />

What are the earliest <strong>animals</strong>?<br />

3. Evidence for the earliest metazoans<br />

What is the timing <strong>of</strong> <strong>early</strong> animal<br />

<strong>evolution</strong>?<br />

4. Precambrian-Cambrian <strong>animals</strong><br />

5. Cambrian Explosion<br />

6. Ordovician Radiation


Precambrian fossils<br />

• Already discussed….<br />

– Ediacaran fossils<br />

– Doushantou embryos<br />

– Trace fossils<br />

• Small shelly fossils!<br />

Cloudina


Namacalathus


Cambrian<br />

Precambrian


Small Shelly Fossils<br />

• Precambrian-Cambrian transition<br />

• Classic in lower Cambrian <strong>of</strong> Siberia<br />

(Tommotian)<br />

• Assemblages dominated by tiny<br />

specimens<br />

• First major appearance <strong>of</strong> skeletal<br />

material, even older than trilobites<br />

• Affinities remain enigmatic in many cases<br />

• But can be more mundane – sponges,<br />

molluscs, brachiopods


Small Shelly fossils


Cloudina and Namacalathus<br />

from the youngest Ediacaran


Small shelly fossils<br />

Eccentrotheca<br />

Micrina<br />

(Skovsted et al. 2008 Geology)<br />

Williams & Holmer<br />

2002,<br />

Palaeontology<br />

Tommotiids start to find a<br />

lophotrochozoan home


Small shelly fossils<br />

Halkieria: from stemgroup<br />

brachiopod to<br />

new class <strong>of</strong> mollusc


Latouchella – First unequivocal<br />

bilaterian


<strong>The</strong> origin and <strong>evolution</strong> <strong>of</strong><br />

<strong>animals</strong><br />

What are the <strong>animals</strong>?<br />

1. Classification and relationships between<br />

animal groups<br />

2. Invertebrate body plans<br />

What are the earliest <strong>animals</strong>?<br />

3. Evidence for the earliest metazoans<br />

What is the timing <strong>of</strong> <strong>early</strong> animal<br />

<strong>evolution</strong>?<br />

4. Precambrian-Cambrian <strong>animals</strong><br />

5. Cambrian Explosion<br />

6. Ordovician Radiation


Setting the stage for the Cambrian<br />

Explosion<br />

• Environmental explanations<br />

– Glaciations<br />

– Increased oxygen<br />

• Ecological explanations<br />

– Arms race<br />

– End Ediacaran extinction<br />

– Evolution <strong>of</strong> eyes<br />

– Increased diversity/abundance <strong>of</strong> planktonics


What caused the Cambrian<br />

explosion?<br />

•Animals evolved on land, did not reach oceans until the<br />

Cambrian?<br />

•Animals adopted a “sluggish” lifestyle necessitating<br />

<strong>evolution</strong> <strong>of</strong> hard parts?<br />

•Not enough calcium in Precambrian seas?<br />

•Precambrian <strong>animals</strong> were planktonic and would be too<br />

heavy with hard parts?<br />

•Precambrian ocean too acidic?<br />

•Precambrian rocks deposited on land or destroyed by<br />

metamorphism?<br />

•Temperature drop? Or rise? Or staying the same?<br />

•Evolution <strong>of</strong> developmental genes? Or microRNAs?<br />

•Rise in oxygen levels?<br />

Etc etc


Cambrian<br />

• Break up <strong>of</strong> Pangaea I (”Rodinia”)<br />

• Most continents isolated<br />

• No continents in polar regions


Glaciations


<strong>The</strong> Oxygen Story<br />

•Commonly held that the rise <strong>of</strong><br />

the <strong>animals</strong> was impeded by<br />

low oxygen levels in the<br />

Proterozoic - indeed, this is by<br />

far the most commonly<br />

accepted explanation…only<br />

until various sinks were<br />

exhausted could the oxygen<br />

produced by photosynthesis<br />

start building up in the<br />

atmosphere.


Possible importance <strong>of</strong><br />

oxygen<br />

1. Biosynthetic - especially collagen relies on free O 2<br />

(via hydroxylation <strong>of</strong> proline and lysine)<br />

Hydroxylysine<br />

4-Hydroxyproline


Presumed prolyl 4-hydroxylases are widely<br />

(but not universally) distributed in the<br />

eukaryotes<br />

West et al. 2004, BBA 1673


Keeling et al 2005, TREE 20


Oxygen physiology<br />

•What levels <strong>of</strong> oxygen preclude <strong>animals</strong><br />

on physiological grounds?<br />

•What levels <strong>of</strong> oxygen pertained in the<br />

Proterozoic?


Oxygen physiology: aerobic vs anaerobic<br />

respiration<br />

<strong>The</strong> 3 Main Steps <strong>of</strong> Aerobic Respiration:<br />

1) Glycolysis- Makes 2 net ATP (in cytoplasm)<br />

2) Krebs Cycle- 2 ATP (in mitochondria)<br />

3) Electron Transport- 32 ATP (in mitochondria)<br />

•<strong>The</strong> last, electron transport stage is cl<strong>early</strong> an oxygen-adaptive add-on.<br />

•Krebs cycle too stops without oxygen owing to product build-up (Le Chatelier’s Principle)<br />

Anaerobic respiration thus produces much less ATP than aerobic respiration<br />

Implication is that no “free” energy is available to build complex food chains under<br />

anaerobic conditions (Catling et al. 2005, Astrobiology)


Anaerobic respiration is not all<br />

it seems…<br />

•But in fact, simple glycolysis is not the only type <strong>of</strong><br />

anaerobic respiration.


Tielens et al. 2002, Trends in Biochemical Sciences 27<br />

Anaerobic and<br />

aerobic respiration<br />

in a metazoan<br />

mitochondrion


Alternative anaerobic<br />

pathways<br />

•Fumarate replaces oxygen as final electron acceptor<br />

•Anaerobic alternatives can increase yield <strong>of</strong> ATP<br />

from 2 to between 4 and 6, and up to 8


Not all <strong>animals</strong> are aerobic<br />

sprinters!<br />

Pörtner 2002, Comp.<br />

Biochem. Phys. A 133


What were Proterozoic oxygen<br />

levels?<br />

•Very hard to tell exactly!<br />

•Most common (but not universal) to see<br />

oxygenation <strong>of</strong> the atmosphere as taking<br />

place in two steps: one about 2.4-2.2 billion<br />

years ago, the other just before the beginning<br />

<strong>of</strong> the Cambrian


What controls O2 levels?<br />

1. Oxidation <strong>of</strong> organic matter: a huge O 2 gobbler!<br />

2. Oxidation <strong>of</strong> sulphides to sulphates<br />

3. Photosynthesis<br />

<strong>The</strong>se processes can be theoretically studied by<br />

looking at isotopic levels in inorganic marine<br />

rocks (both sulphide and organic carbon<br />

production favour light isotopes); but relating the<br />

values to absolute values in the ocean is not<br />

straightforward…


Sulphur processes<br />

Reduction:<br />

SO 4 –<br />

2 => H 2 S<br />

Disproportionation:<br />

S 0 /SO 2–3 /S 2 O 3 => SO 4– 2 + H 2 S<br />

Burial rates also important (as with carbon)


Sulfur isotopes in the<br />

Proterozoic<br />

Bottrell and Newton 2006, ESR 75


Catling et al. 2005,<br />

Astrobiology 5


Bursting the oxygen bubble?<br />

•Animals are well able to<br />

generate reasonable<br />

amounts <strong>of</strong> energy<br />

under low oxygen<br />

conditions<br />

•And in any case,<br />

Proterozoic oxygen<br />

levels may well have<br />

been high enough to<br />

support complex<br />

ecologies


Setting the stage for the Cambrian<br />

Explosion<br />

• Environmental explanations<br />

– Glaciations<br />

– Increased oxygen<br />

• Ecological explanations<br />

– Arms race<br />

– End Ediacaran extinction<br />

– Evolution <strong>of</strong> eyes<br />

– Increased diversity/abundance <strong>of</strong> planktonics


• Biomineralization<br />

(crystalline or<br />

amorphous)<br />

• Total <strong>of</strong> c. 60 minerals –<br />

calcareous compounds<br />

most common (calcium<br />

carbonate) & phosphate<br />

Hard parts


Hard parts – shells and skeletons<br />

• Calcium<br />

carbonate<br />

• Calcium<br />

phosphate<br />

• Silica<br />

• Organic


Hard parts<br />

• Different types:<br />

1. Internal support<br />

2. Teeth etc<br />

3. External<br />

skeletons<br />

4. Dermal sclerites


Why Hard parts?<br />

• Arms race <strong>of</strong> predator against prey


End-Ediacaran Extinction<br />

• Mass extinctions <strong>of</strong><br />

Ediacaran fauna at<br />

end <strong>of</strong> this period<br />

• Followed by<br />

increased burrowing<br />

in <strong>early</strong> Cambrian<br />

• <strong>The</strong>re is a gap before<br />

the Cambrian<br />

explosion occurs <br />

filling the niche


Evolution <strong>of</strong> eyes<br />

• Some suggest that<br />

predator prey<br />

relationships changed<br />

dramatically with<br />

<strong>evolution</strong> <strong>of</strong> eyes


Increased planktonics<br />

• Plankton are larger in<br />

the Cambrian than in<br />

the Ediacaran, and so<br />

are their corpses and<br />

feces<br />

• <strong>The</strong>y were falling to<br />

the seafloor and<br />

accumulating<br />

• New supply <strong>of</strong><br />

energy and nutrients


<strong>The</strong> Cambrian Explosion


Cambrian fossil lagerstätten<br />

• Over 40 sites<br />

around the world<br />

• S<strong>of</strong>t part<br />

preservation<br />

• Important windows<br />

into <strong>early</strong> ecology<br />

• Closed by the<br />

Cambrian substrate<br />

r<strong>evolution</strong>


Cambrian Trilobites<br />

• Starting in the Lower<br />

Cambrian, 540 Mya<br />

• Very diverse and<br />

abundant group<br />

• Belong to Arthropoda<br />

• Exact affinities unsure


Burgess Shale<br />

• Rocky Mountains,<br />

British Columbia,<br />

Canada<br />

• Middle Cambrian<br />

• Celebrating it’s 100<br />

year anniversary <strong>of</strong><br />

discovery in 2009!


Photo courtesy <strong>of</strong> J-B. Caron<br />

Burgess Shale


Maotinashian Shale<br />

• “Chengjiang<br />

fauna”<br />

• Yunnan province,<br />

China<br />

• 10 million years<br />

older than<br />

Burgess<br />

• Almost 200<br />

species<br />

• Many arthropods


Chengjiang…


Sirus Passet<br />

• Greenland<br />

• Probably 10-15 years<br />

older than Burgess<br />

• Arthropods, sponges,<br />

other unique fossils


Orsten Fauna<br />

• Upper Cambrian<br />

fauna<br />

• Kinnekulle,<br />

Sweden<br />

• 3D preservation<br />

<strong>of</strong> outer cuticles<br />

• Only microscopic<br />

<strong>animals</strong>


<strong>The</strong> Cambrian explosion<br />

• Explosion <strong>of</strong><br />

fossils<br />

OR<br />

• An explosion <strong>of</strong><br />

<strong>animals</strong>??


Enigmatic forms<br />

Laggania<br />

• Many forms from the<br />

Cambrian Explosion<br />

have “strange”<br />

morphologies<br />

• Not immediately<br />

obvious which phylum<br />

they blong to<br />

Opabinia


Cambrian Explosion ”weird<br />

wonders”


Modes <strong>of</strong> the Cambrian<br />

Explosion


Stems and crowns


Anomalocaridids<br />

Laggania<br />

Collins, 1996<br />

Anomalocaris


Anomalocaridids<br />

• One <strong>of</strong> the largest<br />

Cambrian <strong>animals</strong><br />

• Characterized by a<br />

pair <strong>of</strong> frontal<br />

appendages, a<br />

“Peytoia”, and large<br />

eyes<br />

• Found in the<br />

Burgess Shale,<br />

Chengjiang, Sirius<br />

Passet, USA and<br />

Australia<br />

Collins, 1996


Arthropod <strong>evolution</strong> and anomalocaridids<br />

• <strong>The</strong> stem group <strong>of</strong><br />

the Euarthropoda<br />

has been highly<br />

controversial<br />

• Anomalocaridids<br />

may be stem group<br />

euarthropods,<br />

although their<br />

position is widely<br />

debated


Arthropod <strong>evolution</strong> and Hurdia


<strong>The</strong> origin and <strong>evolution</strong> <strong>of</strong><br />

<strong>animals</strong><br />

What are the <strong>animals</strong>?<br />

1. Classification and relationships between<br />

animal groups<br />

2. Invertebrate body plans<br />

What are the earliest <strong>animals</strong>?<br />

3. Evidence for the earliest metazoans<br />

What is the timing <strong>of</strong> <strong>early</strong> animal<br />

<strong>evolution</strong>?<br />

4. Precambrian-Cambrian <strong>animals</strong><br />

5. Cambrian Explosion<br />

6. Ordovician Radiation


After the Cambrian Explosion


Ordovician<br />

• New diversification after extinction in Late<br />

Cambrian: “specialists”<br />

• Diversification <strong>of</strong> vertebrates!


Ordovicium<br />

• Sea level extremely high – ”Water world”<br />

• Most continents isolated close to equator<br />

• Glaciation in Sahara<br />

• Sea level drop in Late Ordovician<br />

• Ordovician radiation <strong>of</strong> <strong>animals</strong><br />

– 3-4 x increase in number <strong>of</strong> families<br />

– Few new higher taxa (e.g. phyla) but<br />

enormous increase in families, genera and<br />

species


Cambrian<br />

Ordovician


What is the timing <strong>of</strong> <strong>early</strong> animal<br />

<strong>evolution</strong>? SUMMARY<br />

• Small shelly fossils and Cambrian<br />

Trilobites record life at Precambrian-<br />

Cambrian transition<br />

• Cambrian explosion recorded by Fossil<br />

Lagerstätten<br />

• Causes <strong>of</strong> Cambrian explosion could be<br />

ecological or environmental or combo?<br />

• Stem/crown groups let us understand<br />

enigmatic forms in Cambrian<br />

• Ordovician radiation saw huge diversity<br />

increase in species/genera level, but not<br />

many new phyla

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!