04.11.2014 Views

Prediction of batch heat transfer coefficients for pseudoplastic fluids ...

Prediction of batch heat transfer coefficients for pseudoplastic fluids ...

Prediction of batch heat transfer coefficients for pseudoplastic fluids ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Copyright Warning & Restrictions<br />

The copyright law <strong>of</strong> the United States (Title 17, United<br />

States Code) governs the making <strong>of</strong> photocopies or other<br />

reproductions <strong>of</strong> copyrighted material.<br />

Under certain conditions specified in the law, libraries and<br />

archives are authorized to furnish a photocopy or other<br />

reproduction. One <strong>of</strong> these specified conditions is that the<br />

photocopy or reproduction is not to be “used <strong>for</strong> any<br />

purpose other than private study, scholarship, or research.”<br />

If a, user makes a request <strong>for</strong>, or later uses, a photocopy or<br />

reproduction <strong>for</strong> purposes in excess <strong>of</strong> “fair use” that user<br />

may be liable <strong>for</strong> copyright infringement,<br />

This institution reserves the right to refuse to accept a<br />

copying order if, in its judgment, fulfillment <strong>of</strong> the order<br />

would involve violation <strong>of</strong> copyright law.<br />

Please Note: The author retains the copyright while the<br />

New Jersey Institute <strong>of</strong> Technology reserves the right to<br />

distribute this thesis or dissertation<br />

Printing note: If you do not wish to print this page, then select<br />

“Pages from: first page # to: last page #” on the print dialog screen


The Van Houten library has removed some <strong>of</strong> the<br />

personal in<strong>for</strong>mation and all signatures from the<br />

approval page and biographical sketches <strong>of</strong> theses<br />

and dissertations in order to protect the identity <strong>of</strong><br />

NJIT graduates and faculty.


PREDICTION OF BATCH HEAT TRANSFER<br />

COEFFICIENTS FOR PSEUDOPLASTIC FLUIDS<br />

IN AGITATED VESSELS<br />

BY<br />

DONALD WILLIAM HAGEDORN<br />

A THESIS<br />

PRESENTED IN PARTIAL FULFILLMENT OF<br />

THE REQ,UIREMENTS FOR THE DEGREE<br />

OF<br />

DOCTOR OF ENGll1EERING SCIENCE IN CHEMICAL ENGINEERING<br />

AT<br />

NE~IARK<br />

COLLEGE OF ENGH.jEERING<br />

Tlilis thesis is to be US~Q 019.ly vii th Que regaJ?d<br />

to the rights o~ the author. Bibliographieal<br />

referemee may be m0ted, but passages must not be<br />

80pled without permission <strong>of</strong> the College amd<br />

without erealt bein~ givem in subsequent written<br />

or published work.<br />

Newark, New Jersey<br />

1965


605·36<br />

Llbrary<br />

Newark Colle e <strong>of</strong> Enp:lneerfn<br />

ABSTRA.CT<br />

Experimental <strong>batch</strong> <strong>heat</strong>-trans~er<br />

data were obtained<br />

<strong>for</strong> both Newtonian ~nd<br />

<strong>pseudoplastic</strong> liquids in a baffled<br />

agi tated vessel.<br />

The <strong>fluids</strong> tested had flo1f behavior indexes<br />

between 0.36 and 1.0; and the apparent viscosity<br />

ranged from 1 to 1200 centipoise. Four types <strong>of</strong> impellers<br />

(anchor, paddle, propeller, and disk and vane turbine)<br />

were studied using eleven separate impellers.<br />

The probable<br />

error in the measured <strong>heat</strong> trall.sfer coefficient was ± 20<br />

percent.<br />

The effects <strong>of</strong> the generalized Reynolds number, generalized<br />

Prandtl number, and viscosity ratio were studied.<br />

In<br />

addition the effect <strong>of</strong> impeller diameter was studied <strong>for</strong><br />

paddles, propellers, and turbines; and the effect <strong>of</strong> impeller<br />

width was studied ~or the paddles and turbines. The<br />

vertical height <strong>of</strong> the impeller above the bottom <strong>of</strong> the<br />

vessel was shown to be a significant variable.<br />

The data <strong>for</strong> the Newtonian liquids, in general, substantiated<br />

presently accepted correlations. For the pOi..Jer<br />

laH pseudoplas tic <strong>fluids</strong> bJO correlations 1.Jere developed ..<br />

One correlation l'1faS based on the dimensional analysis <strong>of</strong><br />

the equations describing a flOi..] model <strong>of</strong> the system.<br />

The<br />

second correlation is based on Metzner's evaluation <strong>of</strong> the<br />

rate <strong>of</strong> shear in an agitated vessel.<br />

The <strong>for</strong>mer correlation<br />

has five to seven constants which vary with impeller type


while the latter has five to seven constants, two <strong>of</strong> k'lhich<br />

vary "ri th the impeller type..<br />

1fmen the flow behavior index<br />

is 1.0 both correlations reduce to the generally accepted<br />

correlations <strong>for</strong> :HeHtonian liquids.. The correlations fit<br />

the experimental data 'I'li th an average error <strong>of</strong> ± 10 to 11].<br />

percent ..<br />

1/


APPROVAL OF THESIS<br />

FOR<br />

DEPARTMENT OF CHENICAL ENGINEERING<br />

NEWARK COLLEGE OF ENGINEERING<br />

BY<br />

FACULTY COJI-1MITTEE<br />

APPROVED:<br />

NEhlARK, NEW JERSEY<br />

JUNE, 1965


ACKNOWLEDGEMENTS<br />

The auther ex~resses<br />

kis smeerl!$ a:ppreeiatien to his<br />

thesis auvisor, Dr. Jl!$rome J. Sal~one,<br />

fer all his t~e,<br />

i~eas<br />

in dire~ting<br />

and interest. Dr. SalaMone's aid has been inval~able<br />

this research to a sueeessful eonelusion.<br />

The author also wishes to aeknowledge the interest<br />

shown and the useful suggestions rendered by the otner<br />

members <strong>of</strong> the deetoral eommittee. Dr. L. Bryee Amderson<br />

espeeially was-instrumental tm the development <strong>of</strong> ~e<br />

theoretieal eorrelatiene<br />

Mamy ~ersons<br />

gave assistanee in the pl~ing and eORstruetion<br />

<strong>of</strong> the experimental ap~aratus, namely, Mr. Tony<br />

La Sala, Mr. John S~~~03 ana Dr. Edwin O. Eisen.<br />

A ~reat<br />

deal <strong>of</strong> appreeiation is due tke NeE Computer<br />

Center fer the "large ~ount <strong>of</strong> eomputer t~e used and espeeially<br />

the eomp'I.llter eenter staff wao 'Vlere always willa&:<br />

to give their assist~ee. The Ell tho:r is grateful <strong>for</strong> tke<br />

fin~eial help received through the National Defense<br />

Edueation Aet.<br />

The autho~<br />

is espeeially grateful to his Wife, Martina,<br />

who always gave eneonragem~t amd aided in the presentation<br />

0f the tkesis.<br />

I/f


IV<br />

VITA<br />

D@llalcil. W. Hagedorn received. his 'B. S. im Cltlemieal<br />

En~iBeerimg ~rem Newark College <strong>of</strong> ER,imeerimg im 1961<br />

aRd v.IaS awarded a three year Natioma1 Edueatiol'l. Defense<br />

Act Fe11ewshi~<br />

<strong>for</strong> sttldy towards tke doet@rate at the<br />

s~e institutien. He reeeived the M. S. degree in 1963<br />

summa eum laude.<br />

He worked 0Jle SUlm'!:l.er at Pieatinny Arsenal a:md three<br />

summers <strong>for</strong> the Amerieam Cyanamid C@mpaay at the Warners<br />

Plant, Beumd Brook Plant, &Rd Lederle Labarat0ries. He<br />

is presently emp1c)'yed in tile Tee:hni~ull.<br />

Gl?OU19 @f' the Dye15<br />

Department <strong>of</strong>' the American CYJuut "l1id .. Com.pany a. t Bo"tUld<br />

Bro@k, New Jersey.


Chapter 1:<br />

Chapter 2:<br />

Introducticm<br />

TABLE OF CONTENTS<br />

Review <strong>of</strong> Background t-1ateriaJ.<br />

Pseudoplastic Fluids<br />

Rheological Investigation <strong>of</strong> Power<br />

Law Fluids<br />

Mixing <strong>of</strong> Non-Newtonian Fluids<br />

Methods <strong>of</strong> Study <strong>of</strong> Batch Heat<br />

Transfer Used by Previous Authors<br />

Summary <strong>of</strong> Literature Results <strong>for</strong><br />

Batch Heat Transfer to Newtonian<br />

Fluids<br />

page<br />

1<br />

6<br />

6<br />

13<br />

20<br />

3h<br />

Chapter 3:-<br />

Chapter 4:<br />

Chapter 5:<br />

Chapter 6::<br />

Conclusions<br />

Recommendations<br />

Studies <strong>of</strong> Batch Heat Transfer to<br />

Non-Newtonian Fluids Reported in<br />

Literature<br />

Development <strong>of</strong> Correlations<br />

Theoretical Correlation<br />

Semi-Empirical Correlation<br />

Experimental Phase <strong>of</strong> this Thesis<br />

Equipment<br />

Operating Procedure<br />

Calculations<br />

Results<br />

Heating and Cooling Water<br />

Correlations<br />

Discussion <strong>of</strong> Results<br />

52<br />

57<br />

C,7<br />

./ .<br />

73<br />

7h<br />

74<br />

89<br />

95<br />

102<br />

105<br />

ill<br />

131<br />

147<br />

149


page<br />

Table <strong>of</strong> Nomenclature<br />

150<br />

Appendix A:<br />

Appendix B::<br />

Appendix C:<br />

References<br />

Fluid Properties<br />

Viscosity<br />

Thermal Conductivity<br />

Heat Capacity<br />

Density<br />

Computer Programs <strong>for</strong> Evaluating<br />

Rheological Data<br />

Data and Calculations<br />

Heat Transfer Data<br />

Computer Programs <strong>for</strong> Calculating<br />

Heat Transfer Results<br />

Heat Transfer Results<br />

Correlation <strong>of</strong> Data<br />

Computer Programs <strong>for</strong> Multiple<br />

Regression Analysis<br />

157<br />

157<br />

119<br />

180<br />

182<br />

187<br />

195<br />

196<br />

224<br />

233<br />

266<br />

270<br />

285


LIST OF FIGURES<br />

page<br />

2-1 FlGW Behavior <strong>of</strong> Pseudoplastic5<br />

3-1 Flow Patterns in Propeller Agitated Baffled Vessel<br />

4-1 Heat Transfer Vessel<br />

4-2 Location <strong>of</strong> Wall Thermocouples and Scale<br />

4-3 Piping Diagram<br />

4-4 Anchor Agitator<br />

4-5 Recorder Chart<br />

5-1 Effect <strong>of</strong> Impeller Height <strong>for</strong> Heating <strong>of</strong> Water;<br />

5.2 inch Propeller<br />

5-2 Effect <strong>of</strong> Impeller Height <strong>for</strong> Heating <strong>of</strong> Water;<br />

Anchor<br />

5-3 Effect <strong>of</strong> Impeller Height <strong>for</strong> Heating <strong>of</strong> Water;<br />

6 inch Disk and Vane Turbine<br />

5-4 Batch He~t Transfer Using Propellers<br />

5-5 Batch Heat Transfer Using Propellers<br />

6-1 Comparison <strong>of</strong> Newtonian Fluid Data with<br />

Literature Correlations: Anchor<br />

6-2 Comparison <strong>of</strong> Newtonian Fluid Data with<br />

Literature Correlations: Paddle<br />

6-3 Comparison <strong>of</strong> Newtonian Fluid Data with<br />

Literature Correlations: Propeller<br />

6-4 Comparison <strong>of</strong> Newtonian Fluid Data with<br />

Literature Correlations: Turbines<br />

A-I<br />

A-2<br />

Viscosity <strong>of</strong> 93.7% Glycerine Vs. 1/'1'<br />

Correction Factor, f, in Equation <strong>for</strong><br />

Viscosity <strong>of</strong> 93.1% Glycerine<br />

A-3 Constant Temperature Apparatus <strong>for</strong><br />

Viscometer<br />

A-4 Rheology <strong>of</strong> 0.15 Percent Carpopol<br />

A-S Rheology <strong>of</strong> 0.20 Percent Carbopol<br />

A-6 Rheology <strong>of</strong> 0.24 Percent Carbopol<br />

1<br />

58<br />

75<br />

71<br />

80<br />

8S<br />

92<br />

109<br />

109<br />

110<br />

122<br />

125<br />

134<br />

136<br />

137<br />

139<br />

160<br />

162<br />

161<br />

176<br />

171<br />

178


VIII<br />

LIST OF TABLES<br />

2-1 Mtn~ Reymold3 Nnmber Needed to Ae~eve<br />

MGvement at a Vessel Wall flDr Pseude­<br />

~la.stie Fluids<br />

4-1 Heat Tran.sf'er Vessel<br />

4-2 A~itati(!)n<br />

4-3 Impeller Dim.ensiens<br />

5-1 Impelle~ Pesitions Used in ~e Majer Pertion<br />

<strong>of</strong>' th~s Tb.~sis 103<br />

5-2 Summary: <strong>of</strong>' Addi tianal Data Points Measured in<br />

the Prelintinary Study <strong>of</strong>' Heat Transf'er to<br />

Water 104<br />

5-3 Summary <strong>of</strong> Data Points Used in Correlatiens 113<br />

5-4 Correlation A 114<br />

5-5 Correlation B 117<br />

5-6 Correlation C 118<br />

5-7 Varianees f'o~ Cerre1ations A$ B, and C 119<br />

5-8 Correlation D 121<br />

5-9 Correlation E 124<br />

5-10 Correlation F 126<br />

5-11 Correlation G 128<br />

5-12 Varianees f'er Correlations D, E, F a.J:ad G 129<br />

32<br />

81<br />

82<br />

86<br />

A-I<br />

A-2<br />

A-3<br />

A-4<br />

A-S<br />

A-6<br />

A-7<br />

A-8<br />

A-9<br />

A-IO<br />

Viscosity <strong>of</strong>' 93.7 Pereent G1yeerime<br />

Correetion Fieters <strong>for</strong> Glycerine Viscosity<br />

1$9<br />

Equati~<br />

C~araeteristies <strong>of</strong> Brookfield Cyl~drical<br />

161<br />

Spindle<br />

Slo];!>e <strong>of</strong> Leg Shear Stress Versus Leg<br />

165<br />

Rotationa.1 Speed 168<br />

RReo1egiea1 Data f'or Carbopol Solutions 170<br />

Constants f'or Equations 7-10 amd 7-11<br />

Flow Behavior Index and Fluid Consistency<br />

173<br />

Index <strong>of</strong>' Carbepol Solutions 169<br />

Flow Behavior Index and Fluid Consistency<br />

Indexf'or Oarbop01 Selutions 175<br />

~erimental Values f'or the Thermal Conductivity<br />

<strong>of</strong>' Carbep01 SlDlutiol1s 181<br />

Densi ty <strong>of</strong>' Carbopel Se1utions 184<br />

Table or Nemenelature r0~ Appen&ix A 185


CHAPTER I<br />

INTRODUCTION<br />

BATCH HEAT TRANSFER<br />

Heat <strong>transfer</strong> from one fluid through a wall to another<br />

fluid is usually described using an overall <strong>heat</strong> <strong>transfer</strong><br />

coefficient, U.<br />

dq := UdA6To (1-1<br />

where q is the amount <strong>of</strong> <strong>heat</strong> <strong>transfer</strong>red through <strong>heat</strong><br />

<strong>transfer</strong> area dA.<br />

The driving <strong>for</strong>ce,.6 To, is the overall<br />

or total difference in temperature bettr-J8en the hot and<br />

cold <strong>fluids</strong>. The reciprocal <strong>of</strong> the overall <strong>heat</strong> <strong>transfer</strong><br />

coefficient is the sun <strong>of</strong> all the resistances to <strong>heat</strong><br />

floWe<br />

Equation 1-2 defines the overall <strong>heat</strong> <strong>transfer</strong><br />

I :=l+l+L 1<br />

1 U 11m hf kw + h (1-2<br />

coefficient <strong>for</strong> a jacketed vessel where h m is the coefficient<br />

<strong>of</strong> <strong>heat</strong> <strong>transfer</strong> <strong>of</strong>' the fluid <strong>heat</strong> <strong>transfer</strong> medium.<br />

Its<br />

reciprocal is thus the resistance <strong>of</strong> this fluid to the flow<br />

<strong>of</strong> <strong>heat</strong>. ~f<br />

is the resistance due to the fouling <strong>of</strong> the<br />

<strong>heat</strong> <strong>transfer</strong> surfaces. L is the thickness <strong>of</strong> the wall<br />

and kvJ is its therm.al conductivity. The<br />

resistance to <strong>heat</strong> flow due to the l-Jall.<br />

ratio, {r is the<br />

-1.v<br />

~ is the resistance<br />

on the <strong>batch</strong> side <strong>of</strong> the <strong>heat</strong> <strong>transfer</strong> surface and h is<br />

called the <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong> coefficient.<br />

In many cases the <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong> coefficient<br />

is small and tkus is a controlling factor determining the


2<br />

value <strong>of</strong> the overall <strong>heat</strong> <strong>transfer</strong> coefficient. The<br />

agitation <strong>of</strong> the fluid, the system geometry, and the fluid<br />

properties determine the value <strong>of</strong> the <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong><br />

coefficient.<br />

NON-NE1'ITONIAN FLUIDS<br />

Hany factors may influence the behavior <strong>of</strong> <strong>fluids</strong> under<br />

shear..<br />

'remperature and pressure influence the viscosity<br />

<strong>of</strong> <strong>fluids</strong>; the temperature effect is large and the pressure<br />

effect small.<br />

Newton postulated that <strong>for</strong> <strong>fluids</strong> at constant<br />

temperature and pressure the rate <strong>of</strong> shear is directly proportional<br />

to the shear stress. Subsequently, many <strong>fluids</strong><br />

Here found and studied 1.Jhich did not con<strong>for</strong>m to Newton T s<br />

theory.<br />

The duration <strong>of</strong> shear, the shear rate, or the previous<br />

history <strong>of</strong> the fluid influenced the shear stress required<br />

<strong>for</strong> a particular shear rate..<br />

All <strong>of</strong>' these <strong>fluids</strong> ltJere given<br />

the npJl1e non-Nelliftonian.<br />

Non-Newtonian behavior is fou-nd in two basic types <strong>of</strong><br />

fluid systems (118):<br />

1. Solutions or melts <strong>of</strong> high-molecular Height<br />

pol}Dneric materials.<br />

2.. Suspensions <strong>of</strong> liquids or solids in a liquid<br />

medium.<br />

In general the degree <strong>of</strong> non-NeHtonian behavior increases<br />

Hith the concentration <strong>of</strong> the polymer or disperse phase.<br />

A large fraetima <strong>of</strong> non-NeHtonian <strong>fluids</strong> are classed


3<br />

as <strong>pseudoplastic</strong>so<br />

Pseudoplastic <strong>fluids</strong> exhibit shearthirLYling<br />

flm.; behavior.<br />

As the shear rate is increased<br />

the shear stress required to provide the shear rate does<br />

not increase proportionately.<br />

Thus, as the shear rate<br />

is increased the apparent viscosity (the ratio <strong>of</strong> the<br />

shear stress to shear rate) decreases.<br />

PURPOSE .. OF_T~~JS<br />

A large f"PI!I..~ttml<br />

<strong>of</strong> .<strong>fluids</strong> nOH handled indus trially<br />

are nOn-N81f\rtonian and a large percentage <strong>of</strong> these are<br />

pSeUdOl)lastics.<br />

The design correlations developed <strong>for</strong><br />

Nei:ltonian <strong>fluids</strong> carLnot be used <strong>for</strong> <strong>pseudoplastic</strong>s because<br />

<strong>of</strong> the variable viscosity <strong>of</strong> the latter. In recent years<br />

many authors have contributed to the development <strong>of</strong> design<br />

equations <strong>for</strong> <strong>pseudoplastic</strong> <strong>fluids</strong>.<br />

These equations have<br />

been in three main areas:<br />

1. Fluid flO1tJ, including friction factors <strong>for</strong><br />

isothermal and non-isothermal flOl-1!1 entrance<br />

effects, kinetic energy, and onset <strong>of</strong><br />

turbulence.<br />

2. Heat <strong>transfer</strong> in pipes.<br />

3. POHer requirements in agitated vessels.<br />

Much <strong>of</strong> this material is reviewed in the literature. (118,<br />

120, 121, 190, 213).<br />

To date, only tvJO papers have been published on the<br />

prediction <strong>of</strong> <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong> <strong>coefficients</strong> to pseudo-


4<br />

plastic <strong>fluids</strong>. These papers are quite Ibnited in scope.<br />

The purpose <strong>of</strong> this thesis is to develop a design correlation<br />

(based on the analysis <strong>of</strong> a flow model and experimmtal<br />

data) <strong>for</strong> the prediction <strong>of</strong> <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong> <strong>coefficients</strong><br />

<strong>for</strong> <strong>pseudoplastic</strong> <strong>fluids</strong>.<br />

SCOPE OF THESIS<br />

& -·e -<br />

T'HO types <strong>of</strong> correlation were developed..<br />

One is an<br />

equation based on a dimensional analysis <strong>of</strong> the equations<br />

describin-.g a simplified flo1-l modeL.<br />

The second is a<br />

modification <strong>of</strong> the l'JeHtonian correlation using an apparent<br />

viscosity developed by A. B. Metzner, et ale (122, 125).<br />

The experimental variables studied cover a fairly<br />

l-lide range..<br />

Four types <strong>of</strong> impellers Here used:<br />

Type<br />

Flat bladed paddle<br />

Disk and vane turbines<br />

Marine propeller<br />

Anchor<br />

Number <strong>of</strong> impellers studied<br />

6<br />

2<br />

2<br />

1<br />

All data 'frJere taken Hi th fo'Ll!' baffles attached to the<br />

wall.<br />

The <strong>heat</strong> <strong>transfer</strong> surface Has the vessel wall (Some<br />

papers on Ne1tJtonian <strong>fluids</strong> have studied coils). Both<br />

Ne1tTtonian and <strong>pseudoplastic</strong> <strong>fluids</strong> were studied.<br />

':Phe flow<br />

behavior index range <strong>for</strong> these <strong>fluids</strong> extended from 1.0<br />

to 0.36.


5<br />

~n addition to studying the effect <strong>of</strong> Reynolds Number,<br />

Prandtl Nmnber, and viscosity ratio, the ratio <strong>of</strong> tank<br />

diameter to impeller dia.."11eter i


CHAPTER 2<br />

R,EVIE\rJ OF B,ACKGROD1m l1ATERIAL<br />

PSEUDO PLASTIC FLUIDS<br />

-< -.' "- - - •<br />

wnile Newtonian behavior is only one <strong>of</strong> many rheological<br />

types, the large majority <strong>of</strong> <strong>fluids</strong> h~~dled<br />

industrially<br />

are Newtonian.<br />

Pseudoplastic <strong>fluids</strong> are second<br />

in i1nportance to the NeHtonians (118)..<br />

The Bingham plas tics<br />

are probably third in importance but many <strong>of</strong> these have been<br />

treated as <strong>pseudoplastic</strong>s (126).<br />

There are very few industrial<br />

dilatants, and the time dependent and viscoelastic<br />

fluid groups are small 8nd are <strong>of</strong>ten treated as <strong>pseudoplastic</strong>s<br />

(7, 118, 120, 121, 126, 128, 179, 186). Pseudoplastic <strong>fluids</strong><br />

l.Jere studied in this Hork because <strong>of</strong> their relative importance.<br />

~1elts a..Yld sol'll'tions <strong>of</strong> substances Hi th high mole cular<br />

weight are usually <strong>pseudoplastic</strong> (118, 196) ..<br />

Suspensions<br />

<strong>of</strong> asymmetrie solids are <strong>of</strong>ten in this category. (120, 213).<br />

Typical examples <strong>of</strong> <strong>pseudoplastic</strong>s are polystyrene, copolymers<br />

<strong>of</strong> styrene, low and high pressure polyethylene, rubber<br />

modified styrene polymers, and slurries <strong>of</strong> cement rock in<br />

water (96, 212).<br />

The flm ..! behavior <strong>of</strong> pseudop1astic <strong>fluids</strong> is shov.ffi<br />

graphically in Figure 2-1.<br />

At very lov.T a..Yld very high shear<br />

rates the apparent viscosity is a constant, as shown in<br />

curve A.<br />

Thus in these ranges the fluid acts as a Newtonian<br />

fluid. BetvJeen these two extremes., hOl


7<br />

A<br />

B<br />

SLOPE = /'n- .( 10<br />

~y<br />

FIG 2-1<br />

FLOW BEI-IAVIOR OF PS£.UDOPLAST/CS


8<br />

curve (Curve B) is straigkt at the tw0 extremes ei' sl!lJ.ear<br />

main~er. Tke sl~pes o~ the str&ight p&rtions are tae Newten.iaE.<br />

ViS60sities f'0r that regiea, ancil. tile slope <strong>of</strong>' !it<br />

bet1'J'een any Fl0int or the curved ~@rtion<br />

lime<br />

and zer® gives the<br />

apparent viscosity at that shear rate. Tke Newtonian viscosity<br />

at l0i-J shear rate is orten called the tl zero shear-rate vis-<br />

. t It 1/<br />

cos:t. y '/~o.<br />

Likewise, the Newtonian viscosity at very hi~<br />

shear rates is <strong>of</strong>'te:m named the "i:V1i'inite shear-rate viscositytl,<br />

/Leo. The l®gari t~ic rlOl-J curve (Curve C) e01l.ltai1l.ls three<br />

straight lines. The two extreme lines R&Ve a slope or unity<br />

and rSFlresent the Newtonian p0rtions @f the shear rate spectrum.<br />

The middle line h.a.s a slope "'\AThich is beti.reen zer@ aRd uni ty.<br />

The closer to zero it is, the more non-Newtonian tae f'luid.<br />

T.hl.e<br />

shear-rate range or the Ilzero shear-rate viacosi tylf<br />

is <strong>of</strong>'ten very narr0W.<br />

The Iti:afinite shear-rate viscositylt<br />

occurs at very high Shear rates and is very seldom encountered<br />

in industrial proeesses sueh as f'low through a conduit, <strong>heat</strong><br />

<strong>transfer</strong>, or mLxing 1~th<br />

or turbine ..<br />

a paddle, anchor, marine propeller,<br />

'A f'eirJ special impellers and precesses (such as<br />

bl7US1'1l.ing <strong>of</strong>' a paint) produce hi~ :hear rates, so that the<br />

infini te shear-rate visc0sL ty may be approached.<br />

Many authors 'have tried to derive theoretical expressions<br />

i'or the fl®w eurv~s ef pseua@~lasties ana mamy ethers have<br />

tried t@ aevelep empirical equati@ms (79, 109, 135, 152, 154


15.5, 183, 185).. Most <strong>of</strong> their ef<strong>for</strong>ts 'i-Jere in vain because<br />

the equations vJere not very accurate or '>Jere too complex<br />

to 1.Jork I'Jith (120).<br />

Huch <strong>of</strong> the early teclmological lvork<br />

vJas done using an empirical equation to express the flow<br />

curves (22, 214, 215).<br />

(2-1<br />

This relationship, the Williamson equation, is fairly complicated,<br />

and is valid <strong>for</strong> only a small nu.mber <strong>of</strong> <strong>fluids</strong>"<br />

In an ef<strong>for</strong>t to simplify the equation, the first term lims<br />

<strong>of</strong>ten dropped, placing too much emphasis on the infinite<br />

shear-rate viscosity, "lv-hich in practice is rarely approached<br />

(22, 118).<br />

Another equation <strong>for</strong> describing <strong>pseudoplastic</strong> flow<br />

behavior which has gained some acceptance is the Pm'


0<br />

beeemes negligible fu~d<br />

agaim Newt~nianbehaviGr is ~redieted.<br />

~e equation als~ preaiets a saear-th~ing phenomenon at<br />

intermea.iate shear rates (120). Thus this equatien is very<br />

gGod if a very wide shear-rate range must be aeeurately<br />

pertrayed er if existing data must be extra~olated.<br />

There are a few disadvantages to using the Pewell­<br />

Eyring equation.<br />

1. 'Three eORstants must be evaluated.<br />

2. The equation eannet be selved explicitly fer<br />

shear rate.<br />

3.. The eorrelations whieh have been aeveloped<br />

using this equatien ean only be solved using<br />

published graphs.<br />

These are based en two or<br />

three parameters in addition to ~e dimensionless<br />

groups represented by the eeordinates (42,<br />

43) •<br />

The Ostwald-deWaele model, mere eommonly ealled the<br />

"p0wer lawlf is ancempirieal equa.tion whieh aceurately €l.eseribes<br />

the ~lew eurve <strong>of</strong> most pseudeplastie <strong>fluids</strong> ~<br />

the shear rate range most commonly eneountered in industrial<br />

processes.<br />

(2-4<br />

K is named the It~lu.id e0r:lsisteney i:ID.dex" and. is somewhat<br />

a.:m.alogous to the Newt@l!'lian viseesi ty in that it


va:ry withl. the slaear I'Rte.. 11.1. is ealled the n.rlw belilaTi(:!)J!'<br />

index" amd is a measure o.f the deTiatioE. from NewtoRiam<br />

belaavier. n is equal to the slo~e <strong>of</strong> the logaritkmie flow<br />

/I<br />

eurYe (Figure 2-l-e).. For Newtonian fluias E. equals 'UJ.'i\l.i ty<br />

aad the .fluid cONsistency index equals the Newt0ni~ Tis­<br />

€esity. FOF pseuaeplastie .<strong>fluids</strong> n is bet"Y-lee1a zero and<br />

u-'l1li ty.. TJae ])0Wer law als® deseribes the .flow eurves <strong>of</strong><br />

shear-taickening .<strong>fluids</strong> (dilat~t <strong>fluids</strong>), iN which case<br />

11.1. is greater th~ unit~. Because <strong>of</strong> the aceuraey ~d<br />

simplicity <strong>of</strong> the power law, it is the most widely used<br />

rheological equation <strong>for</strong> pseudoplastie tluids.<br />

The eelasisteney index (]l0Wer law, K) is very slmilar<br />

to Newtonian viscosity in that there is ru~ appreCiable decrease<br />

<strong>for</strong> am increase in temperature amd an appreciable<br />

imerease <strong>for</strong> an increase iR concentration. For suspensions,<br />

the ratio o.f K to the viscosity o.f the suspending medium is<br />

<strong>of</strong>ten nearly c@E.stant. The decrease with inereasing temperature<br />

is <strong>of</strong>te~ at the same rate as tke s@lvent or suspending<br />

medi~ (118).<br />

Tae flow wehavior index, n, is relatively constant with<br />

temperature, although there are slight changes. For water<br />

dispersible p@lymers, n :i.Jt'l.ereases slightly with tem.perature<br />

and approaches ~ity at high temperatures. As the concentration<br />

<strong>of</strong> solids or polymer imcreases, R decreases (118, 128).<br />

An~ther temperattlPe effect is that <strong>of</strong> initial ske~r stress


12<br />

sheaF stress at whieh nem-NewtoRian behavi@r eo~e~ees.<br />

Fer PQl~etkyle~e the iRitia.l ~ear stress is 2000 dynes/e~2<br />

at 120~C ana 500 ~ynes/em2 at 230 e O (145).<br />

Tke 'P!!>wer law was ehesen a.s the equatiol'l u.sed to<br />

represe~t<br />

the rhe@legieal data beeause:<br />

1. It has bee~ ShOWB to accurately represemt the<br />

raeol®gieal ~ata 0~ the majority af pseuGo­<br />

]?lastie <strong>fluids</strong> il:! the shear rate raRge elll.-<br />

cOUBtered im industrial processes.<br />

2. It is general in that it reduces to NewtoRts<br />

rheologieal law fer n = 1.0.<br />

3 .. It CaR be used to apIDr0xirt1ately represent<br />

otaer types <strong>of</strong> flow behavior, sueh as ~ixotropy<br />

amd viscoelasticity.<br />

4 .. It is a very easy relationship to work 'tdth<br />

matliter'ltatieally.


13<br />

RHEOLOGIC_~<br />

INVESTIGATION OFPO~~R LAW<br />

FLUIDS<br />

There are many e~ereial visGGmeters available ~or<br />

the aatermimatiGn o~ Newtonian viscosity but very ~ew are<br />

available <strong>for</strong> the quantitative determination o~ shear stress<br />

and shear rate (97). There are two basie types o~ viscometers<br />

l...rhich GaE. be used to determine these quantities; a<br />

eapillary tube viseometer and a r0tating cylinder viscometer.<br />

The ca~illary tube viscometer has a ~ew serious disadvantages.<br />

The pressure drop corrections are very time cons~~ng<br />

and a great deal <strong>of</strong> tiMe is spent in Gleaning and<br />

assembl~g the apparatus (121).<br />

The Rotational Viscometer<br />

Since the rotational viscometer vTaS used in this study<br />

its use is described in More detail. The exact procedure<br />

followed and the experimental results are iRcluded 1m<br />

Appemdix A ..<br />

The rotational viscometer is very easy to clean and<br />

assemble. The data are easily taken and only one correction,<br />

a constant eorreefion, must be made. Moreover, a model with<br />

a 200 fold shea~-rate range (Bro0~ield S~e~o-Lectrie) is<br />

commercially available, and was used in this study. Tae<br />

rotational viscometer is basically a eylin~ical fluid container<br />

called the eup ana a cyliRarieal b~b whieh is immersed eoneentrieally<br />

~ the cup @f fluid. ~ s®me models the cup


11-<br />

rotat~s at va~ious spe~ds and the resultant to~que om the<br />

bob is measUl1'ed.. In othel'" models val'!'ious tOl'"ques lU'Pe applied<br />

to th~ bob and the resultant speed <strong>of</strong> the bob ~easured. The<br />

viscomet~r ~sed<br />

in this work was oOMposed <strong>of</strong> a bob drivem by<br />

a sync~onous motor at a eomst~t val~e <strong>of</strong> RPM~ (Eigh~<br />

diffel'"ent speeds weF'e possible) .. The tOl"'que required to<br />

attain the desired speed was measured ..<br />

wall <strong>of</strong> the bob is<br />

(2-5<br />

wher~ Ts is the torque required to rotate the bob ..<br />

Rb is the radius <strong>of</strong> ~e bob.<br />

hb is the height <strong>of</strong> the bob ..<br />

The shear 1 rate in ~e annular space between the bob ~d<br />

cup depends upon the ratio <strong>of</strong> the radius <strong>of</strong> th~<br />

cup to tine<br />

bob, s, the angular speed <strong>of</strong> the bob, and the fluid parameters ..<br />

FOF Bingh&m plastics the relati0nanips are given by Fitch (64),<br />

Wilkinson (213), Green (79), and V~ Wazer (196).<br />

For power<br />

law <strong>fluids</strong>, Y,.:pieger and MaPon (100) developed an equation fop<br />

the she~ ratewhieh is valid to a m~~ cup to bob radius<br />

ratio <strong>of</strong> 1 .. 2 ..<br />

D .. K, (~,,-/) +Ji Z<br />

(~,,-/)2J<br />

[ 1+ ~ /hV 1 (oJ)<br />

(2-6<br />

(2-7


IS<br />

In(s) (2-8<br />

(2-9<br />

where Re is the radius Gf t:B.e ell]) ..<br />

nil is the slC!1pe <strong>of</strong> a logarit1::l:m.ie 1"'10t <strong>of</strong> t


16<br />

can be s~p1i~ied to (100~ 125, 213).<br />

'2fw = 47r N/:t!l.u (2-12<br />

Fer any cup rond bob a~-amgement t~ eup radius~ the bob<br />

radius, and the equivalent height <strong>of</strong> the bob &re eonst~t.<br />

The sneaP stress and she&r rate are thus evaluated by<br />

taking readings o~ torque versus angular veloCity or the<br />

bob. These values are plotted on log-log graph paper to<br />

evaluate slo~e,' ntT. The shear stress and shear rate are<br />

then ealeulated using equation 2-5 and 2-11. ~e power<br />

law eonstaats, R and K, e~ be evaluated from a logarithmic<br />

plot or shear stress versus shear rate. (~e slope n shonld<br />

be equa.l to 11. 11 ).<br />

E,nd e~fe_et.~.<br />

Equation 2-5 is an expression ror the<br />

shear stress on the curved surface <strong>of</strong> the bob •. However,<br />

when the lengtli <strong>of</strong> the bob is not very large im comparison<br />

with the bob diameter tae torees on the ends <strong>of</strong> the cylinder<br />

m~ ~ot be neglected. These are usually taken into account<br />

by eonsiderimgthe m ds as extensions at.' the cylindrical<br />

height ~d ealling the total the effective height. Ir<br />

more bobs <strong>of</strong> equal diameter but different lemgths are<br />

available th~ value <strong>of</strong> the et.'feetive height f0~ that bob<br />

di~eter oaE be evaluated by plotting the to~que ~t CORstant<br />

speed versus bob height ~d extrapolating to zero<br />

torque. The absolute value or height at zero torque<br />

(this height will be a negative value) should b$ added to<br />

the aetual height to get the effective height (54, 107).


'7<br />

ft~<br />

easier method <strong>of</strong> calibrating the bob with a Newtonian<br />

flllid has been sh01.Jn to be accurate.<br />

!1 NeHtonian fluid <strong>of</strong><br />

knovm viscosity is placed in the viscometer and the torque,<br />

angular velocity, and appropriate dimension data taken.<br />

The shear rate is calculated using equation 2-11 laJi th n tl<br />

equal to Ul~ity.<br />

The shear stress is then calculated using<br />

the shear stI'ess-ra te relationship <strong>for</strong> Nev.rtonian <strong>fluids</strong><br />

/ =/1 r (2-13<br />

The effective height is then calculated using equation 2-5.<br />

Metzner and otto (125) have sho~~<br />

that viscometer bobs calibrated<br />

in this manner give accurate values <strong>for</strong> shear stress<br />

even Hhen using highly <strong>pseudoplastic</strong> <strong>fluids</strong>.<br />

Turbulence.<br />

<strong>for</strong> laminar flmeJ.<br />

Equations 2-5 through 2-12 are only valid<br />

Above a critical Reynolds Number the<br />

flov! becomes turbulent and the shear stress increases at a<br />

mOI'e than proportionate rate, resulting in an increasing<br />

apparent viscosity. Van Wazer (196) reports that the<br />

critical Reynolds nu~ber<br />

is a function <strong>of</strong> the linear velocity<br />

<strong>of</strong> bob surface, Vb' the clearance bet",reen bob and cup, and<br />

the viscosity <strong>of</strong> the fluid.<br />

NReCCRIT.) = "i (Re -R 6 )f<br />

~ = 41.3/Rc/th?c-H2)<br />

/It = 2100<br />

(2-14<br />

{2-l5<br />

It was found in this work that the less viscous <strong>fluids</strong>


18<br />

suddenly seemed to become more viscous when a large diameter<br />

bob 'i;'JaS used at high speeds. The problem was easily eliminated<br />

by using a smaller diameter bob, thus greatly reducing<br />

the linear velocity <strong>of</strong> the bob at the expense <strong>of</strong> a small<br />

increase in clearance.<br />

T.emJ2erature effects..<br />

In very viscous <strong>fluids</strong> the <strong>heat</strong><br />

generated by fluid friction is enough to cause a temperature<br />

rise. The un1tJary investigator may then mistakenly report<br />

<strong>pseudoplastic</strong>ity or thixotropy due to the decrease in<br />

apparent viscosity which in actuality is caused by the increase<br />

in temperature.<br />

McKelvey (114) reports that the <strong>heat</strong><br />

generation per unit volume is the product <strong>of</strong> the shear stress,<br />

shear rate,<br />

Heat generation = "~i J (2-16<br />

and convers ion factor to <strong>heat</strong> units. WeI tmann (206) has<br />

derived a complex equation giving the temperature variation<br />

with radius caused by viscous <strong>heat</strong>ing. Heat generation is<br />

not a problem <strong>for</strong> lOH viSCOSity materials and good temperature<br />

control.<br />

Time dependency.<br />

Thixotropic <strong>fluids</strong> may best be measured<br />

in a rotational viscometer.<br />

The shearing stress is determined<br />

<strong>for</strong> various times <strong>of</strong> shear at a constant shear rate. The<br />

apparent viscosity is plotted versus the natural logarithm<br />

<strong>of</strong> the time <strong>of</strong> shear and the slope is called the I1 coefficient


19<br />

<strong>of</strong>' thixotropic breakdown l'Ji th time!l ( 79). If' the slope<br />

is zero the f'luid is not time dependent.


20<br />

l'UXIlfG OF NON -NE1rJTONIAN FLUIDS<br />

The mixing <strong>of</strong> non-Newtonian <strong>fluids</strong> in an agitated<br />

vessel is a 'lIDi t operation somel'1fhat similar to <strong>batch</strong> <strong>heat</strong><br />

<strong>transfer</strong>. It is presented because some <strong>of</strong> the results <strong>of</strong><br />

the Hork on mixing can be utilized in developing a correlation<br />

<strong>for</strong> predicting <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong> <strong>coefficients</strong>.<br />

Batch <strong>heat</strong> <strong>transfer</strong> could be classified as a problem involving<br />

the quality <strong>of</strong> mixing but it is usually considered<br />

as a separate study.<br />

A review <strong>of</strong> the small amount <strong>of</strong> Hork<br />

on <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong> to non-Nel'ITtonian <strong>fluids</strong> will be<br />

considered later in this chapter.<br />

This section reviel'JS<br />

the study <strong>of</strong> pov-rer requirements and the quality <strong>of</strong> mixing.<br />

Much <strong>of</strong> the work on fluid flow and <strong>heat</strong> <strong>transfer</strong> to <strong>pseudoplastic</strong>s<br />

in pipes (revie'tved in \1Iilkinson.1 213; Metzner, 118;<br />

and Thomas, 190) was theoretical in nature. The geometry<br />

and flO1..J patterns in an agitated vessel, hmvever, are rather<br />

complex <strong>for</strong> this approach.<br />

The velocity pr<strong>of</strong>ile in a pipe<br />

could be quantitized since it was only a function <strong>of</strong> wall<br />

shear stress, average velocity, and rheological parameters.<br />

In addition the flow Has in only one direction.<br />

In a mixing<br />

vessel the floH is three dimensional, the "\-lall shear stress<br />

is QnY~OHn,<br />

and the average velocity is not only difficult<br />

to define, but is dependent upon the rheological properties,<br />

the speed <strong>of</strong> the agitator, the shape, dimensions, and position<br />

<strong>of</strong> the agitator, and the vessel geometry..<br />

Because <strong>of</strong> great<br />

number <strong>of</strong> 'lIDknown relationships, which are made even more


21<br />

complicated by a variable viscosity, all <strong>of</strong> the 1~ork<br />

to<br />

date has been experimental rather than theoretical.<br />

Power Requirements<br />

POl.'lTer requirements <strong>for</strong> Newtonian <strong>fluids</strong> have been<br />

studied by many investigators and are summarized in many<br />

good reviel.Js (12, 9~., 142, 158,162,163 ) • The approach used<br />

vJas to def'ine the variables and use dimensional analysis to<br />

combine these variables into dimensionless groups..<br />

An all<br />

inclusive analysis is given by (12,158)<br />

where P<br />

N<br />

is the power requ~red.<br />

is the rotational speed <strong>of</strong>' agitator.<br />

D' a.<br />

is the diameter <strong>of</strong>' the agitator.<br />

D t<br />

is the diameter <strong>of</strong>' the vessel.<br />

IlL<br />

Hc<br />

is the liquid height.<br />

is the clearance between impeller bottom and<br />

vessel bottom.<br />

is the width <strong>of</strong>' the agitator.<br />

is the baf'fle 1.Jid th ..<br />

is the number <strong>of</strong> baffles.<br />

is a reference n~unber<br />

<strong>of</strong> baffles.<br />

is the number <strong>of</strong> blades on the impeller.<br />

is a reference number <strong>of</strong> blades on the impeller ..


22<br />

C il _,<br />

aI' b l<br />

, cl' dl, el, fl' gl, hI' and jl are all<br />

constants to be evaluated.<br />

The group to the left <strong>of</strong> the equal sign is called the<br />

POv-Ter number.<br />

The first group to the right is the mixing<br />

Reynolds nmnber, and the second group to the l"ight is the<br />

Froude number. The Froude n~unber is required to account<br />

<strong>for</strong> the vortex <strong>for</strong>mation in a s\-lirling system.<br />

Thus if<br />

baffles or <strong>of</strong>f-center impeller location is used the Froude<br />

number is not needed.<br />

Host authors have also neglected the<br />

remaining groups and have specified a different value <strong>of</strong><br />

C4 <strong>for</strong> each change in geometry. The effects <strong>of</strong> impeller<br />

style, blade Hidth, number <strong>of</strong> blades, impeller pitch,<br />

impeller clearance, Dt/Da, and spacing <strong>of</strong> multiple impellers<br />

have been studied by Bates et al. (12)..<br />

Richards (158) has<br />

studied the effect <strong>of</strong> impeller spacing, nurnber and 1.ddth<br />

<strong>of</strong> baffles, number and vddth <strong>of</strong> impeller blades, and the<br />

effects <strong>of</strong> coils.<br />

Host <strong>of</strong> the Horl~<br />

on non-iJel.Jtonian systems has been<br />

similar but not as extensive.. BrOv.ffi and Petsiavas (31)<br />

have investigated the mixing <strong>of</strong> Bingham plastics. They<br />

found the P01-Jer number \hTaS<br />

a function <strong>of</strong> the Reynolds,<br />

Froude, and Hedstrom numbers.


2J<br />

Schultz-GrQnow (174) used a dimensional analysis but<br />

in a slightly different <strong>for</strong>m <strong>for</strong> <strong>pseudoplastic</strong>s 't~hich<br />

could<br />

be represented by the Pr~ndtl<br />

equation<br />

(2-18<br />

where ApR and CpR are empirical constants. His results are<br />

plotte d as the log (l>1/Da 3 APR) versus.-lttiCPR l-vhere 1'-1 is the<br />

required torque and AI'" is the angular velocity. This result<br />

is not very general, h01.Jever, because the impellers studied<br />

are not connnonly used and most <strong>pseudoplastic</strong> <strong>fluids</strong> are<br />

best represented by the p011er laH or POHell-Eyring equation ..<br />

1110 s t <strong>of</strong> the more general 1-lork has be en concerne d '-1i th<br />

finding a Viscosity term which can be used <strong>for</strong> all <strong>pseudoplastic</strong>s<br />

as well as NeHtonian <strong>fluids</strong>. Magnusson (D2) found<br />

an apparent viscosity <strong>for</strong> <strong>pseudoplastic</strong>s hy first developing<br />

a P01.Jer number-Reynolds number curve us ing the equipment<br />

geometry v.rhich was to be used <strong>for</strong> the <strong>pseudoplastic</strong> fluid.<br />

He then repeated the experiments with <strong>pseudoplastic</strong> <strong>fluids</strong>,<br />

calculating the POHer number <strong>for</strong> each value <strong>of</strong> agitator<br />

speed.<br />

By comparing the <strong>pseudoplastic</strong> data vJith the<br />

NevJtonian Pot.-rer number-Reynolds number curve an apparent<br />

Reynolds number could be calculated <strong>for</strong> the <strong>pseudoplastic</strong><br />

fluid..<br />

Th.e agitator difu"TIeter and speed "lATere lmOvffi as Vlell<br />

as the fluid density; thus the only unknown, the apparent<br />

viscosity, could be calculated. While this is a good method


24<br />

~or<br />

determining the apparent viscosity, it is rather time<br />

consuming and expensive, since it requires much experimental<br />

work.<br />

Metzner and Otto (~ used a similar approach, but<br />

generalized it so that prediction o~<br />

the apparent viscosity<br />

can be made directly from the rheological data ~or<br />

any time<br />

independent fluid. They noted that an agitator in a vessel<br />

is some1tJhat analogous to the rotating bob <strong>of</strong> a viscometer.<br />

For a viscometer bob rotating in an i~inite<br />

fluid the<br />

shear rate is proportional to the bob's rotational speed.<br />

(2-19<br />

They reasoned that the shear rate at the agitator <strong>of</strong> a mixing<br />

vessel might also be represented by this equation.<br />

If<br />

this CAJere true and Ks 'i-Jere evaluated the apparent viscosity<br />

could be determined from the rheological data plotted as<br />

apparent viscosity versus shear rate.<br />

Metzner and Otto tested this idea by first determing<br />

the NevJtonian Pm-Ier mnnber-Reynolds number curve <strong>for</strong> many<br />

different system geometries.<br />

They then evaluated the<br />

rheological properties <strong>of</strong> five non-Nev-Ttonian <strong>fluids</strong> and<br />

plotted the apparent viscosity versus the shear rate. These<br />

~luids Here then mixed and the pO'L..rer data taken. The apparent<br />

viscosities \Alere calculated by the method o~<br />

I'lagnussen (1J2)<br />

and the shear rates determined from the rheological curves.


2S<br />

The results shm-red that equation 2-19 1"a3 valid and Kg<br />

equalled 13.0. Godleski and Smith (75), Metzner, et al. (122),<br />

and Calderbank and Moo-Young ( 34) as 1mll as the data <strong>of</strong><br />

Foresti and Liu (65) support fietzner and otto's conclusion<br />

that the shear rate can be expressed by equation 2-19,<br />

1..rith I~s<br />

betifTeen 10 .. 0 and 13.0. l.Jfetzner et al (J2?) made the<br />

most extensive study and, based on their 1-rork and the others<br />

given abov~ report that in an agitated vessel the shear<br />

rate at the impeller can be expressed as<br />

(2-20<br />

<strong>for</strong> these conditions:<br />

1. Baffled and unbaffled vessels.<br />

2. For <strong>pseudoplastic</strong>s "Ti th flow behavior index bet'Heen<br />

0.16 and 1.0 ..<br />

3. Tank dia..."'1leters. 0.5 to 1.83 ft.<br />

4.. Impeller diameters.. 0 .. 167 to 0.67 ft.<br />

5. 'rank diameter/Impeller diameter. 1 .. 3 - 5.5 (laminar<br />

region) 2.0 - 5.5 (transition region)<br />

6. Impeller speeds 0.5 to 29 rev./sec.<br />

7. Flat bladed turbines, fan turbines, ~nd marine<br />

propellers.<br />

8. For dilatant <strong>fluids</strong> up to n :: 1.5 if the nu/Da is<br />

greater than 3.0.<br />

For dilatant <strong>fluids</strong> "Ii th Dt/Da less than 3 .. 0 the shear


26<br />

rate is proportional to the square <strong>of</strong> the impeller speed<br />

and the proportionality const~nt<br />

is dependent upon the Dt/Da<br />

ratio (122).<br />

Calderbank and I'-'Ioo-Young (34) report that dilatants<br />

may be correlated by<br />

Da./ )0.5<br />

t = 12.3 ( /Dt N (2-21<br />

Obviously, more 1-Jork must still be done <strong>for</strong> dilatant <strong>fluids</strong><br />

but the shear rate <strong>for</strong> <strong>pseudoplastic</strong>s, Bingh~m<br />

plastics and<br />

Newtonians may be calculated by equation 2-20.<br />

For the special case <strong>of</strong> <strong>pseudoplastic</strong> p01"Ter 1m-IT <strong>fluids</strong><br />

the generalized Reynolds nQmber may be calculated.<br />

(2-22<br />

The apparent viscosity is defined by<br />

(2-23<br />

The pOHer Im-J can be expressed by<br />

There<strong>for</strong>e<br />

I:::KtVJ'l<br />

(2-4<br />

(2-24<br />

or<br />

/. ) ./J'l-{<br />

/La. =: /{~//.5N (2-25


Su.bstituti011 <strong>of</strong> equati 2-22 gives<br />

I IJ~ 2 1112 -~<br />

NRe == ItS ~-f I{ f- (2-26<br />

27<br />

Metzner and otto found that by using equation 2-19<br />

'lid th the aI:'pr0priate censtant the RG>n-NewtoniaE. power dlata<br />

fell en the NewtG>niaR Power number-Reynolds nQ~ber curve<br />

in the laminar and turbulent regi0ns.. I:vl the transitiQl]'l<br />

region (NR~ fr~ 10 to 70) the power required by the pseu.doplastic<br />

f1ui


22><br />

<strong>fluids</strong> studied (apparent viscosities behv-een 3000 and 11,000<br />

centipoise) there was little effect <strong>of</strong> baffles on power<br />

cons~mption, even at Dt/Da as low as 1.67. Dual impellers<br />

required tvdce the pOl-leI' <strong>of</strong>' a single impeller and this remained<br />

true <strong>for</strong> various spacings between the impellers.<br />

Quality <strong>of</strong> Mixing<br />

The quality <strong>of</strong> mixing is a very important criterllnto<br />

be considered Hhen designing an agitation system, since the<br />

quality or composition <strong>of</strong> a product is dependent upon the<br />

degree to Hhich reactant or temperature fluctuations are<br />

minimized throughout the vessel. This is especially true<br />

Hi th many processes involving nOn-Nev.Itonian f1uids:l such as<br />

the <strong>heat</strong>ing <strong>of</strong> food products or the polymerization <strong>of</strong> a<br />

monomer.<br />

l1etzner and Taylor (127) studied the f'lovJ patterns in<br />

an agitated vessel in an attempt to learn more about the<br />

mechanism <strong>of</strong>' mixing in such a system. They suspended 0.02<br />

"<br />

inch spheres <strong>of</strong> Plexiglas": in both Ne,itonian and <strong>pseudoplastic</strong>s<br />

<strong>fluids</strong> and photographed them as the fluid was<br />

being mixed by a disk and vane turbine. The loqal<br />

velocities<br />

were calculated by measuring the streak lengths and dividing<br />

by the exposure time.<br />

A plot <strong>of</strong> the local velocity versus<br />

radius was differentiated to obtain the local shear rates.<br />

';"Trademark <strong>of</strong> Rohm and Haas Co.


29<br />

In both Newtonian and non-Newtoni~D<br />

<strong>fluids</strong> the shear<br />

rates flere found to be directly proportional to the agitator<br />

speed.<br />

There seemed to be an impeller diameter effect 'tv-hich<br />

was greater <strong>for</strong> Newtonian than <strong>for</strong> non-Newtonian <strong>fluids</strong>.<br />

The shear rate at a given distance from the impeller is<br />

slightly greater as the impeller diameter is increased.<br />

For dilatant <strong>fluids</strong> the effect might be even greater.<br />

In the laminar region (NR~ - 7.0) the al110Ullt <strong>of</strong> fluid<br />

movement is much greater <strong>for</strong> Ne1-vtonian <strong>fluids</strong> than <strong>for</strong> the<br />

<strong>pseudoplastic</strong>s at the same rotational speed, a.nd flO1~<br />

extends<br />

almost to the periphery <strong>of</strong> the tank <strong>for</strong> the NevJtonians<br />

vJhile flow is circular and is confined to the region <strong>of</strong><br />

the impeller <strong>for</strong> the non-Newtonian <strong>fluids</strong>.<br />

In the first half <strong>of</strong> the transition region (NR~<br />

about<br />

10.3) fluid turnover begins <strong>for</strong> the Ne,-vtonian <strong>fluids</strong> and<br />

mixing is carried out by the transport and blending.<br />

The<br />

radial veloci ty increases 14i th rotational speed quite<br />

rapidly. However, <strong>for</strong> the <strong>pseudoplastic</strong>s the movement is<br />

still confined to the center and does not extend to the<br />

edges <strong>of</strong> the baffles until the Reynolds number reaches 28.<br />

At a Reynolds number <strong>of</strong> 78 the floH is 1>Jell into the<br />

transition region and the radial velocity component <strong>of</strong> the<br />

<strong>pseudoplastic</strong> <strong>fluids</strong> is high and there l.s an infloVling<br />

vertical component..<br />

Tll.e flo"V>J patterns <strong>for</strong> the NevJtonian<br />

<strong>fluids</strong> are similar but the vertical inflm-.r is s lightly less


30<br />

than ror the non-Newtonians.<br />

As the middle <strong>of</strong> the transition region is approached<br />

(NR~<br />

= 100) turbulence begins near or betvJeen the impeller<br />

blades. For the <strong>pseudoplastic</strong>s, this turbulence is rapidly<br />

damped.<br />

In the turbulent region there is much turbulence near<br />

the impeller but it is damped out quickly at any distance<br />

from the Lmpeller.<br />

There is not as much turbulence ror the<br />

Newtonian <strong>fluids</strong> but it extends further into the bulk <strong>of</strong><br />

the fluid.<br />

In the horizontal plane <strong>of</strong> the impeller the local velocities<br />

increase slightly more than linearly with rotational<br />

speed <strong>for</strong> the NeHtonian r ..... 1uids. For the <strong>pseudoplastic</strong>s the<br />

increase in velocity is almost exponential.<br />

Thus at high<br />

shear x'ates the <strong>pseudoplastic</strong>s may flow more than the NeHtoni8~l.s<br />

1>Ihile at 10H rotational speeds the reverse is true.<br />

Metzner et al. (122) used the onset <strong>of</strong> fluid movement<br />

near the vessel Hall as a criterion <strong>for</strong> good mixing.<br />

At low<br />

Dt/Da ratios there is no advantage to using tHO turbines.<br />

For values <strong>of</strong> Dt/Da above 2 .. 0 less power is consumed <strong>for</strong><br />

equal mixing if two tUl"bines are used, since at high values<br />

<strong>of</strong> this ratio tHO turbines circulate hlice as much fluid<br />

as one ..<br />

The data indicate that propellers are only desirable


31<br />

<strong>for</strong> viscous pseudoplas tics at 101'1 values <strong>of</strong>' Dt/Da • A fan<br />

turbine seems to be better than both one or hw disk and<br />

vane turbines except at high values <strong>of</strong> Dt/D a . The a..'dal<br />

flmAj" component must aid in mixing normally stagnant regions.<br />

At high Reynolds n~mbers the fan turbine loses its advantage.<br />

Table 2-1 lists the minimum Reynolds nlli'l1ber required<br />

<strong>for</strong> movement near the wall <strong>for</strong> <strong>pseudoplastic</strong> <strong>fluids</strong>.<br />

Mixing is best accomplished in the turbulent regions.<br />

For <strong>pseudoplastic</strong> <strong>fluids</strong> this region is usually confined to<br />

the center <strong>of</strong> the vessel. Thus to improve mixing efficiency<br />

low values <strong>of</strong> the tffiL~ diameter to impeller diameter ratio<br />

should be used and/or multiple impellers. Dilatant <strong>fluids</strong><br />

are not sensitive to lowering Dt/Da or usli~g multiple impellers<br />

(122).<br />

Lee, Finch and Wooledge (104) injected dye one inch<br />

above the impeller ru~d noted the time needed <strong>for</strong> complete<br />

mixing. Godleski and Smith (75) added a saturated solution<br />

<strong>of</strong> phenolphthalein to the fluid and then acid Has added. A<br />

short time later base was added and the time required <strong>for</strong><br />

the indicator to change color was measured. Both groups<br />

report that the mixing time in baffled vessels vJaS longer<br />

than in unbaffled vessels. Godleski and Smith report that<br />

the mixing time (in seconds) is related to the voy'tex depth,<br />

H v ' and the impeller dia.me-ter by


32.<br />

TABLE 2-1<br />

f i<br />

MDlllroM REYNOLDS NUMBER NEEDED<br />

TO ACHIEVE MOVEMElfi~NEARA VESSEL WALL FOR<br />

PSEUDOPLASTIC FLUfD~:<br />

Dt/Da SINGLE TWO FAN PROPELLER<br />

TURBINE TURBINES TURBIJ:m<br />

4.8 640<br />

3 • .5 300 90<br />

3.0 270 120<br />

2.4 7.5<br />

2.3 320<br />

2.1 160 70<br />

2 .. 0 110 50<br />

1.75 50-55<br />

1 .. 50 90 200<br />

1.40 40-45<br />

1.33 50 30<br />

1.17 40-45<br />

1 .. 05 35<br />

1.02 35<br />

.<br />

~}<br />

Data from Metzner et al. (122)


33<br />

(2-29<br />

when both the distances are measured in inches.


!4ETHODS OF STuDY OF B..4.TCH HEAT TRANSFER<br />

USED BY PREVIOUS AUTHORS<br />

Experimental Work<br />

The ex.perimental portion <strong>of</strong> the work in developing a<br />

correlation is the measurement <strong>of</strong> data needed to calculate<br />

the <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong> <strong>coefficients</strong> <strong>for</strong> a variety <strong>of</strong> conditions.<br />

The basic equipment used is a jacketed vessel<br />

equipped with a variable speed motor or drive and provisions<br />

<strong>for</strong> measuring the jacket and <strong>batch</strong> temperatures (and possibly<br />

the wall temperature) ..<br />

The tank is sometimes equipped<br />

-v.ri th baffles, usually four "\,,)"i th a width equal to 1/10 to<br />

1/12 the vessel diameter. The vessel is <strong>of</strong>ten constrllcted<br />

<strong>of</strong> stainless steel to enable corrosive materials to be<br />

tested and also to help prevent fouling.<br />

The diameter <strong>of</strong><br />

the vessels used to date has varied from one to five feet"<br />

The most frequently tested impellers are paddles, disk and<br />

vane (straight blade turbines) and retreating blade turbines,<br />

marine propellers (dOl,ffi thrusting), and anchors.<br />

There is<br />

usually a relatively close clearance (an inch or less) beh.reen<br />

the vessel floor and v.ralls and the anchor type impeller<br />

although sometimes there is more clearance.<br />

The<br />

standard position <strong>for</strong> the other impellers is about one third<br />

the liquid height.<br />

The temperature <strong>of</strong> the <strong>batch</strong> is usually measured in<br />

about three different locations to ensure complete mix.ing.


JS<br />

Thermometers or thermocouples are used in the <strong>batch</strong> and<br />

thermocouples are also used <strong>for</strong> the jacket space temperature.<br />

If the wall temperatl~e is desired the junction <strong>of</strong><br />

a thermocouple is soldered or peened into a small groove<br />

in the vessel I'Jall (or coil). The surface is sanded smooth<br />

and the wires lead out <strong>of</strong> the vessel through the liquid and<br />

out the top_<br />

If a jacketed vessel is equipped with a coil, steady<br />

state experiments can be made 'tvi th the <strong>heat</strong>ing (or cooling)<br />

rate <strong>of</strong> the jacket balanced by the cooling (or <strong>heat</strong>ing)<br />

rate <strong>of</strong> the coil ( 37~39).<br />

The temperature <strong>of</strong> the jacket,<br />

coil, and <strong>batch</strong> thus remain constant. Most authors, however,<br />

have used an unsteady state method where readings <strong>of</strong><br />

the <strong>batch</strong> and jacket (or wall) temperatures were taken<br />

versus time as the <strong>batch</strong> 14as <strong>heat</strong>ed, or cooled.<br />

The latter<br />

method has the disadvantage <strong>of</strong> changing fluid properties<br />

Hhile the <strong>for</strong>mer has the disadvantage <strong>of</strong> not being able to<br />

detel~ine<br />

the <strong>heat</strong> <strong>transfer</strong> <strong>coefficients</strong> <strong>of</strong> a jacketed<br />

vessel in which the flow patterns are not disturbed by the<br />

presence <strong>of</strong> a coil. Balancing the <strong>heat</strong> <strong>transfer</strong> rates betHeen<br />

the coil and jacket is also a time .... consuming task.<br />

Calculation <strong>of</strong> Heat Jransfer Rate<br />

The amount <strong>of</strong> <strong>heat</strong> Hhich is <strong>transfer</strong>red per unit time<br />

in the steady state system can be calculated from the product<br />

<strong>of</strong> the enthalpy change <strong>of</strong> the medium in the jacket and the<br />

flow rate <strong>of</strong> this fluid, the enthalpy change-flow rate product


36<br />

<strong>of</strong> the fluid flO'i>Jing tln">ough the co iI, or a.."l average <strong>of</strong><br />

these t\:.;ro values..<br />

It must be remembered, however, to<br />

correct <strong>for</strong> <strong>heat</strong> exchange between the jacket fluid ~nd<br />

the<br />

surroundilJ.gs ..<br />

For the unsteady-state experiment the <strong>heat</strong> <strong>transfer</strong>red<br />

Can be calculated from the product <strong>of</strong> the flow rate <strong>of</strong> the<br />

<strong>heat</strong> <strong>transfer</strong> medium and its enthalpy change..<br />

This value<br />

must be corrected <strong>for</strong> <strong>heat</strong> losses to the surroundings and<br />

the gain in <strong>heat</strong> content <strong>of</strong> the vessel..<br />

If steam is the<br />

<strong>heat</strong>ing medium in the jacket the condensate flow-rate must<br />

be measured as Hell as its temperature.<br />

It is this authorfs<br />

experience that this f1O't-J rate is not constant during a<br />

<strong>heat</strong>ing run ~nd<br />

thus the condensate collected during one<br />

time interval, had actually condensed during an unknO't-JU<br />

previous time interval. Hence~its<br />

measurement is subject<br />

to large errors. If the <strong>heat</strong>ing or cooling medium is \-Jater<br />

the 1'101-1 rate is usually very high in an ef<strong>for</strong>t to keep the<br />

<strong>heat</strong> <strong>transfer</strong> surface at a constant temperature over its<br />

entire surface at anyone time..<br />

There<strong>for</strong>e the actual<br />

change in temperature <strong>of</strong> the floVoring fluid is kept small ..<br />

This also leads to large errors because a fraction <strong>of</strong> a<br />

degree error in the inlet and outlet temperature readings<br />

is <strong>of</strong>ten a large fractional error <strong>of</strong> the actual temperature<br />

change..<br />

In addition to these errors there are the problems<br />

<strong>of</strong> calculating the <strong>heat</strong> losses to the surroundings and the


.37<br />

2: a in in <strong>heat</strong> cQ@tent <strong>of</strong> the vessel.<br />

A second method <strong>of</strong> calculating the qtta....'1ti ty <strong>of</strong> <strong>heat</strong><br />

<strong>transfer</strong>I'ed is to calculate the change in enthalpy <strong>of</strong> the<br />

<strong>batch</strong>.<br />

There are three corrections 1lrhich must be taken<br />

into account ..<br />

1. The <strong>heat</strong> losses from the sUT'face <strong>of</strong> the<br />

fluid.<br />

2. The mechanical energy input from the ar;itator.<br />

3. The gain in <strong>heat</strong> content <strong>of</strong> the impeller and<br />

shaft.<br />

There is usually at least 20 percent vapor space during a<br />

<strong>heat</strong> <strong>transfer</strong> experiment and the vessel is covered Hith an<br />

insulated lid. If the temperature <strong>of</strong> the <strong>batch</strong> does not<br />

approach the boilinl; point the <strong>heat</strong> losses from the surface<br />

are negligible. The mechanical energy input to the system can<br />

be calculated if DOHer measurements are made (they llsually<br />

are). ROHever, the mechanical energy input is significant<br />

only if very viscous <strong>fluids</strong> are being aGitated.<br />

The gain<br />

in <strong>heat</strong> content <strong>of</strong> the impeller 8illd shaft is also neglicible<br />

because <strong>of</strong> their small ilJeic;ht and <strong>heat</strong> capacity in<br />

comparison v'Ii th that <strong>of</strong> the <strong>batch</strong> fluid.<br />

The temperature<br />

change <strong>of</strong> the <strong>batch</strong> can be chosen large enough so that<br />

errors in measurinrz it are small.<br />

It is this author's<br />

opinion that this second method is the most accurate means<br />

<strong>of</strong> determining the <strong>heat</strong> <strong>transfer</strong> rate.


38<br />

Calculation <strong>of</strong> Batch Heat Transfer Coefficients<br />

If the jacket temperature was measured, the <strong>batch</strong> <strong>heat</strong><br />

<strong>transfer</strong> <strong>coefficients</strong> may be calculated by first calculating<br />

the overall <strong>heat</strong> <strong>transfer</strong> coefficient using equation 1-1<br />

and then determining the <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong> coefficient<br />

using equation 1-2 (32,49~182).<br />

. ,<br />

In order to use this equatlon<br />

the fouling factor, I/hf' the medium <strong>heat</strong> <strong>transfer</strong> coefficient,<br />

L<br />

:b ., and the resistance <strong>of</strong> the \.Jall, 'f:!. ,<br />

•-m.<br />

must be determined •<br />

KlrJ<br />

The resistance <strong>of</strong> the wall may be calculated using the values<br />

<strong>of</strong> wall thickness and thermal conductivity.<br />

The fouling<br />

factor may be estimated from a knowledge <strong>of</strong> the condition<br />

<strong>of</strong> the <strong>heat</strong> <strong>transfer</strong> surface. The fouling factor is usually<br />

neglected on the basis <strong>of</strong> visual observation <strong>of</strong> the inside<br />

<strong>of</strong> the jacket. If condensing steam is the <strong>heat</strong>ing medium<br />

the film coefficient <strong>of</strong> the medium is <strong>of</strong>ten estimated to<br />

be about 2000, based on measurements <strong>for</strong> pipeso<br />

The <strong>batch</strong><br />

<strong>heat</strong> <strong>transfer</strong> coefficient, h, is then the only unkn01tITl in<br />

equation 1-2 and can thus be calculated. If water is the<br />

<strong>heat</strong> <strong>transfer</strong> medium the estimation <strong>of</strong> hm becomes more difficuI<br />

t..<br />

Heat trans fer <strong>coefficients</strong> <strong>for</strong> liquids are much Im-Jer<br />

than <strong>for</strong> condensing gases and depend largely upon velOCity.<br />

Very little work has been done in the field <strong>of</strong> correlations<br />

<strong>for</strong> the prediction <strong>of</strong> <strong>heat</strong> <strong>transfer</strong> <strong>coefficients</strong> <strong>for</strong> the<br />

jacket side <strong>of</strong> jacketed vessels.<br />

Many investigators use the vHlson method to determine<br />

the s~m<br />

<strong>of</strong> resistances to <strong>heat</strong> <strong>transfer</strong> on the <strong>heat</strong>ing or


J9<br />

cooling mediu..:m side, the <strong>heat</strong> <strong>transfer</strong> wall, and that<br />

caused by fouling (30, 150, 19L~).<br />

If the fl<strong>of</strong>J rates <strong>of</strong><br />

the <strong>heat</strong> <strong>transfer</strong> mediurQ are approxliaate1y the S8~e<br />

<strong>for</strong><br />

all the <strong>heat</strong>ing (or cooling) runs and there is no evidence<br />

<strong>of</strong> fouling or corrosion <strong>of</strong> the <strong>heat</strong>ing surface the swn <strong>of</strong><br />

these three resistances, ERR' may be asswned to be the same<br />

<strong>for</strong> all <strong>heat</strong>ing (or cooling) runs.<br />

Thus equation 1-2 may<br />

be 1,Jri tten as<br />

(2-30<br />

<strong>for</strong> the <strong>heat</strong>ing runs and<br />

(2-31<br />

<strong>for</strong> the cooling rlms, Hhere ERR and:ERc are the S1-1111S<br />

<strong>of</strong> the<br />

constant resistances <strong>for</strong> <strong>heat</strong>ing and cooling respectively_<br />

Thus the only factor that changes the overall <strong>heat</strong> <strong>transfer</strong><br />

coefficient, U, is a change in the <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong> coefficient,<br />

h.<br />

Previous authors have reported that h is a function<br />

<strong>of</strong> the Reynolds number raised to the 2/3 p01-{er.<br />

(2-32<br />

Thus equation 2-30 (or 2-31) may be written<br />

(2-33


40<br />

The s~m<br />

<strong>of</strong> the resistances,£RR' can thus be found by<br />

plotting the values <strong>of</strong> l/U <strong>for</strong> the <strong>heat</strong>ing ru.ns versus 1/NR~/3<br />

and extrapolating the curve to zel;'o .. I:RH is the value <strong>of</strong> the<br />

ordinate vJhen 1/NR~/3<br />

is zero .. i::Rc can be evaluated in a<br />

slifiilar manner by plotting the data <strong>for</strong> the cooling runs.<br />

Once the resist~nces<br />

are evaluated the <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong><br />

<strong>coefficients</strong> may be calculated from equations 2-30 and 2-31.<br />

There are several serious disadvantages using the above<br />

methods <strong>for</strong> calculating the <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong> <strong>coefficients</strong>.<br />

1. The temperature <strong>of</strong> the jacket fluid must be knOl~<br />

accurately. It was found in this work that the<br />

temperature <strong>of</strong> the steam entering the jacket was<br />

o<br />

<strong>of</strong>ten about 108 C and the temperature <strong>of</strong> the<br />

cdndensate was about 90 0 to 95 0 0.. In this case,<br />

l'11hich temperature should be used?<br />

2 •. In the above case part <strong>of</strong> the jacket had a condensing<br />

steam film while part had a water fina.<br />

Is one justified in assuming a condensing steam<br />

film <strong>for</strong> the entire area?<br />

3. The <strong>heat</strong> <strong>transfer</strong> coefficient is a function <strong>of</strong><br />

the Prandtl number, viscosity ratio, and geometrical<br />

factors.<br />

These could produce much scatter on a<br />

Wilson plot if not held constant.<br />

4. The 2/3 power is not necessarily the proper exponent<br />

<strong>for</strong> the Reynolds number.<br />

Pursell (150) re-


41<br />

ports a value <strong>of</strong> 3/4-..<br />

He then replotted Dblt s<br />

a~data on a Wilson pl0t using I/NR~/4 as the<br />

abscissa and fOILnd the};Rc I·JaS .020..<br />

used I/NR;/3 and foundZR c to be .010.<br />

Uhl (11P had<br />

Thus the<br />

Wilson plot method is very dependent upon the<br />

<strong>for</strong>m <strong>of</strong> the abscissa (and personal choice <strong>of</strong> the<br />

investigator). Small errors in the estimation<br />

<strong>of</strong> the ste8111 coefficient <strong>of</strong>ten are not ma..rdfest<br />

in the result <strong>for</strong> the <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong> coefficient<br />

since the <strong>for</strong>mer is very small compared<br />

to the latter. H01vever, if water is the <strong>heat</strong> <strong>transfer</strong><br />

medium the surface coefficient <strong>of</strong> <strong>heat</strong> <strong>transfer</strong><br />

on the jacket side is much smaller and thus errors<br />

in the estimation <strong>of</strong> the jacket resistance result<br />

in errors <strong>of</strong> like magnitude in the calculated <strong>batch</strong><br />

<strong>heat</strong> <strong>transfer</strong> coefficient.<br />

A second method <strong>of</strong> calculating the <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong><br />

coefficient is to measure the i,


42<br />

disadvantage is the installation <strong>of</strong> the thermocouples so<br />

that the junction measures the <strong>heat</strong> <strong>transfer</strong> surface and<br />

does not disturb the <strong>heat</strong> flow through the wall.<br />

By proper<br />

installation techniques, hov-rever, this can be closely<br />

approximated.<br />

In some cases the thermocouple junction has<br />

been embedded in the 't\fall rather than at the surface..<br />

However,<br />

if the exact position <strong>of</strong> the junction and the thermal<br />

conductivity <strong>of</strong> the wall is knovrn the results can be<br />

corrected to give the surface temperature.<br />

The Correlation <strong>of</strong> Results<br />

- ,<br />

The correlation <strong>of</strong> the data is difficult because <strong>of</strong><br />

the large number <strong>of</strong> variables.. A fe'ltJ authors used a<br />

method <strong>of</strong> plotting the Nusselt n~mber versus a dimensionless<br />

group on logarithmic coordinates, keeping all the variables<br />

constant (39, 58, 137,1;D)"<br />

Once the effect <strong>of</strong><br />

Ylgroup 1" has been determined the Nusselt number, divided<br />

by the IIgroup ll! effect, is plotted versus "group 2".<br />

The effect <strong>of</strong> "group 3 11<br />

is found by plotting the Nusselt<br />

number, divided by 'che product <strong>of</strong> the "group 111<br />

and flgroup<br />

211 effect, versus ltgroup 3". There are disadvantages to<br />

this method since it is very difficult, experimentally, to<br />

change the value <strong>of</strong> only one dimensionless group at a time.<br />

Some authors seem to have assltmed that the Chilton (39<br />

equation and exponents are accurate and thus use his exponents<br />

<strong>for</strong> some <strong>of</strong> the dimensionless groups and by plotting


43<br />

find the effects <strong>of</strong> one or two other groups (30,32).<br />

These methods leave much to be desired because there<br />

is much scatter in most <strong>of</strong> the experli.~ental<br />

data and fitting<br />

a straight line "by eyell is an almost hopeless task.<br />

Due<br />

to the scatter <strong>of</strong> the data the slope <strong>of</strong> the line drat-ill to<br />

represent the data :t;s subject to hwaan error and choice.<br />

This is evidenced by the large number <strong>of</strong> Itrecalculations[!<br />

reported in the literature.<br />

A more scientific approach to the task <strong>of</strong> correlating<br />

the experimental data is to use a rtleast squares ll method<br />

<strong>of</strong> mathematically fitting a straight line through a set <strong>of</strong><br />

data points (49,]82).<br />

For the many variables such as obtained<br />

in a <strong>heat</strong> <strong>transfer</strong> study a multiple variable regression<br />

analysis is described by Levenspiel et ale (K5) and Volk<br />

(198). This method eliminates the proble:m <strong>of</strong> strict experimental<br />

control because it provides an objective and<br />

reliable estimate <strong>of</strong> the true values <strong>of</strong> the exponents.


44<br />

smwiARY OF LITERI\TURE RESuLTS FOR<br />

BATCH HEAT TRANSFER TO l~iTONIAN<br />

FLUIDS<br />

The study or <strong>heat</strong> <strong>transfer</strong> <strong>coefficients</strong> to <strong>fluids</strong> in<br />

agitated vessels is a complex problem.<br />

The many variables<br />

involved make it very difficult <strong>for</strong> rigorous mathematical<br />

analysis and thus the methods <strong>of</strong> dimensional analysis nBVe<br />

been used. The dimensional analysis yields ~8~<br />

(2-35<br />

"llfhere<br />

Dc is the vessel diB-meter ..<br />

Dtt is the agitator diameter ..<br />

k is the thermal conductivity <strong>of</strong> the <strong>batch</strong> fluid ..<br />

ji is the viscosity <strong>of</strong> the <strong>batch</strong> fluid.<br />

f<br />

is the density <strong>of</strong> the <strong>batch</strong> fluid.<br />

C p is the <strong>heat</strong> capacity <strong>of</strong> the <strong>batch</strong> fluid ..<br />

N<br />

is the rotational speed <strong>of</strong> the impeller.<br />

f'w is the viscosity <strong>of</strong> the <strong>batch</strong> fluid evaluated<br />

Wa<br />

at the 1


45<br />

The group to the left <strong>of</strong> the equal sign is called the<br />

Nusselt number.<br />

The first group to the right is the mixing<br />

Reynolds number, the second is the Pr~ndtl<br />

number, and the<br />

third is a viscosity correction factor similar to the one<br />

used by Sieder and Tate (181) in pipes..<br />

Very fe1.o[ investigators<br />

have studied the effects <strong>of</strong> the remaining groups.<br />

The results <strong>of</strong> most <strong>of</strong> the vwrk done in the field <strong>of</strong><br />

correlation <strong>of</strong> <strong>heat</strong> <strong>transfer</strong> rates in jacketed agitated<br />

vessels to Newtonian <strong>fluids</strong> can be sw~marized<br />

2-36<br />

by equation<br />

NNU (2-36<br />

A survey <strong>of</strong> the experimental conditions and correlation<br />

results <strong>of</strong> the papers published to date <strong>for</strong> the jacket and<br />

coil types <strong>of</strong> <strong>heat</strong> <strong>transfer</strong> surfaces Sh01'ITS<br />

that the exponent<br />

<strong>of</strong> the Reynolds nlwber is usually reported as 0.67 althol~h<br />

it varies from 0.5 to 0.75.<br />

Likewise, the exponent <strong>of</strong> the<br />

Prandtl num.ber is usually reported as 0 .. 33 but varies from<br />

0.25 to 0.50. The viscosity ratio exponent varies behJeen<br />

o.lL~ and 0.90 with the majority reports about 0.14. The constant,<br />

C, varies over a 1rlide r~nge-,<br />

from .035 to 39 .. 0 and is<br />

probably a function <strong>of</strong> the impeller type and system geometry.<br />

One author (160) reports C to be a function <strong>of</strong> Reynolds<br />

nlwber.<br />

This function is different <strong>for</strong> each type <strong>of</strong> impeller.<br />

Another author (137) reports that the exponent <strong>of</strong> the viscosity


48<br />

correction factor is a function <strong>of</strong> the <strong>batch</strong> viscosity. In<br />

summary, the equation is usually reported<br />

AI 0.67 O.3Y;U/ )'0.14<br />

~tt:::: C'VRe Il~ ,/#w, (2-36a<br />

Viscosity Ratio Exponent<br />

A reviel


47<br />

the highest <strong>heat</strong> tra...nsfer <strong>coefficients</strong> "Jere obtained 1-clhen<br />

the impeller was positioned at 50 pereent <strong>of</strong> the liquid<br />

height. Ske11and (182 studied the effect <strong>of</strong> impeller<br />

height using upthrusting propellers. He reports that<br />

where HeB is the center height <strong>of</strong> the impeller from the<br />

floor <strong>of</strong> the vessel.<br />

Thus, he obtained greater <strong>coefficients</strong><br />

1,-rhen the im.pe11er 1,'1aS closer to the floor <strong>of</strong> the vessel.<br />

Uh1 and Vosnick (lqD')'sumrnarized the effects <strong>of</strong> clearance<br />

betv.leen an anchor agitator and the vJa11s and floor <strong>of</strong> a<br />

vessel, as determined by Uh1, Bro~m<br />

et 0.1. (32),and Huggins<br />

(92). The results are reported as the ratio <strong>of</strong> h at the<br />

specified clearance ratio to h <strong>for</strong> a clearance ratio <strong>of</strong><br />

0.02. The clearance ratio, HclDt, is the ratio <strong>of</strong> the<br />

clearance distance to vessel diameter.<br />

At zero clearance<br />

ratio (scrappers are used) the relative <strong>heat</strong> <strong>transfer</strong> coefficient<br />

is 1.lL~<br />

<strong>for</strong> thin <strong>fluids</strong> and up to 1.50 <strong>for</strong> more<br />

viscous <strong>fluids</strong>. For <strong>pseudoplastic</strong>s the relative h is as<br />

high as 4 .. 0 or 5.0. BetHeen zero clearance and 0.02<br />

clearance ratio the relative h varies between 1 .. 37 and 1.03.<br />

At a clearance ratio <strong>of</strong> 0.02 the relative h is by definition<br />

1 .. 0. As the clearance ratio increases the relative h increase<br />

up to about 1.25 a-t a clearance ratio <strong>of</strong> 0.080.<br />

Uh1<br />

and Vosnick explain the increase in relative h at high


18<br />

clearance ratios as being caused by turbulence. At 0.02<br />

clear~nce ratio there is little or no turbulence. At very<br />

small clearance the high shearing <strong>for</strong>ce at the wall increases<br />

the relative <strong>heat</strong> <strong>transfer</strong> coefficient.<br />

Baffles<br />

Brooks and Su (30) studied the effects <strong>of</strong> baffles. Below<br />

a Reynolds n~unber<br />

<strong>of</strong> 400 the baffles had no effect but<br />

above 400 there was a 37 percent increase in the <strong>heat</strong> <strong>transfer</strong><br />

coefficient. Thi s increas e ,·ras independent <strong>of</strong> the nu.mber<br />

(one, two or four) <strong>of</strong> baffles used.<br />

Ackley (1) reports that<br />

using four baffles his data support Brooks and Su.<br />

Ubl<br />

(194) reports that baffles had no effect in the Reynolds<br />

number range <strong>of</strong> 25 - L~OOO • Chilton (39) reports that removal<br />

<strong>of</strong> his coil did not seem to effect the <strong>heat</strong> <strong>transfer</strong> rate <strong>of</strong><br />

the jacket..<br />

Oldshue and Gretton (137) report that Hhen the<br />

baffles were placed 1 inch <strong>of</strong>f the l~all<br />

01'" betHeen the coil<br />

~nd<br />

the impellel'" the <strong>heat</strong> <strong>transfer</strong> <strong>coefficients</strong> al"'e 5 percent<br />

lower th~n<br />

Hhen the baffles are at the Nal1.<br />

Impeller Geometry<br />

Using a coil as the <strong>heat</strong> <strong>transfer</strong> surface, CURmings<br />

and vlest (49) found that using t1-JQ<br />

l"'etreating blade turbines<br />

did not increase the <strong>heat</strong> <strong>transfer</strong> coefficient but suggested<br />

that this is probably because the fluid height Has equal to<br />

only one vessel diameter.<br />

For a greater fluid height the<br />

second impeller 1 ..vould be expected to increase the coefficient.


49<br />

A pitched blade turbine gave <strong>coefficients</strong> about ten percent<br />

lower than the retreating blade turbine and reversing the<br />

flow direction <strong>of</strong> the pitched blade turbine did not increase<br />

the <strong>heat</strong> <strong>transfer</strong> rate..<br />

Oldshue and Gretton (J.l7)using a<br />

coil, report that a rotating impeller causes two phenomena:<br />

a. Turbulence in the region <strong>of</strong> the impeller and<br />

its wake.<br />

b. Bulk fluid flm..r ..<br />

Both these phenomena are needed <strong>for</strong> good <strong>heat</strong> <strong>transfer</strong>, but<br />

bulk fluid flow is probably more important.<br />

An increase in<br />

the impeller diameter to vessel diameter ratio at constant<br />

Reynolds number, should increase the bulk flow component at<br />

the expense <strong>of</strong> the turbulence component.<br />

Thus the <strong>heat</strong> <strong>transfer</strong><br />

coefficient should increase Hith increasing diameter<br />

ratio. They report<br />

lJhich is in accordance ljd th their theory.<br />

Pursell (150) and<br />

Ruckenstein (160) using jackets, and thus the vessel wall as<br />

the <strong>heat</strong> <strong>transfer</strong> surface,. report that the <strong>heat</strong> <strong>transfer</strong> coefficient<br />

decreases \-lith increasing eliameter ratio..<br />

data indicate<br />

Their<br />

{2-39<br />

h 06 CD /Do )-0 02 5<br />

a, t<br />

(2-40


.so<br />

respectively..<br />

These contradicting results may be results<br />

<strong>of</strong> complex interactions between the geometrical dimensionless<br />

groups.<br />

As the v.Tidth <strong>of</strong> the impeller blade increases one<br />

would expect the <strong>heat</strong> <strong>transfer</strong> coefficient to increase.<br />

Pratt (149) reports<br />

(2-41<br />

where 1th.<br />

is 1.Jidth <strong>of</strong> the impeller blade and<br />

PH is the diameter <strong>of</strong> the coil helix.<br />

Pursell (150) reports<br />

(2-42<br />

~vhere<br />

Da is the impeller diameter.<br />

Coil Geometry<br />

Oldshue and Gretton (137)r>eport that lrlhen a coil is<br />

used as the <strong>heat</strong> <strong>transfer</strong> surface the coil geometry is<br />

important.<br />

A i


SI<br />

done on the correlation <strong>of</strong> <strong>heat</strong> <strong>transfer</strong> <strong>coefficients</strong> in<br />

agitated vessels, but that many differences or even contradictions<br />

exist among the present correlations.<br />

Some <strong>of</strong><br />

the difficulty may be due -to the problems <strong>of</strong> obtaining<br />

accurate data..<br />

Chilton et al. (39) report that duplicate<br />

results <strong>for</strong> <strong>heat</strong>ing and cooling water have an average<br />

deviation <strong>of</strong> 17.5 percent. Brooks and Su (~)<br />

report reproducibili<br />

ty <strong>of</strong> ± 20 percent <strong>for</strong> ltTater and corn syrup and<br />

±5 percent <strong>for</strong> motor oil.. Cummings and '\tlest (49) claLm that<br />

their correlation in 90 percent <strong>of</strong> the cases it is used will<br />

predict the <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong> coefficient l«1i thin 20 percent<br />

<strong>of</strong> its true value.


Si<br />

TO NON-NE1:;JTONIAN FLUIDS REPORTED.-..!~~<br />

LITEIZATURE<br />

To date only two papers have been written on the correlation<br />

<strong>of</strong> <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong> <strong>coefficients</strong> in agitated<br />

vessels.<br />

Hork <strong>of</strong> Thomas Blanchard and J1..1. Chin Ch12. (22)<br />

-~---... ~-=""'-'~--"-- "-¥". - *"<br />

Thomas Blanchard and J1..1.<br />

Chin Ch1..1.st1..1.died <strong>heat</strong> <strong>transfer</strong><br />

to <strong>pseudoplastic</strong> <strong>fluids</strong> in an agitated tank (156).<br />

They<br />

per<strong>for</strong>med <strong>heat</strong> <strong>transfer</strong> experiments on aqueous solutions<br />

<strong>of</strong> 2.0 percent hydrolyzed polyacrylonitrile, 3 .. 5 percent<br />

polyvinyl alcohol, ffiLd 2.0 percent polyacrylam~de<br />

in a three<br />

gallon stainless steel vessel equipped Hith both jacket and<br />

coil. The vessel diameter was 10 5/16 inches and a )~- .. 5 x 1.0<br />

inch paddle vv-as the impeller. They used the steady state<br />

method and determined the <strong>heat</strong> <strong>transfer</strong> <strong>coefficients</strong> by<br />

measuring the wall temperatures.<br />

The exponents <strong>of</strong> the<br />

Reynolds and Prandtl numbers 1


5J<br />

evaluated at the wall temperature divided by the viscosity<br />

at zero shear evaluated at the bulk temperature..<br />

Blanchard<br />

thus assumes that the shear rate at the 1".Tall is very high and<br />

the shear rate in the remainder <strong>of</strong> the vessel is low.<br />

He<br />

points to the 't


54<br />

The es tima ted accuracy is ± 17% fu"'1d ± 2076 <strong>for</strong> the jacket<br />

and coil respectively.<br />

There are five criticisms or limitations to this<br />

1-1ork.<br />

1. The Hall velocity term t.!aS chosen on an unsound<br />

basis.<br />

2. The viscosity term in the Reynolds and Prandtl<br />

numbers does not take into account changes <strong>of</strong> apparent<br />

viscosity with changes in agitation rate.<br />

3. Only one impeller was used.<br />

~-. The viscosity range covered is limited.<br />

5. The viscosity ratio term does not revert to the<br />

one generally accepted <strong>for</strong> Newtonian <strong>fluids</strong> as<br />

fLoo approaches fLo<br />

ltJork <strong>of</strong> Salamone et al (165)<br />

The second Hork on this subject, dealing with jacketed<br />

vessels only, was done by J. J. Salamone, A. Cristaldi, and<br />

A. Korn.<br />

Salamone et ale studied the <strong>heat</strong> <strong>transfer</strong> characteristics<br />

<strong>of</strong> power-law <strong>pseudoplastic</strong>s, Hith flow behavior indexes varying<br />

from 0.33 to 0.77, in a 12 inch diffi~eter<br />

stainless steel<br />

vessel, using a four inch flat bladed turbine with six blades.<br />

The <strong>heat</strong> <strong>transfer</strong> runs Here <strong>of</strong> the unsteady state variety<br />

and the Hilson plot method was used to calculate the <strong>batch</strong><br />

<strong>heat</strong> <strong>transfer</strong> coefficient. The results were cross plotted


ss<br />

to<br />

(2-46<br />

where ill is the consistency index factor used <strong>for</strong> flow in<br />

pipes (118) ..<br />

(2-L~ 7<br />

The generalized Reynolds number range covered was 83 to<br />

1286 and the fluid consistency index, evaluated at the<br />

average bulk temperature, ranged from o.ol~_6 to 0.609<br />

Ibfsec~/ft2.<br />

Equating the generalized Reynolds number to<br />

the NeHtonian Reynolds number Sh01-JS that the apparent viscosity<br />

used in the above correlation is<br />

1:Jhich is very similar to the apparent viscosi ty in pipes<br />

if N is substituted by V/D.<br />

As reported earlier in this<br />

chapter, Netzner and his co-workers have experimentally<br />

determined that the apparent viscosity in agitated vessels<br />

could best be represented by<br />

fL (<br />

c' 1\T) n-l<br />

a.= K II.:.; l~ (2-25<br />

and that the Reynolds num.ber be expressed as<br />

{2-26<br />

The Sal~10ne<br />

(165) correlation is an improvement over


SI3<br />

Blanchard's equation since it does have a viscosity term<br />

which changes "lith agitation rate but the exact <strong>for</strong>m is<br />

not the best suggested by the Ii terat'Llre.<br />

This study was<br />

also limited by the use <strong>of</strong> only one impeller and a small<br />

Reynolds nu..mber range.<br />

Nei ther <strong>of</strong> these tlrJO studies 1..ras<br />

based on a ne1,,;r dimensional analysis but only modified the<br />

results <strong>of</strong> the Ne1


CHAPTER .2<br />

DEVELOPMENT OF CORRELATIONS<br />

Tl3.eoretieal Co;:;relatien<br />

In a baffled vessel agitated by a propeller tme rlGw<br />

or rluid is essentially axial. That is" the p:r'opeller<br />

eauses a do-v.TnvTard i'10-v.T <strong>of</strong> rluiel. Near the bottom.


58<br />

HEA T TRANSFeR<br />

FIG 3-/<br />

FLOW PATTERNS IN PROP£LLER AGITATED BAFFLEO VESSEL<br />

Near the wall the temperature gradient is negligible<br />

in the @ and z directions compared to that in the r direction.<br />

The velocity gradient in the @ direction is negligible<br />

Itihile the velocity gradient in the r direction is the most<br />

important.<br />

The velocity gradient in the z direction is<br />

negligible except at the top and bottom hThere the radial<br />

flow takes place.<br />

Since only the major portion <strong>of</strong> the<br />

wall is being considered, the velocity gradients in the z<br />

direction will be neglected.<br />

(The experimental portion <strong>of</strong><br />

this paper developed <strong>heat</strong> <strong>transfer</strong> data taken in a vessel<br />

I,"i th both the cylindrical wall and the bottom j acke ted.<br />

However, the theoretical analysis only considers the cylindrical<br />

wall portion <strong>of</strong> the <strong>heat</strong> <strong>transfer</strong> surface.<br />

A more<br />

complete analysis would lead to the same final equation <strong>for</strong><br />

correlating experimental data.)<br />

In general, the equations <strong>for</strong> the conservation <strong>of</strong>


momentum" mass" and energy may be ~'Iritten.<br />

the z direction the equation <strong>of</strong> motion is (21)<br />

( (J Y ~ + 'VA. J V<br />

z + V g J Vz -+ V z ) V<br />

z L _ d?<br />

)1; )A. A, Je Jz )- cJz<br />

(<br />

~ J (.-2 1A.z) -+.-! J l"sz + J Izz. L.,L ~ q z<br />

-..-i. .J A.. --i. d- e j z j -J<br />

For flow in<br />

(3-1<br />

For the model being considered in the region near the wall:<br />

1. The flmv is as slLrned to be cons tan t 1-li th<br />

time, there<strong>for</strong>e j ;z ~ tJ<br />

2. The velocity gradients in the 8 and z<br />

directions are assumed to be zero.<br />

3. The velocity in the 8 direction is assumed<br />

to be zero.<br />

?t.<br />

For a power 1m·] fluid r::: K;; .<br />

There<strong>for</strong>e,<br />

1.4z = _Kr.:!!k -f- ~ 7 ~ - K [d h. J~ (3-2<br />

L)/t.. dz..l "d4<br />

2. Tzz ~ - ;:(}:) ~ 0 U-3<br />

3· I;z"-;;'lj1 +1 jf1: 0 (H<br />

The equation <strong>of</strong> motion <strong>for</strong> this model is thus<br />

The continuity equation is (21)<br />

/<br />

-r - h-<br />

-f<br />

I<br />

(3-5<br />

For the model vJi th negligible velocity gradients in the z


6D<br />

and e directions and constant density, the equation becomes<br />

I<br />

A<br />

J(eA i£)_ 0<br />

eJft - (3-7<br />

In the system being considered the mechanical energy input<br />

is negligible compared to the <strong>heat</strong> <strong>transfer</strong>red through the<br />

1..Jal1s. The energy equation <strong>for</strong> this case is (21)<br />

d T 0tdT J/p<br />

(-'c;; ( d-c -;- J~ ";-;t<br />

) 7 -f liz dT ) =<br />

J& oiL!<br />

J [;<br />

(3-8<br />

The temperature gradients in the e direction are zero,<br />

and the temperature gradients in the z direction are also<br />

assumed zero..<br />

There<strong>for</strong>e equation 3-8 reduces to<br />

Equations 3-5, 3-7 and 3-9 thus describe the model<br />

(3-9<br />

discussed above.<br />

These equations cannot be solved since<br />

the velocity and temperature gradients cannot be expressed<br />

analytically. However, the system can be characterized by<br />

solving the equations dimensionally.<br />

The follo-vring dimensionless variables are defined by<br />

Bird, et al. (21) as<br />

r-lH~ = ( riDs. ) (3-10<br />

Z~:- = z/Ds. 0-11


61<br />

Vr;> Jt.- ,,"Ii'\...<br />

..", ::: (Vr/V) (3-12<br />

Vz .. ~~<br />

= Vz/V (3-13<br />

p<br />

-li-<br />

p-p<br />

= Ie f/ Z<br />

0<br />

(3-14<br />

t~=-<br />

-- tV/Da (3-15<br />

T~~ T<br />

=<br />

- Too (3-16<br />

Ts - %0<br />

where V is a characteristic velocity which can be quantitatively<br />

evaluated.<br />

For an agitated vessel, NDa is such a velocity.<br />

Da is the diameter <strong>of</strong> the impeller and N is its rate <strong>of</strong><br />

revolution ..<br />

Solving equations 3-10, 3-11, 3-12, 3-13 and 3-14 <strong>for</strong><br />

the variables in equation 3-5<br />

r = r~~~:"D a (3-17<br />

z ...<br />

J~<br />

z"Da (3-18<br />

Vr :: V ~~-!~V<br />

r (3-19<br />

V z = Vz·:"'V (3-20<br />

p :: p~:. (e V2 ) + po (3-21<br />

Equation 3-5 also has differential terms. Equation 3-22<br />

is valid since it is an identity ..<br />

(3-22


62<br />

l'lultiplying the right side <strong>of</strong> this equation by Vz~}/Vz~1-<br />

and<br />

riH}j riH~<br />

does not change the value <strong>of</strong> the rignt side since<br />

each <strong>of</strong> these ratios is equal to unity.<br />

J.tIz )'Yz d,k{* d A.,.,;Jfi/f<br />

).h.<br />

-<br />

-<br />

.,


63<br />

Substitution <strong>of</strong> these dimensionless values into equation<br />

3-5 yields<br />

Dividing both sides <strong>of</strong> equation 3-30 by<br />

V 2 /Da and com-<br />

(3-31<br />

The only variables i.Ji th dimensions remain in tvw groups,<br />

each <strong>of</strong> ~rrLich<br />

is dimensionless.<br />

The first group, K/(V2-n Dan, is the reciprocal <strong>of</strong><br />

the mixing Reynolds number.<br />

This is more easily seen if<br />

NDa is sUbstituted <strong>for</strong> V.<br />

//<br />

F4 N<br />

2 2-n.<br />

(3-32<br />

=<br />

K.<br />

(The double primes, NR;" are used to denote tlgeneralizedll<br />

Reynolds number based on this analysis. Single primes,<br />

NR~' refer to }1etzner's generalized Reynolds num.ber, eq ..<br />

2-26). The mixing Reynolds nmuber <strong>for</strong> Newtonian <strong>fluids</strong> is<br />

(12)


64<br />

z<br />

e Dei! IV<br />

/I<br />

The second group is the reciprocal <strong>of</strong>' the Froude number<br />

(3-33<br />

t3-34<br />

For baffled vessels there is no v0rtex, hence gravitational<br />

<strong>for</strong>ces and the Froude nQmber are unimportant (21).<br />

3-31 thus reduces to<br />

Jtiz. .ik-<br />

I<br />

Equation<br />

(3-35<br />

The solution <strong>of</strong> the equation <strong>of</strong> motion is thus dependent<br />

upon the value <strong>of</strong> the Reynolds number. Schlichting (171)<br />

recommends eliminating the Reynolds number from the equation<br />

<strong>of</strong>' motion in order to make the solution more general.<br />

The<br />

solution will then be valid f'or any Reynolds nQmber f'or a<br />

given geometrical system.<br />

The Reynolds number may be eliminated f'rom the equation<br />

<strong>of</strong>' motion by defining the dimensionles s variable s r-lE-<br />

and V r~tas<br />

(3-36<br />

(3-37<br />

Acrivos et. ale (3) extended Schlichting's method to power<br />

la1rJ" <strong>fluids</strong> by using 1/ (n + 1) as the exponent <strong>of</strong> the Reynolds<br />

number.<br />

Thus, Acrivos, by analogy to Newtonian f'low, used


l/(R + 1) and was able t@ elim.iE.ate the Rejl"rlo1ds number f'r


66<br />

(3-42<br />

(3-43<br />

In order to dimensionally solve equations 3-5, 3-7 and<br />

3-9 the differentials must also be ~xpressed using dimensionless<br />

variables. This is done using the method described by<br />

equations 3-22 to 3-27-<br />

jp/Jz has already been redefined<br />

in equation 3-28. The remaining differentials are redefined<br />

(3-45


67<br />

All <strong>of</strong> the variables and differentials are now redefined<br />

in terms <strong>of</strong> dimensionless variables. Substituting these<br />

variables into equation 3-5 gives<br />

e( LI /1/1. f: A/;e (Y;./~).J!. NRe<br />

(J{ ~4 d liz ),:-r 11. 1;0 ~<br />

Del j./& -;Y if 012 .y<br />

-f NRc> (7~,j -< JllRe(j{~n) t/Jn.-4':L /j Vz )?V (tf plz if') 111 /7. (3-52<br />

D2 /l. ~ L\Dd ) { j/l, 'r lj~¥ + J/l;-K / JJ(Jz<br />

or<br />

or<br />

or<br />

(3-55<br />

The Froude number may be neglected <strong>for</strong> the same reason it<br />

1Nas elLl11inated from equation 3-31..<br />

The equation <strong>of</strong> motion<br />

(3-56<br />

Thus Vr is only a function <strong>of</strong> n.<br />

Substituting the variables into equation 3-7 gives<br />

(3-57


68<br />

(3-58<br />

or<br />

(3-59<br />

(3-60<br />

"'Thich reduces to<br />

l.Jhere the group<br />

as (21)<br />

The local <strong>heat</strong> <strong>transfer</strong> coefficient, hL is defined<br />

h[ ~ t?L/,14 (T5- Tae,)/( (3-63<br />

l.Jhere Q L<br />

is the local <strong>heat</strong> <strong>transfer</strong> rate ..<br />

Ts is the temperature <strong>of</strong> the <strong>heat</strong> <strong>transfer</strong> surface.<br />

~ is the temperature <strong>of</strong> the bulk <strong>of</strong> the fluid.<br />

Using Fourier'S law <strong>for</strong> <strong>heat</strong> conduction<br />

(3-64


69<br />

The average <strong>heat</strong> <strong>transfer</strong> coefficient h, is defined<br />

by equation 3-63 if the total <strong>heat</strong> <strong>transfer</strong> rate, Q, is<br />

substituted <strong>for</strong> QL and the total <strong>heat</strong> <strong>transfer</strong> area <strong>for</strong> dA.<br />

The total <strong>heat</strong> <strong>transfer</strong> rate is calculated by summing<br />

up these local <strong>heat</strong> <strong>transfer</strong> rates over the whole area <strong>of</strong><br />

<strong>heat</strong> <strong>transfer</strong>.<br />

(3-65<br />

(3-66<br />

(3-67<br />

(3-68<br />

substituting equation 3-68 <strong>for</strong> Q in equa~lon 3-63<br />

(


70<br />

(3-71<br />

The ratio Dt/HL is a constant <strong>for</strong> all the <strong>heat</strong> <strong>transfer</strong> data<br />

t~{en fu~d thus has no meaning <strong>for</strong> the enclosed data. The<br />

ELIDa term could be used as such, however the fluid height<br />

",ras not varied and thus HL is a constant..<br />

Other authors<br />

(137, 150, 160) have correlated data using Dt/Da and the<br />

use <strong>of</strong> this group is useful <strong>for</strong> s~{e <strong>of</strong> comparison. Since<br />

Dt is a constant it may be substituted <strong>for</strong> HLo<br />

Equation<br />

3-71 may thus be lrJritten.<br />

I~ (3-72<br />

The original set <strong>of</strong> equations vJaS set up assuming a<br />

constant fluid consistency index, K..<br />

HOvJever, in practice<br />

the consistency at the wall is usually quite different from<br />

the consistency <strong>of</strong> the <strong>batch</strong> because <strong>of</strong> the large temperature<br />

gradient. A fourth dimensionless group, K/K w , is thus intraduced<br />

to correct empirically <strong>for</strong> the consistency index<br />

dependence upon temperature.<br />

The use <strong>of</strong> K/K"'J has been<br />

successfully used Ln similar problems in both Newtonian and<br />

non-Newtonian systems.<br />

Although the exact <strong>for</strong>m <strong>of</strong> the function in equation<br />

3-72 is not known, it is assumed that equation 3-73 l


N"v = C Iv''' (;';~-"')&'i'~ (%t-n,) ) ~! K )+(lJt f ~3-73<br />

fie ('N Fe ) ()( w {D d.) V1V<br />

The same f(H~ !las beeR found su(!;cessf'ul <strong>for</strong> the resu.lts 01'<br />

7 1<br />

The Peelet number cam be \~itte~ as t!le pro~uet <strong>of</strong> the<br />

Reynolds number and the Prandtl llfl..:m:J.ber, provided the apparent<br />

visc0sity u.se~<br />

e Npe:: IJJ. V<br />

;ta"<br />

waleh CaE. be written<br />

is the same in beth.<br />

C p I'd //<br />

A<br />

(3-74<br />

Jf/pe =eL>a Z N<br />

,/ / 1/<br />

/Va<br />

if NDe. is substituted<br />

<strong>for</strong> V.<br />

(3-75<br />

The Reynolds num.ber vIas previ0usly defined as<br />

II j) 2 C -../1'V I<br />

~e := f Q IV / /.(<br />

(3-32<br />

An apparent viscosity may be 0btained by equatiag<br />

equatioR 3-32 with equati0~ 3-33 and solving <strong>for</strong> the viseosity..<br />

Simee this term is n0t a true viscosity, it is<br />

called an aJYparent viscosi ty,fta. It ..<br />

r<br />

/1<br />

q = f(AI t/YV-/<br />

(3-76<br />

With equation 3-76 as the definiti~n <strong>of</strong> the apparent viscosity,<br />

the Reyn0lds number is defined by equation 3-32<br />

and tlae Prana tl number by


72<br />

(3-77<br />

Substituting these terms in equations 3-75 ru~d<br />

3-73 ~nd<br />

placing the Prandtl number in the nu..merator, as <strong>for</strong> Ne1oJtonian<br />

(3-78<br />

or<br />

C YRe" -;;;;;; -; A?~ (~- ( ~ nv<br />

K"J1I Dei<br />

( / -2~ I- cZ ) / K) J? /[J ) C d<br />

(3-79<br />

Equation 3-79 then characterizes <strong>heat</strong> <strong>transfer</strong> to pmver law<br />

<strong>fluids</strong> being agitated by geometrically similar marine<br />

propellers. This characterization is based on a model which<br />

is believed to represent the flo1.J patterns fairly accurately.<br />

If the impeller geometry changes; that is, if the vertical<br />

"VJill increase<br />

and thus a higher Nusselt number will result. Equation<br />

3-79 may be expanded to correct <strong>for</strong> geometrically unsimilar<br />

impellers by adding a sixth di!l1ensionless term, WalDa' where<br />

\-1 a is the impeller 1rddth ..<br />

AI. - c NJ~:;: f~/" iI.(f)i~V CjNjci e<br />

AI U - Re /Vp-1. K'w (Ii (;;- -1V (3-80<br />

at<br />

Other geometry effects could be taken into account by adding<br />

more dimensionless groups such as found in the dimensional<br />

analysis <strong>for</strong> Newtonian <strong>fluids</strong> as presented in equation 2-35.<br />

4i


73<br />

Semi-Empirical Correlation<br />

i .., .. ' in<br />

Metzner has show~<br />

that the shear rate in an agitated<br />

vessel is related to the agitation rate <strong>of</strong> the bnpeller<br />

v a =<br />

(11 .. 5 N) (2-20<br />

as discussed in Chapter 2 and thus the apparent viscosity<br />

could be defined.<br />

(2-25<br />

It was felt that using this apparent viscosity in place <strong>of</strong><br />

the Nelvtonian viscosity in the Reynolds and Prandtl ntunbers<br />

<strong>of</strong> the l'lfeHtonian fluid correlation would yield a correlation<br />

suitable fol'" power-law <strong>fluids</strong>..<br />

The Reynolds and Prandtl<br />

nurabers evaluated using this apparent viscosity are designated<br />

as NR~ and Np~ respectively_ The correlation Has<br />

expressed as<br />

(3-81


GHAPTER It<br />

74<br />

EXPERIMENTAL. ,PHASE OF THIS ~SIS<br />

A iar,e p0rtl~B o~ ~e e~<strong>for</strong>t to aeve10p ~ experimemtal<br />

ea>3:relat10R is devteci t@ ec9l1eetiRg data.. TRe<br />

equi~meBt needed ~0r the experime~tal portion must be<br />

de siple


75<br />

7I1C1?/lfOCOUPLc<br />

.JuNe T/ON IMBEfX)eO<br />

4 TINS/Of' 5URFIJ(;e<br />

OF rcSSCl. .41 3<br />

LOCATIONS /'20' APART<br />

17 "<br />

19"<br />

It; I-/OL£5 ON !3/' R<br />

-:if 7 DRILL ~ -20U,vC-t?A<br />

/'STt£L NippLe<br />

2" LONG<br />

r<br />

'I<br />

I STeEl. NIPPLE:<br />

Z" LONG<br />

~~===p==~~~J--~<br />

(4)Z~2"x}4<br />

ANGLES AT 90°<br />

cO<br />

7;&. S7Ect.<br />

~~ .3/~ ",,5.<br />

/" 3/G SSNIPPLc<br />

3" LONG<br />

FIG 4-/<br />

/-lEA T TRANSFER VESSEL


76<br />

Three vertiehl grooves 1/16 x 1/16 inches It,Jere machined<br />

in the inside 'ltIall <strong>of</strong> the vessel, extending dov-m from the<br />

top 8, 14,and 18 inches.<br />

Iron-constantan thermocouple<br />

wires encased in a 0.04 inch diaY'leter 316 stainless steel<br />

s<strong>heat</strong>h Here placed in the three grooves.<br />

(One s<strong>heat</strong>h per<br />

groove. )<br />

The tip <strong>of</strong> the s<strong>heat</strong>h v!as bent slightly tm..rard<br />

the inside <strong>of</strong> the vessel ELYld<br />

the s<strong>heat</strong>hs Here then cemented<br />

in place 1,-]"i th the tip <strong>of</strong> the s<strong>heat</strong>h flush l,,)'i th the inner<br />

surface <strong>of</strong> the vessel wall.<br />

The s<strong>heat</strong>h extended up the<br />

groove to the top and from there to a junction block in a<br />

protected spot behind the vessel. The entire groove l'!aS<br />

filled with a <strong>heat</strong> <strong>transfer</strong> cement having the same thennal<br />

conductivi ty as 316 stainless steel (mermon T-85/~<br />

Arter<br />

the cement had hardened the excess vms sanded <strong>of</strong>f to give<br />

the inside wall a smooth surface.<br />

In this manner the surface<br />

temperature is measured Nithout interfering with the <strong>heat</strong><br />

f'loH in the 'lATall and 1ili thout having the thermocouple leads<br />

dangling in the solution. The <strong>heat</strong> <strong>transfer</strong> cement was<br />

used because<br />

a. Its thermal conductivity vJaS the same as<br />

that <strong>of</strong> the wall.<br />

b. Regular solder may have caused corrosion<br />

problems.<br />

c. The use <strong>of</strong> silver soldermtp.t have damaged<br />

the thermocouple junction.<br />

Figure 4-2 shows the placement <strong>of</strong> the sll.rface or wall<br />

->: Trademark <strong>of</strong> Thermon HaYlufac turing Co., Hous ton, Texas.


77<br />

_I"---- /<br />

SCALE<br />

I<br />

~~,<br />

.5 j<br />

t<br />

/Z.5<br />

.'<br />

I I I<br />

I<br />

I<br />

I<br />

I<br />

12-<br />

/1<br />

10<br />

'I<br />

g<br />

7<br />

6-<br />

"<br />

S"<br />

Ie 4<br />

3<br />

2<br />

11:,<br />

~.5<br />

~ ~<br />

/<br />

:~<br />

#3 1 t-<br />

f<br />

t'<br />

t<br />

7 "<br />

/lG 4-c<br />

LOCATIOiv' OF WALL 7h'E/?OCOUPLES AND SCALE


78<br />

to me insicl$ wall :fer the meas~emel!lt<br />

<strong>of</strong> f'luid height".<br />

The batek te:m.J>erature is lD.easured by three therm0-<br />

eoup1es..<br />

One Ilileasures the tentperature o;t' tke batek abeut<br />

two inches above me ves sel bott~m aRd about i~ inehes f'r®m<br />

the eemter liRe..<br />

This ther-,noecn::tple s<strong>heat</strong>s enters the pipe<br />

:fittings un&er the tamk by passing through a bush~ ~d<br />

then enters the vessel through the drain nipple" The<br />

other two ]lr0jeet dO"tffi into the f'luid f'rom above" O]1le 7<br />

imehes and the other 15 inehes f'r0m tJae top.<br />

These therm0-<br />

eoup1es were supported by the lid. All three bateh therm0-<br />

.,<br />

eoup1es as well as those in the piping system were ironeonstaatan<br />

thermoeenples protected by a 1/100 inch thiek<br />

316 stainless steel s<strong>heat</strong>h. The error due to the time lag<br />

was estimated to be about one pereent.<br />

T.ne vessel jacket had three :fittings :<strong>for</strong> introduction<br />

and exit Cl:f :<strong>fluids</strong>, two positioned 2 inehes :from the t0P<br />

on opposite sides o:f the tank and ome on the underside ..<br />

The f'itting on:the underside was hooked up so that steam<br />

could enter and condensate could leave at the same time.<br />

During the <strong>heat</strong>ing cycle steam enterea ome o:f the top<br />

f'ittimgsand the bettom f'ittilAl.g.<br />

The eondensate draim.ed<br />

tfurough the bottom :fittiag; its temperature was measured by<br />

I<br />

a thermometer (0-200@0 0.2°0 divisioms) am~ it le:ft tn~


also cop~ected<br />

to the pipes leading to the bottom fitting.<br />

A thermometer (0-200 0 0, 0.2°0 divisions) and a thermocouple<br />

measured the inlet steam temperature at the top fitting.<br />

~Jhen<br />

in the cooling cycle the cold water passed t~~ough<br />

a rotameter (Fisher-Porter Fl01~ator Meter (Series 10A27000)<br />

9.4 gallon per minute), and entered the t~nk t~~ough the<br />

same ports used by the steam.<br />

The cooling 1.vater was removed<br />

from the jacket throus-h the second nipple at the top \Alhere<br />

both a thermocouple and a (O-lOOOC, O.loC division) thermometer<br />

measured its temperature.<br />

Figure 4-3 Sh01-JS the piping<br />

layout and the placement <strong>of</strong> the <strong>batch</strong> thermocouples.<br />

Table<br />

1-1_-1 is a sU11nnary <strong>of</strong> the vessel and associated equipment ..<br />

Agit,ation<br />

Four 1 inch baffle s Here welded to a circular frame<br />

v,rhich could be removed from the vessel if desired.<br />

The<br />

length <strong>of</strong> these baffles was 20 inches. Although the baffles<br />

touched the vessel \>


80<br />

K£Y<br />

TH - TJ.lCRMOME TEl<<br />

TC - TI-/£RfrlO<br />

- - - THERMO (!OUPL E WIRE<br />

R070MCicR<br />

WATeR SUPPLy<br />

rll<br />

I<br />

I<br />

I<br />

1<br />

I rc<br />

DRAIAI<br />

--<br />

TI-I<br />

STEAM TRAP<br />

FIG 4-3<br />

PIPING DIAGRAM


81<br />

Ve8sel<br />

:J all th:l c]me 8 8<br />

.) '] 6 .', ' :;/. L'l.cn<br />

I~ei~'l~t<br />

<strong>of</strong> cylindrical no::d.tion<br />

20 ~;nche3<br />

Shane :-)f floor<br />

I1az:irrlllJll depth <strong>of</strong> floor<br />

Dim1etcr<br />

lI;. lnc}l.o 3<br />

linch<br />

ITonin;J.l plpe :Ji~~c<br />

<strong>of</strong> v0:1801 fittinC3<br />

Fl l 1.id dopth WJl'Jllly 11.:>e,l<br />

(fT'on lOHost<br />

point)<br />

Carr;; spc)n(lin,,= 3 C[tJ_8 1-")0 n.rlln,S:<br />

Aron <strong>of</strong> clich<br />

')<br />

1 .. 15 ft.L.<br />

.J06<br />

/<br />

ft .. -/inch<br />

6.20 ft.2<br />

VOJ_c'210 <strong>of</strong> cyllIY!1--;Icr'1 TlOrt:Lon (0;-1 tIl.<br />

b".fl(; 8 ins t2~.lo(·)<br />

.0Cf] ft. 3 jinch<br />

Toto.l voluno u;JH'1.11y ~),:Jecl


TABLE ~.-2<br />

AGITATION<br />

}\1otor<br />

POHor rating<br />

Electrical pOHor requirement<br />

3/4 HP<br />

220 Volts<br />

15 amps<br />

Speed range<br />

Shaft diameter<br />

75-2500 RPl"I<br />

0 .. 5 inches<br />

Baffles<br />

Number<br />

Width<br />

Length<br />

4<br />

1 inch<br />

20 inches


83<br />

potentiometer <strong>for</strong> varing the motor voltage, and hence<br />

speed.. The speed range vJas from 75 to 2500 RPl"I. The<br />

motor \.Jas mounted on a se t<br />

<strong>of</strong> bearings 1;.rhich allo'Hed it to<br />

rotate freely. ~\Then the shaft turned the motor rotated in<br />

the opposite direction and Hith it a 61 inch diameter pully.<br />

A string was 'Hound around this pully and attached to a<br />

0-25 pound scale. The torque <strong>of</strong> the rotating shaft was<br />

counterbalanced by the pully-scale system ~nd<br />

thus measured.<br />

TORQUE = (Radius <strong>of</strong> pully) (Force recorded on<br />

scale)<br />

(in Ibs.) = (inches) x (lbs.) (4-1<br />

Be<strong>for</strong>e any <strong>heat</strong> <strong>transfer</strong> data l'ITaS<br />

taken this dynamometer<br />

10TaS<br />

tested 811.d it was determined that '",hen the motor l.Jas<br />

operated under no-load conditions the dynamometer scale<br />

read zero.<br />

Thus there vJas negligible friction in the<br />

bearings supporting the motor.<br />

The motor, bearings, and scale assembly 1:mre mounted over<br />

the 15-gallon vessel on a f1Unistrut!l~~<br />

frame which al101.Jed<br />

three dimensional adjustment "t..Ji th very little eff'ort.<br />

The<br />

motor "ras placed so that the shaft lr-ras coincident Hi th the<br />

center line <strong>of</strong> the vessel.<br />

The major portion <strong>of</strong> the work<br />

was per<strong>for</strong>r!1ed lrJi th eleven diff'erent impellers <strong>of</strong> four types;<br />

paddle, six bladed disk and v~ne<br />

turbine, three bladed marine<br />

propeller, and an anchor.<br />

Hany other impellers in addition<br />

to these eleven Here used <strong>for</strong> the ""'Tater runs.<br />

The dimensions<br />

~~<br />

Trademark <strong>of</strong> Unistrut Products Co., Chicago, Illinois


S4<br />

IlllB/J/DV.51I tw:)lve point strlp chn.rt reccrder~<br />

rl'b.is<br />

Point lTUJilber<br />

ItOnl ilP['snred<br />

Po::ltion<br />

1 Water or steaR inlet<br />

2 DB. tch (00 ttom)<br />

3<br />

1 inch Eeed to ton<br />

oE jDcl:et<br />

2 inches Erom bottom<br />

6 inches Erom top<br />

7 inches Erom top<br />

:1.'3.11<br />

(Eidena)<br />

12.5 inc~as frrnn top<br />

6 Batch (IIiddle)<br />

7 Coolinr'; 'IB. ter nutlet<br />

e<br />

Batch (Bott:::>m)<br />

9 1.{all (Bot tom)<br />

10 Batch (Top)<br />

'l5 i nc'le '"<br />

...L _ 1. -... ..L. .C0 1 "' '--',,_ ·"1'1 top<br />

1 inch drain at top<br />

<strong>of</strong> jacket<br />

Same as 1/2<br />

lC inches from top<br />

,cu.'l 8 "'''''e 0.. "d,.:) it~- .1J:1 1


85<br />

MATERIAL 7:0 STAIIJLESS STEEL<br />

/<br />

/ "<br />

TWO SeT ScREWS<br />

FIG 4- 4<br />

ANCI-IOR AGITATOR


86<br />

TABLE 4.-3<br />

IHPELIJER DI1'lENSIONS<br />

__ '* 1<br />

Diameter<br />

~inches)<br />

\vidth or hei&h.t<br />

(inches)<br />

Anchor<br />

Disk ~Dd<br />

(6 bladed)<br />

Vane Ttu~bine<br />

9.0<br />

L~ .. 0<br />

5.0<br />

6 .. 0<br />

7.0<br />

Open straight blade turbine 4.0<br />

Open reversing blade turbine 4.0<br />

Open retreating blade turbine 4.0<br />

Paddles 4.0<br />

l~. 0<br />

5.0<br />

5.0<br />

5.0<br />

6.0<br />

6.0<br />

7.0<br />

7,,0<br />

7.0<br />

8.0<br />

8 .. 0<br />

8.0<br />

6<br />

0.75<br />

1.0<br />

1.25<br />

1 .. 375<br />

0.75<br />

0.50<br />

0.50<br />

1.0<br />

2 .. 0<br />

1 .. 0<br />

1 .. 5<br />

2.0<br />

1.0<br />

2 .. 0<br />

1.0<br />

2.0<br />

3 .. 0<br />

1.0<br />

2.0<br />

4-.0<br />

Reverse pitch paddle 9.0 0.7<br />

Propellers<br />

4.1 }<br />

5.2"'


11<br />

Wa.ll (Mi€1dl~)<br />

Same as #5<br />

81<br />

12<br />

Bateh. (Middle)<br />

Same as #0<br />

The ahove €o~diti0~S a~~ly t@ all tke water rtlns. Whe~<br />

usimg m0re viSCGUS flui€is seme vaFiati0nl im '!;,Jall temperat1ltre<br />

was Boted and tke tkermocouple panel was modified so that<br />

the taree wall therm.oeouples were eenneeted. Thus fer all<br />

runs after run number 185 the ten~erature points 3, 5, 9<br />

ane! 11 record the average <strong>of</strong>' the three wall temperatures<br />

lIDO. :not the mdividual posi tioRs as give~ abcnre ..<br />

Be<strong>for</strong>e the therr~oeouples were metalled they were<br />

connected to 'the recorder and calibrated. They were placed<br />

in iee water; a 25°c co~stant tem~erature bath, and boilimg<br />

water. At all three temperatures the system reeorded the<br />

exaet temperature, pr0vided the recorder was 1tJarrl1ed up <strong>for</strong><br />

f'ifteen m±nutes prior to measuring the temperature. I~<br />

all the <strong>heat</strong> transf'er runs the reeoraer was there<strong>for</strong>e wa~led<br />

up f'ar thirty minutes be<strong>for</strong>e data was takem. The chart<br />

speed used was 0.5 mcnes per winute although 1, 2, 4 and 5<br />

inches per minute were also available at the flick <strong>of</strong> a<br />

switch.<br />

The three wall-temperature ther.mocouples gave sligatly<br />

tiiifferent temperatures at the Glifferent l@catiems. It was<br />

found that the vertical loeation <strong>of</strong> the impeller was a large<br />

faetor in the matnitude <strong>of</strong> the deviati6ns. T.me impeller<br />

p0sitiens listed in Table 5-1 were exper~entally<br />

determ~e~


88<br />

to give the minimu..rn deviations in Ivall te:m..perature readings<br />

vJhen water "lims the fluid being <strong>heat</strong>ed or cooled in the<br />

vessel ..<br />

For the ItJater ru:


89<br />

shea.r ra.tes, tl?1ey a.re unaffeateel by agin/il::, are Bot attaakea<br />

by baeteria, aR~<br />

I<br />

kave a wide raBge <strong>of</strong> flew beha.vior inelexes.<br />

The manufacturer states in the descriptive balletin,<br />

nCarbopol: Water-Soluble Resims n , that these resims are<br />

completely selable. It is the 0p~iom <strong>of</strong> the authGr and<br />

Hetznel? (12,5) th.at these "solutions" are col10-idal suspensie:N.s<br />

rather than true solutions. The most import~t faet is<br />

they are ~se~doplastie <strong>fluids</strong> whieh ean be eharacterized<br />

by the power law and are easily studied.<br />

OPERATING PROC~DURE<br />

Prepara.ti,en ,rfJ,f. Batela<br />

When water or glyceri:N.e was used as tae test flui


(1)<br />

the <strong>batch</strong> was then laeated to abou.t 85 C ana agitated <strong>for</strong><br />

another thirty minutes.<br />

90<br />

€I<br />

The bateh was then ceoled to about 25 C and neutralized.<br />

The neutralization is necessary sinee the resin is sup~liea.<br />

1m the free acid ferm and the solutions will mot develop<br />

their hi~ €eRsisteney unless they are neutra.lized to a<br />

PH <strong>of</strong>' about 7. OveFneutraliza.tieR to PH <strong>of</strong>' 8 OP 9, nowever,<br />

is not harmfUl. Seaium hydroxide as a. 10 ~ereent<br />

solution was added gradually TIRtil a PH <strong>of</strong> 7 to 7.2 was<br />

reaehed. The solution beeame very viscous as 60mplete<br />

neutralizati0n vras reaehed.<br />

Water 1-JaS then adided to the vessel to bring its<br />

volume up to the 1.623 eubie foot volume (10 3/4 inches<br />

OR steel seale) and agitated <strong>for</strong> about <strong>for</strong>ty-five minutes.<br />

A 600 ml. s~~le<br />

~roperties.<br />

was removed to measure its rheelogiesl<br />

The fluid level in the vessel was then l0wered<br />

to the 9~ ~eh mark (1.512 eu. ft.) and <strong>heat</strong>ed to 90°C<br />

and e00led..<br />

A BeH 600 mI. sample was ta.keR and the ola sa:Ml\'le<br />

added to the vessel to keep its,level. The <strong>heat</strong>ing and<br />

eooling cyele was repeated a second t~e to make sure that<br />

the fluid properties were constant.<br />

The Motor! s pOlver supply and the recorder were first<br />

warmed u~ <strong>for</strong> about 30 mi~utes. Tke <strong>batch</strong> level w~s eReeke~,


and if' lO"V'l$'<br />

a sm.all amount <strong>of</strong>' wate~ was added -Go make up<br />

fol' I!,..,.apora tiol"i los ses (0 A series <strong>of</strong> Fower m~!HilSU3Jl'(!I)ments were<br />

then made. At each speed the dymrunometer s~aleg the rotational<br />

speed, and the flm.id height we:pe noted.<br />

There vIas not mueh<br />

variati1!lB. in ~ight because the baffles elimina:ced vOJ?tex<br />

f'ormatiol'l..<br />

However, there were slight increases and these<br />

't-lere taken int ten di.f'f'erm t speeds were investigated<br />

~nd<br />

f'our were selected f'or <strong>heat</strong> <strong>transfer</strong> runs.<br />

The <strong>heat</strong> <strong>transfer</strong> run was started by tu:Mll.il1lg en the<br />

recorder and steam (low pressure, 8-12 paig.). The water<br />

drain valve was closed when steaM started to bellow out <strong>of</strong><br />

it. The rotational speed was measured with a Smiths Haad<br />

Tachometer (11[04el ATH7,,:f: 0.5% aecW?acy).. Between :minute<br />

:<br />

number four and six the condensate was colleeted ~d weighted.<br />

The 8te~ and eondensate temperatures were eaehread ~ee<br />

different times. When the <strong>batch</strong> temperature reached 80-90 0 C<br />

the s team was shut <strong>of</strong>f and the Hater drain opeBed.<br />

CGolfmg water was then turned OB and set at about 95 ~epeent<br />

The<br />

<strong>of</strong>' the rotometer flow rate. Tke speed 1-J'as also mea..::rured<br />

twiee more aRd water floH rate H'as checked periodically ..<br />

When the <strong>batch</strong> temperature was e@oled to 25-30 0 C the cooling<br />

91<br />

water was turned o~~<br />

and the jaeket drained.<br />

The s trip chart f'rom. a typical run is shovm il'!!. Figu.:ve<br />

4-5.. During hl~ <strong>heat</strong>ing cycle the wall temperature is higher


tkaJ!l the bateh and. during; the eooling cycle it is lower.. A<br />

ti:m.e interval sf' two, f'erur:/ or six minutes is selected f'rom<br />

the <strong>heat</strong>ing cyele ~d from the eo@li~ cycle and the data<br />

93<br />

used to eale~late<br />

a <strong>heat</strong> traasf'er eoef'f'icient. The ~0rtions<br />

I<br />

selectecl. are these irTitk the s:m.00th.est set Elf temperature<br />

}3oints..<br />

Tlae length (£)f th.e time interval is selected to give<br />

@<br />

a 10-20 C <strong>batch</strong> temperature change.<br />

A new run wag usually started shortly after the f'~ish<br />

<strong>of</strong> the prece9-ing z:tm.. On th.e f'ourtJa run wi th ~ particular<br />

o<br />

in~eller th.e <strong>batch</strong> was cooled to ~O-25 C, the vessel lid<br />

removed and a new impeller iBstalled.. For <strong>fluids</strong> other tham<br />

water a sample was takeR to assure the fluia's 'rheological<br />

pr@])erties were remaining eonsta1!l.t..<br />

(For glycerine me<br />

densi ty 'V-TaS cheeked) Thte previous sample was returned to<br />

the vessel to mailataim the fluici!. level..<br />

Tke flai@!. level<br />

was checked aaQ the series <strong>of</strong> power data taken and the lid<br />

re])laeed.<br />

Then f'0Ul' <strong>heat</strong>ing r~s were taken as above and<br />

the cycle repeated until 44 runs using the 11 impellers<br />

For water the h.eating cycle took about ei~t ~utes<br />

and the cooling cycle about 16 gi vin~ a tciltal epera t~ time<br />

<strong>of</strong> about 24 miNutes. The actual tiMe required f'or a cycle<br />

was about 30 minutes since time vTaS required to drain the<br />

jacket, reset the reeorCiler" take €lata, and turn valves.<br />

The t~e required to make a run with tae more vise0us <strong>fluids</strong>


94-<br />

was about 40-45 ndmutes ..<br />

Tke impeller speed r~ge was limited both at the IGwer<br />

~d upperspee~s.. The motor itself eould not operate well<br />

below 75 RPM and thus this limited the range.. Often the<br />

lewest speed l!t:sed was considerably ab0Te 75 RPM, however,<br />

beeause lower speeds did not mix the fluid thoroughly and<br />

the hot fluid would stratify at the tep <strong>of</strong> the bateh.. If<br />

there "ras evidence 0f ineemplete mixing (baton temperatu::t"e<br />

po~ts not on same sm00th e~e) the data taken were dis-<br />

The great~st speed used was also l~ited.. The viscosity<br />

data <strong>for</strong> tae non-Newtomians was limited te sheap<br />

rates belbw 4zr:~1AX/n where NMAX is 600 RPM, the highest<br />

speed <strong>of</strong> the v~se0meter. Aceording to Metzmerts results the<br />

shear ~ afl agitated vessel is 11 .. 5 N where N is the RPM at<br />

the impeller.. Smce 4 7r is fairly close to 11 .. 5 the maxi:m.u.nt<br />

rotational speed which eould be used, without exeeediEg the<br />

above shear rate" is lirrl ted to 600-700 RPr-1 ..<br />

The motor and power supply lLmited the top speed<br />

attainable <strong>for</strong> the very viscous <strong>fluids</strong> because the power<br />

output <strong>of</strong> the system vIas exceeded bef'ore the larger impellers<br />

reached 600 RPM ..<br />

Because <strong>of</strong> these limitations the a.m.otm.t <strong>of</strong> data.


95<br />

eolleeted r@F the 0.24 ]?ereeRt CarbC'Jpol solution is smae-<br />

1cJhat less than <strong>for</strong> the ~th$r solutioRs. The mixing quality<br />

<strong>of</strong> the small impellers was so ~oor<br />

that ma~ gave only one<br />

@1:' even zero acceptable runs. Tae la.r~er il'ltpellers exceeded<br />

the pmJer out]>ut <strong>of</strong> the agi tatio:rn. system and bl.ew the fuse.<br />

CALCULATIONS<br />

Caleulati0u <strong>of</strong> Heat Transfer Rate<br />

, _ ;,'',<br />

The net <strong>heat</strong> <strong>transfer</strong> rate, qNET' the rate that the<br />

<strong>heat</strong> is being transfe>pe


96<br />

vThere N is in rev./sec ..<br />

and S is measured in po1..mds.<br />

The <strong>heat</strong> equivalent, qlvI' <strong>of</strong> this pOvJer input can be calculated<br />

by multiplying by the proper conversion factor ..<br />

1.286 x 10- 3 Btu = 1 ft. Ib ..<br />

60 sec .. "" 1 min.<br />

There<strong>for</strong>e<br />

:: 1.286 x 10-3 P (60)<br />

!'!: 7.72 x 10- 2 P (4-5<br />

Hhere qr1 is measured in Btu/min. and the pOHer is expressed<br />

in ft. Ibs./sec.<br />

The rate <strong>of</strong> <strong>heat</strong> <strong>transfer</strong> into the <strong>batch</strong> <strong>of</strong> fluid,<br />

Ql-2' is measured by the fluid's gain in <strong>heat</strong> content per<br />

unit time.<br />

ql-2 :: HOp dTjdt (4-6<br />

ql-2 is expressed in Btu/min. if<br />

\1 is the 'vJeight <strong>of</strong> the <strong>batch</strong> measured in pounds<br />

T<br />

t<br />

is the <strong>batch</strong> temperature in <strong>of</strong><br />

is time in minutes<br />

The net <strong>heat</strong> <strong>transfer</strong> rate in the <strong>heat</strong>ing cycle is<br />

(L~-7<br />

In the cooling cycle the mech~Ylical<br />

<strong>heat</strong> as "'Jell as the<br />

sensible <strong>heat</strong> must be <strong>transfer</strong>ed th.-rough the Hall and


97<br />

The <strong>heat</strong> <strong>transfer</strong> coefficient, h, can be calculated<br />

from<br />

(~--9<br />

where A is the area <strong>for</strong> the <strong>heat</strong> <strong>transfer</strong><br />

6T s _ b is the temperature drop between the wall surface<br />

and the <strong>batch</strong>.<br />

There<strong>for</strong>e h = qNET/ A b. TS-b (4-10<br />

ROv-JeVer,6T s _b cannot be calculated since the I'Jall temperature<br />

measured is not the surface temperature but the average temperature<br />

<strong>of</strong> a 0 .. oL~ inch thicknes 3 <strong>of</strong> the "t-Jall next to the<br />

surface.<br />

If the temperature drop across the wall is assumed<br />

linear-l:- this average temperature is also the temperature <strong>of</strong><br />

a point 0.02 inches from the surface.<br />

For this condition<br />

~TI,.J-b<br />

=-----<br />

l/h +L/kw<br />

(L~-ll<br />

where 6. Ti.J-b is the api tlunetic mean temperature drop between<br />

the point 0.02 inches in the 1-Jall and the <strong>batch</strong>.<br />

L<br />

k",r<br />

is the thickness <strong>of</strong> the metal resistance.<br />

is the thermal conductivity <strong>of</strong> the metal wall.<br />

is the su~<br />

<strong>of</strong> the <strong>heat</strong> <strong>transfer</strong> resistances.<br />

If equation Ll--ll is rewritten fop the resistance <strong>of</strong> the i-Jall<br />

above it becomes<br />

-It-<br />

Because the vessel is not operating under steady state conditions<br />

the temperature drop is not quite linear. The error<br />

in the anSlrJeI' Has estimated to be betHeen 0 .. 25 and 0.75%.


88<br />

ql\fETI A = 6 T \--T -s<br />

L/kw<br />

(1+-12<br />

1.Jhere l:l T"'I_S is the temperature difference bet1tJeen the<br />

measured point in the wall and the unkn01~<br />

surface temperaturee<br />

If it is assumed that the wall resistance, L/~v'<br />

is<br />

negligible one could calculate the <strong>batch</strong> film coefricient<br />

using<br />

h' .,. ql-TET<br />

A6T 1 -J_b<br />

(4-13<br />

hf can be calculated since all the variables can be measured<br />

or calcula ted.<br />

If equations 4-9 and 4-12 are equated~Ts_b ~he<br />

unknown<br />

variable in equation 4-10 ,can be calculated •<br />

b,T _ s b<br />

l/b_<br />

III<br />

.6Tw_b<br />

l/h +L!kw<br />

and<br />

b,T s<br />

_ b = .6.T w _ b<br />

l+h L/lt w (4-15<br />

Substituting 6T s _ b into equation L-1-- 1 0<br />

(4-10<br />

+ hL)<br />

~r (4-16<br />

The group in the first set <strong>of</strong> parenthesis is equal to h'


and if' it is assumed that h' is almost equal to h equation<br />

4-16 can be written<br />

h = hI (1 + h Y L/kw) (4-17<br />

hI is calculated from equation ~--13.<br />

L<br />

is the average distance <strong>of</strong> the ther.nlocouple junction<br />

from the surface ~<br />

0.02 inches = 0.001667 feet.<br />

y~ is the thermal conductivity <strong>of</strong>' 316 stainless steel<br />

Substituting the values <strong>for</strong> L and kw<br />

(286)<br />

h = h' (1 + 0.0001774 hI)<br />

Apparent Vis~2sity<br />

<strong>of</strong>' the Batch<br />

The apparent viscosity <strong>of</strong> the <strong>batch</strong> is needed in the<br />

Reynolds nilluber, Prandtl number, and viscosity ratio. It<br />

can be calculated using equation 2-25.<br />

(2-25<br />

The apparent viscosity is expressed in Ib .. /sec. f't if' K is<br />

expressed in Ib./ft. sec. n and N is expressed in rev. per.<br />

second ..<br />

The apparent viscosity <strong>of</strong>' the <strong>batch</strong> could also be expressed<br />

(4-19<br />

based on the theoretical 8.-l1alysis d:i.scussed in Chapte,;,s{~~,Wjo0<br />

\i".2t~;


I {)D<br />

The generalized Reynolds n~mber, NR~' is expressed as<br />

N t D a 2 -r\T (.)<br />

Re:: 1, I<br />

(2-22<br />

a::A<br />

Jia<br />

where Da is the agitator diameter expressed in feet.<br />

N<br />

is the rotational speed <strong>of</strong> the impeller expressed<br />

in rev./sec.<br />

P is the fluid density expressed in Ibsom/ft.3.<br />

jUa is the apparent viscosity expressed in Ibsf/seco ft.<br />

as calculated by equation 2-25a.<br />

A more theoretical Reynolds number can be calculated<br />

using the apparent viscosity, #d:, defined by equation 1.~-19.<br />

In this case<br />

(4-20<br />

Generalized Prandtl Number<br />

The generalized Pr8..c'1.dtl number, N pl !.' is<br />

(4-21<br />

Hhere C p is the <strong>heat</strong> capacity <strong>of</strong> the fluid.<br />

k<br />

is the thermal conductivity <strong>of</strong> the fluid.<br />

1>Jhere C p<br />

is expressed in Btu .. /l"bm°F •<br />

fia is expressed in Ibf/ft .. sec ..<br />

k is expressed in Btu/ft 2 OF sec./ft.


101<br />

f1'f'.'ldtl nvnber is def:Lnod<br />

U~-22<br />

~iven in Ap~endi~ B.<br />

U30Cl. 8.1'0 i1'c.:111


02.<br />

CHAPTER !2.<br />

RESUI,TS<br />

Many <strong>heat</strong> <strong>transfer</strong> runs 1,\fere made '\vith water in the<br />

vessel in order to gain familiarity l..ri th the equipment and<br />

to obtain enough in<strong>for</strong>mation to <strong>for</strong>mulate the program to<br />

be fol101,-led with the non-Nelvtonian <strong>fluids</strong> e<br />

To be more<br />

specific, 319 data points ,,,ere obtained using the many<br />

i...mpellers ,listed in Chapter ~_..<br />

163 <strong>of</strong> these points 1,..Jere<br />

not used <strong>for</strong> evaluating the constants <strong>of</strong> the correlations<br />

because the impellers "Jere not at the standard posi tions<br />

listed in Table 5-1. These data, summarized in Table 5-2,<br />

provided much qualitative and quantitative in<strong>for</strong>mation<br />

about the "Hall temperature, the effect <strong>of</strong> i...mpeller position,<br />

and the impeller geometry ..<br />

156 <strong>of</strong> the "\..Jater data points 1-Jere measured at the impeller<br />

heights listed in Table 5-1.<br />

These data, in addition<br />

to 297 data points obtained with glycerine and Carbopol<br />

solutions, "t-Jere used in evaluating constants <strong>for</strong> the correlations<br />

discussed later in this chapter.


03<br />

TABLE 5-1<br />

INPELLER POSITIONS USED IN TIm i'lAJOR<br />

PORTION OF THE THESIS<br />

Anchor 5 tf clearance HelHL<br />

:: 0.261<br />

Paddle 7 1l center height HeH/HL ::: 0.378<br />

Propeller lOll clearance EelHL = 0" 5}~.o<br />

Turbine 7" center height ECH/EL :: 0.378<br />

Note: At 7 11 center heiGht the impeller is at<br />

1/3 the fluid height and about 1/2 the <strong>heat</strong><br />

<strong>transfer</strong> surface.<br />

t<br />

CLEAR.ANCE<br />

t<br />

f<br />

CENTER I-IEIGI-IT<br />

j


01<br />

TABLE 5-2<br />

sutn~U{Y<br />

OF ADDITIONAL DATA POINTS<br />

HEAE\URED IN THE PRELD1INARY STUDY OF HEAT<br />

TRANSFER TO lrJATER<br />

}}upe lle,r.= Type<br />

Number <strong>of</strong> Data Points<br />

Anchor<br />

Paddle<br />

Propeller<br />

Reversible Pitch Paddle<br />

Turbines - Disk & Vane - 6 Blades<br />

Turbines - Open - 6 Straight Blades<br />

Turbines - Open - 6 Curved Blades<br />

Total<br />

8<br />

87<br />

24<br />

10<br />

16<br />

10<br />

8<br />

163


lOS<br />

RESULTS:<br />

HEATING AND COOLING vlATER<br />

WALL TEMPERATURE<br />

In all <strong>of</strong> the <strong>batch</strong> <strong>heat</strong> transfel"" Hork to date the<br />

wall temperature has been assumed to be constant over the<br />

entire <strong>heat</strong> <strong>transfer</strong> surface at anyone time. The investigators<br />

1vho have measured the vJa11 temperature have done<br />

so only at one point and thus have not confirmed or contradicted<br />

this assumption.<br />

The equipment used in this study<br />

vJaS designed 8.-11.d<br />

constructed 1


108<br />

the <strong>batch</strong> than the other ticJO thermocouples.<br />

At high iropeller<br />

speeds, the wall temperature became relatively constant<br />

over the whole surface.<br />

It was felt that these data sh~wed<br />

that the local <strong>heat</strong><br />

trruLsfer <strong>coefficients</strong> vary from point to point in the vessel.<br />

In those portions <strong>of</strong> the vessel v!hich V·Jere best agitated<br />

the <strong>heat</strong> was conducted from the wall at a faster rate than<br />

in the poorly agitated regions.<br />

Considering a unit area <strong>of</strong> the wall <strong>for</strong> any portion <strong>of</strong><br />

the vessel the ratio <strong>of</strong> the driving <strong>for</strong>ce to the resistance<br />

is a constant <strong>for</strong> each <strong>of</strong> the resistances in series. Thus,.<br />

negle cting the <strong>heat</strong> capacity <strong>of</strong> the l


neglecting the <strong>heat</strong> capaci ty <strong>of</strong> the 1"all, mus t be <strong>transfer</strong>red<br />

th..rough the wall..<br />

Thus the value <strong>of</strong> ATs-0/ki.l<br />

must equal Ll.Ts_Yl/h. hm and L/lrw are constant over the<br />

H"hole <strong>heat</strong> <strong>transfer</strong> surface and the overall driving <strong>for</strong>ce,<br />

~To' is also constant.. Thus h is greater in a well<br />

agitated portion than in a poorly-agitated portion the total<br />

resistance to <strong>heat</strong> flov! in the <strong>for</strong>mer portion l-Jill be less<br />

than in the latter, giving rise to a greater <strong>heat</strong> flQX in<br />

the well-agitated region.<br />

Since the <strong>heat</strong> flux is higher in the v.iell-agi tated<br />

regions, the ratio,6Ts-IL/ktl' in that region must be<br />

greater than in the poo:r'ly-agi tated l"egions.<br />

Thus the<br />

driving <strong>for</strong>ce across the 1Ajall in the v-rell-agi tated regions<br />

is Greater than in the poorly -agi tated regions..<br />

This phenomena<br />

(Nas manifested by the Hall s1..u"face being closer to the<br />

<strong>batch</strong> temperature in the \.Jell-agi tated regions.<br />

Experimentally it was found that by proper location <strong>of</strong><br />

the impeller the differences in wall temperature could be<br />

virtually eliminated, even at 10VI impeller speeds.<br />

These<br />

positions, surmnarized in Table 5-1, probably gave more<br />

uni<strong>for</strong>m agitation.<br />

It is interesting to note that the Optinlum<br />

posi tion <strong>for</strong> the paddles and turbines is at the level vJhere<br />

about one half <strong>of</strong> the <strong>heat</strong> <strong>transfer</strong> surface is above and one<br />

half beloH the impeller.<br />

The propeller, v-d th its large axial<br />

flow component had to be positioned somewhat higher. These


108<br />

optimum impeller heights were used in all the subsequent<br />

1.Jork; hO'IJ.!6ver, '.Ihen the more viscous <strong>fluids</strong> ,.rere in the<br />

vessel the wall temperature differences could not be<br />

eliminated ..<br />

Impeller fIeight<br />

In addition to af:fecting the uni<strong>for</strong>mity <strong>of</strong> \-1all tem£)­<br />

ex'ature, the impeller height also influenced the <strong>heat</strong><br />

trans:fer rate. In general, the greater the impeller distance<br />

from the vessel bottom" the greater the <strong>heat</strong> trans:fer rate<br />

(1r-Jithin the limits tested, up to 1/2 the vessel height) ..<br />

This phenomenon is pl""obably closely related to the large<br />

wall temperature variations which are present Hhen the<br />

Lmpeller is very close to the bottom <strong>of</strong> the vessel, (ie. as<br />

the impeller is raised, the agitation <strong>of</strong> the <strong>batch</strong> is more<br />

uni:<strong>for</strong>m and thus the wall temperature variations are reduced<br />

and the <strong>heat</strong> <strong>transfer</strong> rates increased).<br />

Since the amount <strong>of</strong> data measuring these effects is<br />

limited the results are only qualitative. They are shown<br />

graphically <strong>for</strong> the anchor, propeller" and turbine in<br />

Figures 5-1, 2 and 3.<br />

As can be seen on these curves, a<br />

two inch vertical displacement <strong>of</strong> the impeller changes the<br />

<strong>heat</strong> <strong>transfer</strong> coefficient by almost ten percent ..<br />

There 1.


09


10<br />

I r<br />

"'" , •• ,'., "",' """", .... ," 'J : : :::::::<br />

. t,""~r)"'" '::. :::;.~.;,:.,.. :,:,~I.tj .. ii !::'~".':•.<br />

i,;.',!:i!:,',:",<br />

:. .!"IC.<br />

:::l, .. '.i':',;,:;.:,1,;,:,I, ";::: ::::Ii::::::::;::; "., .. ,:::::.:::: ::: ::::':--:,:>::, ,r: ::::,:::-::'.<br />

.. ,!;;,~, .. :,:l".:.:;,,:, i.i, ::;: ::,,:'1' ::::::: ," : ; ;i~l~:~: ':::, """ ""''',' "., '" .'''' .'<br />

" I' ": .. , ... "', .. :""....:. ::1:,:::: ::::::: ':::-:'11:::':::::: ":::1::::!!;'1<br />

:~)!:;j;~\::::i:: :,:;:::': '!:::.'.,::,::.::::,.:::":::::h::'.:,:,:'.:,.,:::::.::.,::. :::::::: :::':::::, ' .<br />

I:"~ : ~ : !:; ~~: 1, ;,1 :,' :,r:, : I"~ :,':, .X,':" :,: ',; ;,': :,': , I····' , ... r " , . ; :: . ,,::,' ',' :: ..!':: I .. I· I<br />

! 11'(. .....,,,.. ",. ,.Ij., ::/:: ::::>' , .... " ," ., . ;<br />

o,,~' '~I:'~'::;li; I::: •••• .••• ...., .. . .... ........... .., ·.rr· ..... : .•.. -:;'<br />

,.. .. " ...... , .. "".,\, , .. ,' :


1/<br />

<strong>for</strong>:m.ed using:<br />

(a all the paddle data including 241 data points<br />

at twelve different positions; 154 <strong>of</strong> these<br />

points vJere <strong>for</strong> one height ..<br />

(b tHO data points <strong>for</strong> each paddle height.<br />

The i'irst test used all the data available but may have been<br />

biased since 64 percent <strong>of</strong> th.e data was <strong>for</strong> one height value<br />

and some heights were represented by only two data points.<br />

Rence the second set <strong>of</strong> data points was tested using the<br />

same amount <strong>of</strong> data <strong>for</strong> each point.<br />

In the first test (all available data) the Nusselt<br />

. (/) 0.32<br />

number was i'ound to be a i'unctlon <strong>of</strong> HCR HL<br />

where<br />

HCR is the height <strong>of</strong> the center <strong>of</strong> the impeller above the<br />

vessel floor and RL is the liquid height..<br />

In the second<br />

test the Nussel t number ·Has found to be a function <strong>of</strong><br />

(H CH /H L )O.45. ~lliile neither test is entirely satisfactory<br />

because <strong>of</strong> the data limitations, the exponent <strong>of</strong> this impeller<br />

height ratio can be estimated to be somEH-Jhere betl.reen<br />

these two values, or rou&hly 0.4. It is interesting to note<br />

that this effect, not previously studied, is more important<br />

than the Prandtl number or viscosity ratio <strong>for</strong> equal changes<br />

<strong>of</strong> the variables.<br />

CORRELATIONS<br />

The major portion <strong>of</strong> the data collected in tl1.is thesis<br />

(453 data points) 11as used to evaluate the constants <strong>for</strong>


112<br />

correlations <strong>for</strong> the prediction <strong>of</strong> <strong>batch</strong> side <strong>heat</strong> <strong>transfer</strong><br />

<strong>coefficients</strong>. These data are summarized in Table 5-3. Two<br />

general types <strong>of</strong> correlations were evaluated, those based<br />

on the dDJlensional analysis developed in Chapter 3, and<br />

those which are semi-emperical alterations <strong>of</strong> the present<br />

correlation <strong>for</strong> Nel,rtonian <strong>fluids</strong> ..<br />

FO'ur different types <strong>of</strong> impellers '(-Jere used in this<br />

study: anchor, paddle, propeller, and turbine. Since tl1.e<br />

geometry and flovl patterns <strong>for</strong> each L.'1lpeller may be different,<br />

the constants <strong>of</strong> any correlations tested Her'e evaluated<br />

separately <strong>for</strong> each impeller type.<br />

Only one anchor<br />

agitator was used and there<strong>for</strong>e the effects <strong>of</strong> impeller<br />

diameter and ,,,,idth could not be evaluated <strong>for</strong> the anchor ..<br />

The propellers were geometrically similar and there<strong>for</strong>e<br />

only the diameter effect was measured.<br />

Results <strong>of</strong> Dimensional Analysis<br />

The dimensional analysis <strong>of</strong> Chapter 3 provided<br />

(~~~ra.) a. b )C(: d e<br />

AlMI~C~~ fl!p/t" (~) (g: :;) ~ (3-8.0<br />

as an equation 1:Jhich characterizes the <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong><br />

system.<br />

The constants <strong>of</strong> this correlation\labeled correlation<br />

A) Here evaluated and are presented in Table 5-4.<br />

correIa tion ",ri th its constants Has then used to calculate<br />

a "predicted Nusselt number" <strong>for</strong> each <strong>of</strong> the data pOints.<br />

The percentage error<br />

The


3<br />

Smll~L4.RY<br />

OF DATA POINTS USED<br />

IN CORRELATIONS<br />

.<br />

Number <strong>of</strong> Data Points<br />

_Flov.r Behavior Index ::: 1 .. 0<br />

Impel:}..er Type<br />

0 .. 69<br />

0 .. 36 Total<br />

Anchor<br />

16<br />

8<br />

8<br />

7<br />

39<br />

Paddle<br />

Propeller<br />

Turbine<br />

l51~<br />

26<br />

48<br />

48<br />

15<br />

16<br />

~L6<br />

7<br />

15<br />

29<br />

6<br />

277<br />

54<br />

83<br />

TOTAL<br />

87<br />

76<br />

-----------------------------------------~--~--~~--------


TABLE 5 - 4<br />

Correlation Constants<br />

Average Errors<br />

LVJPELLER<br />

C a b c d e p.=lD 0.69 O.I.d 0.)6 O1iet'all<br />

TYPE<br />

..<br />

-~}<br />

ANCHOR 5.52 0.15 0.34<br />

- -.--<br />

.10 6.63 15.6 14.0 22.0 12.7<br />

PADDLE 12.59 0.15 0.31 -.51 0.41 ),31 10.8 8.9 20.1 19.4 12.9<br />

PROPELLER 6.62 0.13 0.32 -.48<br />

-<br />

).69 12.6 8.5 15.1 20.7 12.5<br />

TURBINE 15.16 0.12 0.30 -.14 0.47 P.30 10.7 10.6 20.9 20.7 13.0<br />

* Line under number indicates value not significantly di~ferent from zero as determined<br />

by t test (47),


IS<br />

il'tE"?SUI2£D ~a- PRe:DtCr~o<br />

M..E'"-9s l/( RED Al'NU<br />

~t(<br />

I( 100<br />

(5-2<br />

was calculated <strong>for</strong> each data point. The average error <strong>for</strong><br />

each condition (impeller type and flov-r behavior index) was<br />

calculated. The average error is the aI.'ithrn.etic average<br />

<strong>of</strong> the absolute values <strong>of</strong> the percentage errors.<br />

/;{<br />

Average Error ;::;<br />

l2/ %t:RROR/<br />

(5-3<br />

Correlation A is based on a model which very simply<br />

described the flow patterns developed by a marine propeller<br />

in a baffled vessel. The flow patterns developed by paddles,<br />

turbines or anchors are slightly different, but the same<br />

correlation was used to correlate all the data. Correlation<br />

A has only one empirical constant <strong>for</strong> the measurement <strong>of</strong><br />

the Reynolds and Prandtl number effects. To empirically<br />

correct <strong>for</strong> the oversimplification <strong>of</strong> the flo\>T model Correlations<br />

B and C were tried. Correlation B has two empirical<br />

constan ts <strong>for</strong> the Reynolds and Prandtl number effects lilhile<br />

Correlation C has three. Correlation B is<br />

NK({= C N?e %~~;~;)t~n~:t~r.;nf (5-4<br />

and correlatioz.c is )<br />

_ l%tf~tb he, if e I J<br />

~tI- C ~Re Nf'J[ (-~)~ (f1J ~<br />

The calculated constants and average errors are<br />

(5-5<br />

given in


1/6<br />

Table 5-5 and 5-6.<br />

A measure <strong>of</strong> the significance <strong>of</strong> the difference betv-reen<br />

tlfJO correlations is determined by using the F test<br />

~'Ilhere<br />

F is the ratio <strong>of</strong> the variances <strong>of</strong> the two correlations<br />

(55). The variance is the sum <strong>of</strong> the squares <strong>of</strong> the difference<br />

between the measured ~nd<br />

predicted values <strong>of</strong> the dependent<br />

variable. The significance <strong>of</strong> the F is dependent<br />

upon the degrees <strong>of</strong> freedom -<strong>of</strong> each <strong>of</strong> the tl-JO variances ..<br />

The number <strong>of</strong> degrees <strong>of</strong> freedom is equal to the number <strong>of</strong><br />

data points minus the nmnber <strong>of</strong> constants calculated from<br />

the data. Table 5-7 lists the variances <strong>for</strong> these correlations.<br />

In testing the significance between correlations A and<br />

C <strong>for</strong> the anchor agitator~F<br />

is evaluated as follows.<br />

Correlation<br />

Variance<br />

Number <strong>of</strong><br />

Data Po.ints<br />

Number <strong>of</strong><br />

Constants<br />

Degrees<br />

<strong>of</strong> Freedom<br />

A<br />

C<br />

963,790 39<br />

537,312 39<br />

4<br />

6<br />

35<br />

33<br />

F35, 33 = ~632790 = 1.80<br />

37,312<br />

(5-6<br />

A table <strong>of</strong> values <strong>for</strong> the F distribution ShOHS that <strong>for</strong> F<br />

to be significant at the 80% limit <strong>for</strong> 35 and 33 degrees <strong>of</strong><br />

freedom,F must be greater than 1.57.. At the 90% limit F<br />

must be greater than 1 .. 79 and at the 95% limit F must be


Average<br />

TABLE 5 - 5<br />

CORRELATION B<br />

f! (a/n+l) It Ii b c f<br />

NNu '" C(N Re ) (N Re Npr) (K/~) (Dt/Da)d(W a /Da)8n<br />

H1PELLER Correlation Constants Errors<br />

. ,~.<br />

TYPE C a b c d e f n-1.0 0.69 0.1.13 0.36 Overall<br />

ANCHOR 0.48 0.74 0.32 0.35 -0.14· 9.6 12.3 9.2 22.1 12.3<br />

- -<br />

PADDLE 2.41 0.73 0.27 0.31 -0.h5 0.h5 0.30 9.4 6.5 lCi.5 19.4 11.4<br />

-.<br />

PROPELLER 0.S4 0.77 0.29 0.32 -0.34 0.68 6.8 8.2 11.1 21.2 9.4<br />

TURBINE 3.35 0.78 0.23 0.31 -0.09*<br />

0.56 0.27 8.5 10.1 19.5 21.3 11.4<br />

-<br />

* See Table 5 - 4


TABLE S - 6<br />

IMPELLER Correlation Constants Average Errors<br />

TYPE C a b c d e f g n=1.0 0.69 0.1.1.3 0.36 Overall<br />

ANCHOR 0.56 1.43 _0.04 1 1- 0.30 0.34 0.54 6.8 S.l 10 .. 7 18. )-+<br />

- -<br />

9.3<br />

PADDLE 2.51 0.96 O.lS 0.26 0.31 -0.46 0.46 0.56 9.4 5.1 17.8 18.9 11.1<br />

-~<br />

PROPELLER 0.55 1.28 0.04 0.30 0.32 -0.40 1.32 7.0 S.4 9.6 20.0<br />

--<br />

8.3<br />

-<br />

.){.<br />

.><br />

TURBINE 3.57 1.25 0.002" 0.24 0.30 -0.13' 0.61 0.78 8.9 6.S 17.6 19.7 10.5<br />

--<br />

* See Table 5 - 4


19<br />

TABLE 2 - 1<br />

VARIANCES FOR CORRELATIONS<br />

At Rand C<br />

Variances<br />

n- 1.0 ,0.69 i 0.43 0.36 I Overall<br />

Correlation A<br />

I<br />

Anchor 434,764 h49,515 22,762 56,749 963,790<br />

Paddle 12,020,092 530,486 277~796 172.\'211 13,000,5135<br />

Propeller 888,897 100,568 19,995 23,245 1,032 1 705<br />

Turbine L,175,334 27L,633 89,7h3 30,292 4,570,002<br />

Correlation B<br />

Anchor- 1,089,312 291,553 9,126 45,353 1,435.345<br />

Paddle 12,333,246 344,645 232,009 163$478 13,07),)78<br />

Propeller 1,030,u64 59,828 12,721 19 9 600 1,122,613<br />

Turbine 3,L8L,242 216,798 77,7)6 26,750 3,F.05.526<br />

Correlation C<br />

Anchor 42L,58L 32,989 28,002 51,737 537,312<br />

Paddle 12,505,916 209,29L 211,802 179,:'03 1),106,515<br />

Propeller 808~803 10,904 7,442 20,7)6 E7L,685<br />

Turbine 3,641,172 - 79,108 67,894 35,405 3,823,579


120<br />

greater than 2.0. In this case there<strong>for</strong>e there is a 90%<br />

probability that the difference in variance between correlation<br />

A ~nd<br />

C is significant. Thus correlation C is a better<br />

fit <strong>for</strong> the anchor data.<br />

It may be seen from this example that in order <strong>for</strong> a<br />

correlation to be significantly better than another the ratio<br />

<strong>of</strong> the variances must be about 1 • .5 or gl"eatel", depending upon<br />

the degrees <strong>of</strong> freedom and choice <strong>of</strong> probability limits<br />

desired.. Comparison <strong>of</strong> the variances listed in Table 5-7<br />

shows that the above eXELmple was the only case in Hhich one<br />

correlation 1-laS significantly better than another <strong>for</strong> all <strong>of</strong><br />

the <strong>fluids</strong> tested. Thus, except <strong>for</strong> the anchor agitator,<br />

the three correlations fit the data equally v.Jell..<br />

It l


TABLE 5 - 8<br />

NNu '" C(N~e)a<br />

CORRELATION D<br />

(Npr)b (K/Kw)C (Dt/Da)d (Wa/Da)e<br />

IMPELLER Correlation Constants Average Errors<br />

TYPE C a b c d e n= l.0 0.69 0.43 0.36 Overall<br />

ltNCHOR 0.45 0.68 0.35 0.37 10.9 23.0 17.4 22.7 16 .. 9<br />

- -<br />

PADDLE 1.94 0.64 0.27 0.31 -0.40 0.42 9.2 13.4 22.1 22.3 13e4<br />

PROPELLER 0.!.~6 0.69 0.27 0.32 -0.23 11.4 12.3 2B.h 35.5 16.5<br />

TURBINE 2.39 0.63 0.24 0.31 -0.06*<br />

-<br />

O~<br />

O.hOn B.3 15.8 22.9 23.7 13.1<br />

.,l- See Table 5 - 4<br />

-1\)<br />

--


12.2


23<br />

the Nusselt namber predicted using Correlation D ~or<br />

the<br />

propeller data.<br />

The line vIi th slope equal to unity represents<br />

a per~ect<br />

fit <strong>of</strong> the data. As can be seen the more <strong>pseudoplastic</strong><br />

<strong>fluids</strong> seem to be represented by lines with a greater<br />

slope.<br />

Similar plots <strong>for</strong> the other impellers shm-l the same<br />

trend. The dimensional analysis <strong>of</strong> Chapter 3 suggests using<br />

a variable exponent <strong>for</strong> the Reynolds number and an additional<br />

par8JJ1eter, n.<br />

Correlation D Has thus modified to give<br />

Correlation E ..<br />

NNU" CNR€ %,,' NpJt h{::r(g:r(~:run F (5-7<br />

1ne constants and average errors are presented in Table 5-9.<br />

The measured Nusselt TI1. .. lluber <strong>for</strong> the propeller data versus<br />

the predicted Nusselt number is plotted in Figure 5-5. Comparison<br />

o~<br />

Table 5-8 and 5-9 and Figures 5-4 and 5-5, shows<br />

that correlation E fits the experimental data better than correlation<br />

D 1"i th the <strong>pseudoplastic</strong> <strong>fluids</strong> gaining the most<br />

improvement ..<br />

Treating each ~luid<br />

separately sho"t-led exponent <strong>of</strong> the<br />

viscosity correction varied with 1/nO.75 . This modification<br />

was incorporated into correlation F:<br />

A I = eN I<br />

0./1(1{ A<br />

I 6 ( j( )C/ n o.75( D2-)d(ZlIa...)€<br />

IV IVV' Re IVp..h KrP Da DC(..m (5-8<br />

The consta.nts and average errors are presented in Table<br />

5-10.. Comparison <strong>of</strong> the average errors shmoJs that correlation<br />

F is a might improvement over correlation E.<br />

f


TABLE 5 - 9<br />

CORRELATION E<br />

t (a/n +1) ! b d e f<br />

NNu '" C(N Re ) (Npr) (K/Ki.v)C(Dt/Da) (WalDa) n<br />

IMPELLER Correlation Constants Average Errors<br />

TYPE C a b c d e f n-l.O 0.69 0.43 0.36 Overall<br />

ANCHOR 0.47 1.36 0.32 0.3h 1.53 6.9 S.3 10.3 18.1-L<br />

- -<br />

9.3<br />

PADDLE 3.05 1.23 0.25 0.30 -o.hS 0.h7 1.83 9.6 5.7 18.0 19.3 .3<br />

PROPELLER 0.71 1.34 0.29 0.33 -0.58 2.55 10.6 h.l 12.0 19.3 10.0<br />

TURBI1TE 3.47 1.26 0.2)-L 0.30<br />

-<br />

-- --<br />

-~<br />

-0.12 0.6d~ 1.85 8.9 6.8 17.8 19.8 10.6<br />

10.8<br />

* See Table .5 - 4


'<br />

< .' •••• •••• .," ••••<br />

~ .--.- ~-. -<br />

~ .<br />

/zs<br />

. "-'; ." '.,<br />

. ..... ,<br />

.... "'::l:"<br />

':::r .<br />

..<br />

. . .. .<br />

. 1<br />

~+~~~~~.~. ~~.~. ~~~~~'~'~~-+~'+'~~'~~~--+~~'t-::--<br />

.._, .:: :::: :::: . :j' •. i I<br />

. . . ....... • '--1<br />

~~~~'~:~'~'1'~~--~~~~'~'~"~~~~'~"+' .;:~~:~I~::4:~;;~::r.;~· ~-+·~·~·~.~ .. ~.~~I<br />

,. .......' ........ :... " .. ' 1:... ...,<br />

:::.:: :~ii:-:·::.l::::::::: i::::::::b( ,": :.::iX:: i:i. :,:: .:::: .. , .... , ;1>:-::.:;:~~::1~~i: :;;; ,:: ... j'<br />

.....<br />

'<br />

' '<br />

'.5<br />

,<br />

':. :'.:: '.:'.' ;' .. ;~ :'.:: .... :: ',,:!. ,':'.: .1·.,,:: :' ... :; .. -,<br />

.. •. : .. ::., ... ::., :•.•.<br />

.. ·;i .. .,:: :~ ".,~ "::.;~.::i·ft~.~ :,.::.~<br />

",t.;~_<br />

,j;.'i: :: ... ... ,: ;':' ... :! ... ,.,,: ..<br />

..•.. :; :<br />

:. ..::<br />

, .... :::;.: .. ••• , ,:.: .,';; ',.;:.' ',:' .'.:: .. :: ;: •. •• :; •. .· :i .. : : : ; l ~;; .... ::.:.:.: .. :~.~ .:.:' ".:' .':' ;...• :<br />

.:~ ·':·i:<br />

:l&!l'~ ,:>EL;<br />

.. ::. :;:.:;i;l:!:ll···~:::j !<br />

.. U(2;: .!j: I;·J.: ::.... :~l:<br />

.. :: .:: .... :;<br />

~ : ~ j l; i i 1 l!lTfllW~:ij1m~Uj··~ TWill: }.l.ll\;·IV :::: U:~ ~~I;j;·.; ; ~: ~:;:;:<br />

:; .'. :'. .:' .:' '.: .,: .:, .':' .:' . 1 ·:t<br />

...... -,<br />

· . ...... .<br />

·<br />

. ,. .<br />

'" ¥+.­<br />

~ ~<br />

.........


TABLE 5 - 10<br />

IMPELLER Correlation Constants Average Errors<br />

TYPE C a b c d e f n""LO 0.69 O.Ld 0.36 Overall<br />

ANCHOR 0.146 L37 0.32 0.32 1.55 6.7 7.5 9.).+ 114.0 8.7<br />

- -<br />

PADDLE 3.06 L23 0.25 0.28 -0.148 0.b,7 L85 9.5 5.5 17 .6 16.0 10.8<br />

i<br />

PROPELLER 0.62 L36 0.30 0.32 -0.55<br />

-<br />

2.59 10.2 u.S 9.7 12.8 8.9<br />

TURBTNE 3.27 1.27<br />

><br />

0.214 0.29 -0.12 0.58 1.88<br />

--<br />

8.8 6.5 15.9 16.5 10.0<br />

--<br />

10.2<br />

* See Table 5 - 14


12<br />

7<br />

In order to simplif'y the correlation some1


TABLE 5 - 11<br />

CORRELATION<br />

G<br />

(1.30/61+1)) (0.28) (0.30/n O . 75 ) (-0.50) (0.50)<br />

NNu '" C (N~e) (N~r) (K/Kw) (Dt/Da) (Wa/Da) n ta<br />

H1PELLER Correlation Constants Average Errors<br />

TYPE C a n"'1.0 0.69 0.43 0.36 Overall I<br />

ANCHOR 0.74 lou3 6.9 8.0 8.5 lu.7 8.9<br />

PADDLE 2.00 1.96 10.0 6.0 17.1 15.8 11.1<br />

PROPELLER 0.86 2.51 10.4 3.8 11.1 13.5 9.0<br />

TURBINE 3.09 2.06 14.2 7.3 10.3 14.8 12.2<br />

--<br />

10.8<br />

Note: For Anchor (Dt/Da)b and (Wa/Da)C are not used.<br />

For Propeller (Wa/Da)C is not used.


129<br />

TABLE 5 ... 12<br />

Correlation D<br />

~ - ~ -<br />

Variances<br />

VARIANCES FOR CORRELArrIONS<br />

~ """,,",'" - - .<br />

D, ,E" F and G<br />

n= 1.0 0 .. 69 0.36 Overall<br />

Anchor l~99,968 816,612 85,009 65,685 1,l~67,2711_<br />

Paddle 13,033,313 1,020,554 350,049 149,878 14,553,794<br />

Propeller 2,378,861 183,678 27,797 33,224 2,623,560<br />

Turbine 3,523,715 498,lW-4 98,968 18,969 4,ll~0,096<br />

Correlation E<br />

''''' $_.' ~ .. _ ._, '1 t 10'_<br />

Anchor<br />

Paddle<br />

Propeller<br />

Turbine<br />

462,132<br />

11,955,325<br />

825,607<br />

3,626,963<br />

64,505 23,365 L~8,108 598,110<br />

171,730 216,953 197,267 12,541,275<br />

9,396 8,560 21,303 864,866<br />

89,211 68,535 35,171 3,819,880<br />

Correlation F<br />

.... ..<br />

Anchor<br />

Paddle<br />

Propeller<br />

Turbine<br />

12,079,618<br />

1,083,141<br />

3,588,125<br />

6.5,386 38,168 28,769 599,806<br />

179,633 215,336 149,272 12,623,859<br />

17,007 4,485 12,991 1,117,624<br />

83,508 51,796 23,842 3,747,271<br />

Correlation G<br />

Anchor 469,778<br />

Paddle 14,791,009<br />

Propeller 941,619<br />

Turbine 6,929,397<br />

99,403 27,708 30,913 627,802<br />

182,~_00 209,375 142,020 15,32l~,804<br />

11,548 5,831 14,168 973,166<br />

~-7,319 21,345 18,086 7,016,1~-7


1.30<br />

<strong>of</strong> the substantial improvement <strong>for</strong> the anchor and propeller<br />

correlation E is considered to be a better correlation than<br />

D.<br />

In comparison <strong>of</strong> correlation E with F there was no significant<br />

improvement <strong>for</strong> any impeller if all the <strong>fluids</strong> are<br />

considered.<br />

However, there is significant improvement <strong>of</strong><br />

fi t <strong>for</strong> the anchor and propeller 1


J 31<br />

CRAPTER 6<br />

DISCUSSTON OF RESULTS<br />

Experimental Data<br />

The errors in the measurement <strong>of</strong> the exper:tmen tal data<br />

1


1.3 2.<br />

The probable error in the calculated <strong>heat</strong> <strong>transfer</strong> coefficient<br />

was calculated <strong>for</strong> a typical rQn (Run 264 <strong>for</strong><br />

<strong>heat</strong>ing <strong>of</strong> glycerine) using the method described by Daniels<br />

( 50). The values <strong>of</strong> the experimental data and the associated<br />

errors are:<br />

Area<br />

6.20 ± 0.04 ft 2<br />

Batch ~\feight<br />

Initial Batch<br />

117.7 ± 0 .. 7 Ibs.<br />

Temperature 59.2 ± 003 °c<br />

Final Batch Temperature 68.2 ± 0.3 °c<br />

Initial Wall Temperature 89.5 ± 7.5 °c<br />

Final Wall Temperature 95.5 ± 7.5 °c<br />

Heat Capacity 0.64L~±' .. 019 Btu/lboF<br />

The <strong>heat</strong> <strong>transfer</strong> coefficient was calculated to be 115~<br />

22.1 (or.±. 19 .. 2 percent .. ) The probable error <strong>for</strong> this run<br />

vJas thus approximately ±.20 percent. This value 1,


133<br />

producibility was about ± 2 percent and <strong>for</strong> <strong>heat</strong>ing about<br />

± 4 .. 5 percent.. ~Jhile this data may not be statistically<br />

significant it roay give some idea <strong>of</strong> the reproducibility <strong>of</strong><br />

the present data.<br />

The merits <strong>of</strong> calculating the <strong>heat</strong> <strong>transfer</strong> rate from<br />

the temperature rise <strong>of</strong> the <strong>batch</strong> and the <strong>heat</strong> <strong>transfer</strong><br />

coefficient using wall thermocouples have been thoroughly<br />

discussed in Chapter 2.<br />

The Ne1.,.Jtonian fluid <strong>heat</strong> <strong>transfer</strong> data Has compared<br />

to the currently accepted correlations in the literature.<br />

The correlation <strong>for</strong> anchor agitators developed by BrOi"Jil et<br />

13.1. (32) i>Jas used to calculate predicted Nussel t numbers<br />

<strong>for</strong> the anchor data developed in this thesis. The actual<br />

measured Nusselt numbers are compared with the predicted Nusselt<br />

numbers in Figure 6-1.<br />

Most <strong>of</strong> the data points show a good<br />

comparison although on a fe1>J points <strong>for</strong> the <strong>heat</strong>ing <strong>of</strong> glycerine<br />

the measured Nusselt nU111bers are much greater than predicted.<br />

The arithmetic average deviation <strong>of</strong> all the points is ± 16 .. 6<br />

percent.. The one factor ""Thich would cause the larger deviations<br />

in the glycerine data ",muld be Bro",m's use <strong>of</strong> 0 .. 14.<br />

<strong>for</strong> the viscosity ratio exponent.<br />

The use <strong>of</strong> a higher exponent<br />

as suggested by Uhl (194) Hould probably reduce the<br />

error greatly.<br />

It must be noted here that Brown did not<br />

measure the effect <strong>of</strong> viscosity but accepted Chilton's value<br />

<strong>of</strong> 0.14.


134<br />

.,;'<br />

: :: :::: : ~ !~.<br />

, " . .' ..<br />

!inc 'ill<br />

~.


.3S<br />

The effect <strong>of</strong> using a 10"1 (0,,1.4-) exponent <strong>for</strong> the<br />

viscosi ty ratio also increases the error 1"hen comparing the<br />

eight inch by one inch paddle data (geometrically similar<br />

to Chilton) with Chilton's (39) correlation. Comparing the<br />

date to Chilton's equation there is an average error <strong>of</strong>l:<br />

16.3 percent. Uhl recalculated Chiltonts data and claLms<br />

that the exponent <strong>of</strong> the viscosity ratio should be 0 .. 2.4-<br />

instead <strong>of</strong> 0.14.<br />

Using l;'hl! s modification <strong>of</strong> Chilton I s<br />

equation there is an average deviation <strong>of</strong>± 11.1 percent<br />

between the predicted and measured Nusselt numbers.<br />

The<br />

results are plotted in Figure 6-2.<br />

The points are fairly<br />

evenly distributed along the line <strong>of</strong> perfect agreement.<br />

It ,,,ould be expected that the meaS1.U'ed values vJOuld be<br />

about 10 to 20 percent above the predicted values since Chilton<br />

did not use baffles. However, Chilton measL~ed<br />

the<br />

wall temperature at only one position, just opposite the<br />

impeller. This '--Tould lead to a measured driving <strong>for</strong>ce l--Thich<br />

lIms less than the actual value, causing the calculated<br />

Husselt nu.mbers to be greater than they should be.<br />

Naturally<br />

the correlation based on this data would predict Nusselt<br />

numbers which are too high.<br />

The propeller data were compared w~th Brown's (32)<br />

correlation and are plotted in FigLU'e 6-3. The average<br />

deviation is 26 .. 9 percent and thus the fit is not very good.<br />

ROV-lever, Brown t s correlation is only based on limited data,


T." ••••••• ,_ .....<br />

/.3 6<br />

S :.'<br />

1 '<br />

. "<br />

st4-H:HD4f:S++bH++BF+-4+~~. ui-.J::-,-.a~~j~~'-~f4,t-~?:--Tt---~~1(c-,_~t--!4:+ ........... -+_."'7"" ~~--'-".;+..'~ ..:........<br />

~ :L~~ ••.<br />

........<br />

. " ., .<br />

. . .. .<br />

; : ~<br />

: : . : : ; : ~ :<br />

• •• ~ t ' ••<br />

" t"·<br />

.... .... ~"-<br />

, : ::;::' : : :: : : ::: :::: :::: .:: ~<br />

:: :.<br />

.:<br />

-':~" ...<br />

:;: :.'<br />

........ ".<br />

. ::: ::::1. . .,<br />

C'U/LTO/V'J' £QUIITI<strong>of</strong>l/ (.3!3) MODIFIED BY Uhf (/94)<br />

tfiHv = 0.36 NJ£e ~ IfIpl'e ~ (%'W) 0.:2""


13<br />

7<br />

.. ':!:<br />

;:. : :<br />

::,<br />

• • . •. t" : : : . , : ::: ••..... : .. \<br />

:! ~: ::::~ ::.L:: .. , ~:.:::, .:::.:.: :::: 'f:: "',... I<br />

!Q I, II": ~j_l, ,:. ! I iL '),J1-, '_""j" , ' ,! '.! ___ ~ .. _. ,j I . ,i, .c!~."l,!.! ... , _ .!.~ I<br />

100 1.5 2 2.5 3 4 ;) 6 7 8 9 1000 1.5 2 2.5 3 4 5 6 7 8 9 1 (


38<br />

the cooling <strong>of</strong> nitration liquors at one speed, and although<br />

it is the only correlation available <strong>for</strong> propellers its value<br />

is limited ..<br />

The turbine data '!,vere compared I-ll th the correlation <strong>of</strong><br />

Brooks and Su (30) and CUYrrrr.d.ngs and it/est (~-9)..<br />

The results<br />

are shown in Figure 6-4..<br />

Compared Hith the correlation <strong>of</strong><br />

Brooks and Su there vias an average deviation <strong>of</strong> 27 percent,<br />

1\1'i th the measured ]')Tussel t numbers being less than the predicted<br />

values.<br />

The largest errors are due to the glycerine<br />

cooling runs and it is felt that these errors I-JQuld be<br />

greatly reduced if the viscosity correction factor exponent<br />

'


.3 9


140<br />

The average deviation <strong>of</strong> the measured l\fusselt numbers<br />

Hi ~h<br />

the prediction <strong>of</strong> Cu..rrrmings and \e1est I s correlation is<br />

19.5 percent 1'-1i th the measured values usually higher than<br />

predicted. This is reasonable since the correlation is<br />

based on data taken in an 1L.~baffled<br />

vessel '\


11-1<br />

<strong>of</strong> variables. A total <strong>of</strong> 616 data points were taken,<br />

163 <strong>of</strong> which were used <strong>for</strong> screening the variables to<br />

be studied and evaluating the effect <strong>of</strong> impeller height.<br />

The remaining 453 data points were used to evaluate<br />

the constants <strong>of</strong> the correlations presented in the previous<br />

chapter..<br />

Eleven different impellers representing the<br />

fOl.ll'" major types in common practice 1..Jere used in collecting<br />

the 4.53 points. The range <strong>of</strong> application is wide since<br />

<strong>pseudoplastic</strong> as Hell as Newtonian <strong>fluids</strong> 1,rere used.<br />

The<br />

use <strong>of</strong> multiple-variable regression analysis Has a<br />

valuable tool in reducing hcunan error and subjectiveness<br />

in the calculation <strong>of</strong> the correlation constants.<br />

The measurement <strong>of</strong> the wall temperature at three<br />

different locations gave evidence <strong>of</strong> the considerable<br />

difference in <strong>heat</strong> flux in diff'erent positions in the<br />

vessel. Although the ef'fect was not quantitatively studied<br />

it is the f'irst tLme it has been reported; and this opens<br />

the door to a possibly fruitful field <strong>of</strong>' study.<br />

It has<br />

been shown that the variations in local <strong>heat</strong> <strong>transfer</strong><br />

rates can be minimized by proper location <strong>of</strong>' the impeller.<br />

The vertical position <strong>of</strong>' the impeller Has shown to<br />

have a large ef'fect on the Nusselt number in the range<br />

studied, ie. f'or impeller height/liquid heie~t<br />

ratios be-


42<br />

tween 0.25 and 0.58. L~~l had reported ~n 18 percent difference<br />

in Nusselt nu..l11bers <strong>for</strong> an impeller in hw different locations<br />

a..D.d a fev1 authors had mentioned that hi'>.:her <strong>heat</strong> transf~r<br />

rates Here achieved <strong>for</strong> certain impeller locations but the<br />

effect had not been studied qua.nti ta ti vely.<br />

The effect <strong>of</strong><br />

height variation may have a considerable signific8~ce<br />

since<br />

changes in the impeller height cause minimal if not neglirible<br />

changes in pOHer requirements.<br />

The model proposed in Chapter 3 results in a dLmensionless<br />

equation which acclJ.rately characterizes the <strong>batch</strong> <strong>heat</strong><br />

<strong>transfer</strong> system as sh01~m by the good fi t achieved. Thus the<br />

model itself may be inferred to be a fairly accurate portrayal<br />

<strong>of</strong> the :mechanism<strong>of</strong> <strong>heat</strong> <strong>transfer</strong> in an agitated vessel.<br />

To<br />

be more specific~<br />

the center core <strong>of</strong> tIle fluid is in turbulent<br />

flm! Hi tll. thorough mixing <strong>of</strong> the fluj e3 in this region. In<br />

addi tion to tlJrbulence in the impeller region, the impel10r<br />

produces bulk fluid .flow, largely axial. This results in<br />

fluid flov~<br />

alon!:. the cylindrical <strong>heat</strong> tra..Ylsfer surface in<br />

the vertical direction. At the wall surface the flu:td is<br />

motionless.<br />

There is a velocity gradient in the radial<br />

direction. Heat is <strong>transfer</strong>red across the stagnant fluid<br />

layer at the Hall by conduction 8Jld is then <strong>transfer</strong>red by<br />

diffusion and bulk floH into the turbulent core.<br />

TI'le controllinG<br />

factor in the rate <strong>of</strong> <strong>heat</strong> <strong>transfer</strong> is thus a<br />

stagnant layer at the Hall. An increase in the bulk rImA)"<br />

rate through the eye <strong>of</strong> the impeller (by increasine; im-


LfJ<br />

peller diameter, l,~idth,<br />

or speed) causes an increase in<br />

the velocity <strong>of</strong> the fluid near the lfJall..<br />

This results in<br />

greater momentlL111 <strong>transfer</strong> in the radial direction Itli th a<br />

subsequent decrease in the thickness <strong>of</strong> t.c"I-J.e stagnant layer ..<br />

Comparison <strong>of</strong> Correlations<br />

* 1 .. w « ' p ... . _$ ",' -'1' 'M - -"-<br />

The data was correlated by equations representing tvw<br />

different approaches, theoretical and semi-empirical. The<br />

best equation <strong>of</strong> each type 1~ill<br />

be compared v,Ii th each other<br />

later in this chapter, but first their common characteristics<br />

v-rill be mentioned..<br />

One characteristic is that they both revert<br />

to the cornmonly accepted correlations :<strong>for</strong> NeHtonian<br />

:fh:tids <strong>for</strong> the case <strong>of</strong> n equal to unity..<br />

This is not the<br />

case lvi th ma..ny correlations, an eXE'uuple being the correlation<br />

<strong>of</strong> Blanchard and Chu (22) <strong>for</strong> the prediction <strong>of</strong> <strong>batch</strong> <strong>heat</strong><br />

trans:fer <strong>coefficients</strong>.<br />

The accuracy <strong>of</strong> the cOl'"'relation in reproducing the experimental<br />

data is very good, the average error <strong>for</strong> all :<strong>fluids</strong><br />

is in the ra..n8e <strong>of</strong> 9 to 14 percent Hi th the greatest average<br />

deviation being :<strong>for</strong> the most <strong>pseudoplastic</strong> fluid in the range<br />

<strong>of</strong> 13 to 20 percent. In no insta..nce is the average error<br />

o:f the correlation in representing the data greater than the<br />

error in the determination <strong>of</strong> the <strong>heat</strong> <strong>transfer</strong> coe:f:ficient.<br />

Both the theoretical and semi-empirical correlations<br />

are based on a more fundamental fO~Uldation<br />

than are the<br />

previous correlations :<strong>for</strong> the prediction <strong>of</strong> <strong>batch</strong> <strong>heat</strong>


144<br />

<strong>transfer</strong> <strong>coefficients</strong> to non-Nel A ltonian <strong>fluids</strong> to<br />

As mentioned<br />

in Chapter 2 Blanchard's viscosi t-y ratio shol,rs a misunderst~nding<br />

<strong>of</strong> the flow in an agitated vessel since he considers<br />

the shear rate at the l,fall to approach infL""li ty 1.[hile in<br />

actuality it~<br />

is 101,f compared to the shear rates near the<br />

impeller (127). The consistency term used by Sal~mone et<br />

al .. (165), (m:gcKS n - l ) is valid <strong>for</strong> pipe flow (the "8 11 is<br />

introduced du..ring the development <strong>of</strong> the equations <strong>for</strong><br />

fluid flm>! through conduits); hov.rever, the !lSlI does not<br />

have any significance in a stirred vessel. The semiempirical<br />

development in this thesis shows that the factor<br />

11 .. 5 n - l in equation 2-25 has no fundamental basis but it<br />

does successfully correlate the average shear rate with<br />

the impeller speed and thus has empirical significance.<br />

The correlations discussed progressed from a highly<br />

theoretical correlation (Correlation A) to a highly empirical<br />

correlation (Correlation G).<br />

If the two extremes<br />

are compared by the F test on the overall variances Correlation<br />

A is as good as Correlation G <strong>for</strong> all impellers<br />

except turbines. Correlation A is sig:..n.ificantly better<br />

than Correlation G <strong>for</strong> turbines. Hm-rever, these results<br />

are biased in favor <strong>of</strong> the theoretical equation because <strong>of</strong><br />

the large amount <strong>of</strong> Ne'lAJtonian fluid data, <strong>for</strong> v.Jhich Correlation<br />

A is slightly better..<br />

If each type <strong>of</strong> fluid <strong>for</strong><br />

each impeller is tested, COl"'rela tion G is significantly<br />

better than Correlation A in five <strong>of</strong> the tv.Jelve non-Newtonian


11-5<br />

fluid-1m.peller categories..<br />

although not significp~tly<br />

In three others it is better,<br />

better at the 90% level. In<br />

the remaining four categories the correlations have about<br />

the same accuracy..<br />

In the fO'llr Nevltonian fluid categories"<br />

Correlation A is significa..ntly better than Correlation G<br />

<strong>for</strong> the w.rbines only.<br />

Thus the author believes that<br />

Correlation G is to be recommended over Correlation A, so<br />

far as predictive power is concerned.<br />

Correlation C, a slightly modified <strong>for</strong>m <strong>of</strong> the theoretical<br />

Correlation A, in the previous chapter was sho~m<br />

to<br />

be the best <strong>of</strong> the three theoretically based correlations ..<br />

If Correlations C and G are compared by the values <strong>of</strong> the<br />

errors realized liJhen using them the hio equations are about<br />

equal.<br />

In general correlation C fits the data slightly better<br />

than correlation G although the latter fits the data <strong>for</strong> n=<br />

0 .. 36 somewhat better than does the <strong>for</strong>mer. Comparison <strong>of</strong><br />

the var:i,ances shows that there is significant improvement<br />

<strong>for</strong> this fluid Hhile the remainder <strong>of</strong> the points are represented<br />

equally 'Hell by ei ther correlation..<br />

The improvement<br />

in this one case is probably due to the variable exponent<br />

on the consistency ratio.<br />

Comparison <strong>of</strong> correlation C Hith correlation E elbninates<br />

the improvement due to the variable exponent <strong>for</strong> the consistency<br />

ratio and is a good method <strong>for</strong> comparing the tI.ro different<br />

apparent viscos i ties..<br />

Comparison <strong>of</strong> the average errOl'S and<br />

variances shoHS that there :is no difference in the accuracy


16<br />

<strong>of</strong> fit and it may t...here<strong>for</strong>e be concluded that bot.h. methods<br />

can be used to characterize the apparent viscosity with equal<br />

success ..<br />

The use <strong>of</strong> the semi-empirical equation is some1tlhat<br />

easier; because there are only tlNO constants, lNhich vary<br />

from impeller to impeller.<br />

Some <strong>of</strong> the constants in the<br />

theoretical equation could be averaged but there are large<br />

variations in the Reynolds nu..mber exponents vJhich would lead<br />

to rather large errors if averaged.<br />

It may be argued, h01;J'­<br />

ever, that Hhether theT'e are tlNO or five constan"ts, one l'11"ill<br />

probably have to look them up and thus the actual number<br />

<strong>of</strong> constants is limnaterial.<br />

The Correlation C has a distinct advantage over Correlation<br />

G since it has a fundamental basis. The use <strong>of</strong> l/(n + 1)<br />

as a factor in the exponent <strong>of</strong> the Reynolds number <strong>of</strong> the<br />

semi-empirical equation has no fundamental basis. The use<br />

<strong>of</strong> 1/nO.75 in the exponent <strong>of</strong> the consistency ratio was<br />

purely empirical also.<br />

It is thus the belief <strong>of</strong> the author<br />

that Correlation C is the better <strong>of</strong> the two correlations<br />

and is recommended <strong>for</strong> use.


147<br />

COlllC LUSI ONS<br />

1. The tBeoretieal m0ael proposed i~ ~apter 3 suecess~lly<br />

eerrelates the <strong>heat</strong> <strong>transfer</strong> data.<br />

2.. The use <strong>of</strong> Metzner! s apparent viseesity,A:: K (11 .. 5 N) (n-l),<br />

can be used to successfully characterize the fluid behavi0r<br />

<strong>of</strong> pC)'I-Jer law pseud0plastics being <strong>heat</strong>ed or eeeled<br />

in an agitated vessel.<br />

3. The Nusselt number <strong>for</strong> Newteni~ <strong>fluids</strong> ~d power law<br />

pseudoplasties CaB be predicted by ~ 5<br />

N/l/v == C NR~{Yr.m/+')+h) N;~ C(/f) (~) e r-r:tL<br />

) /)1<br />

w u " (E.-I)<br />

where NRg aRd Np~ are calaula ted using ,~«.,. = KN • Th.e<br />

constants vary with the impeller type and <strong>for</strong> the ~peller<br />

height r~tios 'specified i~<br />

Table 5-1 the values are:<br />

C a b c d e f g<br />

Anchor 0 .. 56 1 .. 43 -0 .. 04 0.30 0 .. 34 0 .. 54<br />

Paddle 2.51 0.96 0.15 0.26 0.31 -0 .. 46 -0 .. 46 0.56<br />

Propeller 0.55 1.28 0 .. 04 0 .. 30 0.32 -0.40 1.32<br />

Turbine 3.57 1 .. 25 0 .. 002 0 .. 24 0.30 -0.13 0.61 0.78<br />

4. For the specified heights the Nusselt number can also be<br />

pr/l61:ic:ed<br />

C b: 1<br />

/1/ A/I/ fVR Alp-"'i € f( w LDa..! (bttl )<br />

I (.3Ycot7V+ 1)) I 0. 28(1( )o.3ojm 1 (Dt 1-D..50;'W~J:: .v<br />

1 . ( ~ )n-l<br />

where N Re and Np~ are calculated using~ :: K 11.7N ..<br />

The exponent 6f the Dt/D a<br />

term is net applicable to tae<br />

anchor agitator and ti~ exp~nent <strong>of</strong>· the WalDa term is<br />

mot applicable to the anchor or propeller because there


148<br />

'tvas insufficient data to evalua.te these constant.s ..<br />

The value <strong>of</strong> C and a V'a:J!'Y with the impeller type and<br />

c ..<br />

Anchor 0 .. 74 1 .. 43<br />

Paddle 2.00 1.96<br />

Propeller 0.86 2.51<br />

Turbine 3.09 2.06<br />

5.. The above correlations predict the <strong>batch</strong> side <strong>heat</strong><br />

<strong>transfer</strong> coefficient lNi thin + 20 percent :<strong>for</strong> all pO't


149<br />

REe Ol'ifHENDAT IONS<br />

1.. The correlations given in the Conclusions should be<br />

used ror the prediction or <strong>batch</strong> <strong>heat</strong> <strong>transfer</strong> <strong>coefficients</strong><br />

provided the situation has been covered by<br />

the range <strong>of</strong> variables stUdied.<br />

2. A thorough study should be made regarding the variations<br />

or local <strong>heat</strong> tr~nsrer<br />

rate and the variables arfectLng<br />

the same ..<br />

3. The range or the present study should be extended to<br />

include unbarrled vessels and systems using coils as the<br />

<strong>heat</strong> transrer surrace ..


50<br />

A :::<br />

Apr ...<br />

B :::<br />

C p<br />

:::<br />

CPr :::<br />

D :::<br />

TABLE OF NOIVJE1'l,CLATURE'<br />

ENGLISH ALPHABET<br />

----------~' . .<br />

Heat Transfer Area<br />

Constant in Prandtl eq. 2-18<br />

Constant in Powell-Eyring equation<br />

Heat capacity<br />

Constant in Prandtl equation, eq. 2-18<br />

Pipe or tube diameter<br />

Da<br />

:::<br />

Dc ==<br />

Impeller dim.~eter<br />

Diameter <strong>of</strong> coil tubing.<br />

DR<br />

:::<br />

Dia~eter<br />

<strong>of</strong> coil helix<br />

Dt ""<br />

F =.<br />

Vessel diameter<br />

Statistical parameter<br />

gc :::<br />

Dj~ensional<br />

(ft/sec. 2 )<br />

conversion factor, 32.17 (lbm!lbr)<br />

gz : Acceleration due to gravity in z direction<br />

HC ::: Clearance betv.reen bottom <strong>of</strong> agi tator and vessel<br />

bottom<br />

H CH<br />

::: Height <strong>of</strong> center <strong>of</strong> impeller (vertical direction),<br />

above vessel bottom<br />

HL ::: Height <strong>of</strong> liquid<br />

HV = Depth <strong>of</strong> vortex (inches)<br />

h ::: Average <strong>heat</strong> <strong>transfer</strong> coefficient <strong>of</strong> <strong>batch</strong><br />

lit = Pseudo <strong>heat</strong> <strong>transfer</strong> coefficient defined in eq. 4-13<br />

hb ::: Height <strong>of</strong> bob or spindle <strong>of</strong> rotating cylinder viscometer<br />

h f ::: Beat <strong>transfer</strong> coefficient <strong>of</strong> fouling material


lSI<br />

:::<br />

...<br />

:::<br />

Local <strong>heat</strong> <strong>transfer</strong> coefficient<br />

Heat <strong>transfer</strong> coefficient <strong>of</strong>' jacket medium.<br />

Conversion factor <strong>for</strong> mech&~ical to <strong>heat</strong> energy ~<br />

2.39 x 10- 8 cal/erg<br />

K<br />

Fluid consistency index, pOi-ver lal-J equation<br />

:::<br />

=<br />

::<br />

=<br />

::::<br />

Oonstant in eq. 2-19<br />

Fluid consistency index evaluated at wall temperature<br />

Thermal conductivity <strong>of</strong> <strong>batch</strong> fluid<br />

Therm~l<br />

conductivity <strong>of</strong> the metal wall<br />

Thickness <strong>of</strong> metal resistance<br />

:::<br />

Torque<br />

=<br />

Function <strong>of</strong> fluid consistency index, m ::::<br />

m evaluated at l.rall temperature<br />

K<br />

8 n - l<br />

Number <strong>of</strong> data points<br />

N :::<br />

:::<br />

n ...<br />

:::<br />

Rotational speed in revolutions/sec. or revolutions/min.<br />

11aximum rotational speed <strong>of</strong> viscometer (RPI'1)<br />

Flm1 behavior index in power la1AT<br />

Slope <strong>of</strong> logarithmic plot <strong>of</strong> \Forque versus RPI'1<br />

'If<br />

TIa<br />

::: Number <strong>of</strong> blades on impeller<br />

= Reference number <strong>of</strong> blades on impeller<br />

Number <strong>of</strong> baffles<br />

Neference number <strong>of</strong> baffles<br />

::: P01AJer<br />

p ::: Pressure<br />

:::: Dimensionless pressure defined by eq. 3-14<br />

::: Pressure at a particular position


52.<br />

Q ::. Average <strong>heat</strong> <strong>transfer</strong> rate<br />

QL ... Local <strong>heat</strong> <strong>transfer</strong> rate<br />

ql'1 :: Rate <strong>of</strong> mechanical <strong>heat</strong> input<br />

qNET :: Net <strong>heat</strong> tra.11.sfer rate through <strong>heat</strong> <strong>transfer</strong><br />

s'tlrface<br />

:: Rate <strong>of</strong> <strong>heat</strong> input to <strong>batch</strong><br />

:: Radius <strong>of</strong> vessel<br />

:: Radius <strong>of</strong> bob<br />

:: Radius <strong>of</strong> cup<br />

~ :: Pulley radius (Dynrunometer)<br />

:t'R .,. Sum <strong>of</strong> all <strong>heat</strong> <strong>transfer</strong> resistances except<br />

<strong>batch</strong> resistance<br />

I:;Rc :: Sum <strong>of</strong> all <strong>heat</strong> <strong>transfer</strong> resistances except <strong>batch</strong><br />

resistance in cooling cycle<br />

::<br />

Sura <strong>of</strong> all <strong>heat</strong> <strong>transfer</strong> resista.nces except <strong>batch</strong><br />

r<br />

r ~~<br />

.. ~(~Cr<br />

S<br />

S<br />

T<br />

~~<br />

T"<br />

Tb<br />

Ts<br />

Ts<br />

::<br />

::<br />

:::<br />

...<br />

""<br />

::<br />

::<br />

=<br />

::<br />

::<br />

resistance in <strong>heat</strong>ine; cycle<br />

Value <strong>of</strong> radical coordinates<br />

Dliuensionless radius defined by eq. 3-38<br />

Dlffiensionless radius defined by eq. 3-10<br />

Dynamometer scale reading (lbs)<br />

Ratio <strong>of</strong> cup radius to bob radius, Rc/Rb<br />

Temperature at any point<br />

Dimensionless temperat'tITe defined by eq. 3-16<br />

Temperature in bulk <strong>of</strong> fluid<br />

Torque<br />

Hall surface temperature


5..3<br />

T,.J<br />

= Tempera tUre ax thermocouple<br />

.6T o ::: Temperature driving <strong>for</strong>ce betHeen <strong>batch</strong> and <strong>heat</strong><br />

<strong>transfer</strong> mediu:m<br />

hTs-b = Temperature drop be~~een<br />

wall surface and <strong>batch</strong><br />

A T w<br />

_ b<br />

::: Temperature drop bet1rJeen measured point in wall<br />

and the <strong>batch</strong><br />

l) T\:Ar_s = Temperature drop bet"reen measured point in ",raIl<br />

and wall surface<br />

~Tl_2:::<br />

Change in temperature <strong>of</strong> <strong>batch</strong> over time interval<br />

1-2<br />

t<br />

"<br />

t'~<br />

~<br />

U<br />

V<br />

V<br />

Vb<br />

Ve<br />

Vr<br />

Vr *.<br />

·~,~it-<br />

Vr<br />

V z<br />

.. ~~ ..<br />

V z<br />

H<br />

1'1'<br />

'a<br />

T.:Jb<br />

= Time<br />

::: Dliaensionless time defined eq. 3-15<br />

::: Terminal blend time (seconds)<br />

= Overall <strong>heat</strong> <strong>transfer</strong> coefficient<br />

= Average velocity in pipe or tube<br />

= Characteristic velocity = 11])&<br />

::: Linear velocity <strong>of</strong> bob<br />

= Velocity in angular direction<br />

::: Velocity in radial direction<br />

::: Dimensionless Vr defined by eq. 3-39<br />

= DL~ensionless Vr defined by eq. 3-12<br />

::: Velocity in vertical direction<br />

= Dimensionless V z defined by eq. 3-13<br />

= Height <strong>of</strong> <strong>batch</strong><br />

= Width <strong>of</strong> agitator<br />

= Width <strong>of</strong> baffles


Xc = Function <strong>of</strong> Reynolds nL:l.m.ber, eq. 2-4.4<br />

X·<br />

J = Function or Reynolds nmnber, eq .. 2-1t5<br />

z .. Value <strong>of</strong> height coordinate<br />

~~<br />

z = eq.<br />

DL'11ensionle ss height defined by 3-11.


ISS<br />

GROUPS<br />

-- ~ - - .' - --,<br />

:DIHEl~SIONLESS<br />

11 Fr<br />

NNu<br />

NPe<br />

Npo<br />

N pr<br />

N' _lpr<br />

=<br />

:::<br />

=<br />

=<br />

Froude nUInber ::: V 2 /g z Da or DN 2 /g c<br />

Nusselt nmnber = ~~/k<br />

Peclet number (Cp V P Dalk )<br />

Power nur.1ber ::: Pgc/ p N3Da5<br />

Prandt.l number, Cpft/k<br />

Generalized Prandtl n~mber calculated using<br />

apparent viscosity = K (11.5 N)n-l<br />

N II<br />

Pr<br />

- Generalized Prru1.dtl number calculated using<br />

apparent viscosity::: Klf-- l<br />

2<br />

= IvIixing Reyno Ids number, D ).1 e<br />

= Generalized Reynolds nrunber, calculated using<br />

apparent viscosi ty ""<br />

K (11 .. 5N)n-l<br />

::: Generalized Reynolds number calculated using<br />

apparent viscosity = KN n - l<br />

= Generalized mixing Reynolds number defined by<br />

eq. 2-27


IS6<br />

G REE:>{ ALPHABET<br />

0 ::: Value <strong>of</strong> angle <strong>of</strong> rotation coordinate<br />

JL ::: Newtonisn viscosity<br />

/La.<br />

::: II c' n-1<br />

Apparent vis cosi ty defined by 1I1etzner,t-OW<br />

f<br />

,.. :::<br />

"'-W<br />

1;tz<br />

?'Z.z.<br />

Infinite shear-rate viscosity evaluated at wall<br />

temperature<br />

;:::<br />

Density<br />

Shear stress<br />

,., Shear stress at wall<br />

::: Shear stress in z direction at constant radius<br />

c<br />

Shear stress in z direction at constant z<br />

~<br />

lOt Shear rate<br />

iw<br />

::: Shear rate at i


A,PPENDIX A<br />

FLUID PROPERTIES<br />

Th~ d~ensi@~less g.ro~ps used to correlate seat<br />

t·ransf'er data include i'0U.:i? fluid :properties; viscosity II<br />

ther.mal conductivity, <strong>heat</strong> eapaeitys amd &ensity. Literature<br />

values i'or these properties were used when they were<br />

available and the remainder 'i'lfere m.easured.<br />

The tem.pera~eaependent<br />

i'luid properties were expressed as a i'unetion oi'<br />

temperature.<br />

VISCOSITY<br />

.. I<br />

For Newtoniaa correlations the rheological behavior<br />

<strong>of</strong>' the <strong>fluids</strong> is expressed im terms <strong>of</strong>~ s the viscosity<br />

coefficient. Since this study includes n0n-Newtoni~<br />

<strong>fluids</strong> <strong>for</strong> which the term viscosity is meaningless, the<br />

rheological behavior is described by the two constant,<br />

power law equation. The fluid properties which are<br />

measured are the flow behavior index, m" and the fluidconsistency<br />

index, K.<br />

The apparent viscosity <strong>for</strong> all the<br />

<strong>fluids</strong> used is thus given in teJ:"'l1ilS <strong>of</strong> :m. and K.· For use<br />

n-2<br />

in. the dlmensionless groups K has the umits Ibo m<br />

sec. /i't.<br />

and n is dimensionless.<br />

NewtoniaE. Fluids<br />

r '1 f<br />

The flew behavior index <strong>for</strong> all Newtonian i'lui~s<br />

UNity and thus does not have to be determined. The i'luid<br />

eOl1lsisteney iRdex is equal to the Newtonian viscosity<br />

is


158<br />

coefficient. Thus, <strong>for</strong> the water and glycerine it was<br />

only necessary to evaluate the viscosity coefficient and<br />

express it in the correct units.<br />

The viscosity <strong>of</strong> l-Iater \·ras determined from Bingham t s<br />

equation <strong>for</strong> the fluidity, ( ¢ ), <strong>of</strong> water as a fUl~ction<br />

<strong>of</strong> temperature (17).<br />

¢ = 0.021~-B2 [(T-8.L~35) + j8078.~. + (T-8.435)2] - 1.20 (A-l<br />

\.Jhere ¢ is expressed in centipoise -1 and<br />

T is the temperature in degrees Centigrade.<br />

The relationship betl-Jeen fluidity and viscosi ty is<br />

jl = l/¢<br />

(A-2<br />

The fluid consistency index in the proper units is obtained<br />

by multiplying the viscosity in centipoise by<br />

6.72 x 10-4<br />

K = 6.72 x 10-4p<br />

(A-3<br />

The viscosity <strong>of</strong> 93.7 percent clycerine was graphically<br />

interpolated from data <strong>of</strong> Segur and Oberstar (177) and is<br />

given in Table A-l.


S9<br />

TABLE A-l<br />

VISCOSITY OF 93.7 PERCE1~<br />

GLYCERIN~<br />

Temperature<br />

(oC)<br />

Viscosity<br />

(Centipoise)<br />

0 2760<br />

10 982<br />

20 413<br />

30 193<br />

L~O 99<br />

50 56.5<br />

60 34 .. 1<br />

70 24 .. 7<br />

80 15.3<br />

90 10 .. 9<br />

100 7.9<br />

trhe data vrere assumed to fit an equation <strong>of</strong> the type e<br />

(A-4<br />

and Here plotted as the logarithm <strong>of</strong> f/ versus the reciprocal<br />

<strong>of</strong> the absolute temperature $<br />

The curve 'L,ras not linear<br />

but a straight line viaS drm·m through the firs t<br />

three<br />

points (corresponding to 100, 90 and 80 °C) and extended<br />

as Sh01·ffi on Figure A-l.<br />

The difference be tvJeen the data and the stl"aight line<br />

<strong>for</strong> any temperature \Vas measured and defined as f to give<br />

equation A-5.<br />

These differences are given in Table A-2.<br />

jJ :: A10 B / T + f<br />

(A-5


160<br />

,<br />

., I ..<br />

: I :. '. • • !. ::! ::; : II' : ',':: :::! ~::: lfi I : 1 : ~ . f ., :;': ~!: I: ':. : ::: j :::, :! i 1 ",' !,: :,: :. :1'<br />

. " ., • ., ' .! • ," " .'. ':,1'<br />

" ..<br />

1 :." • ,.. ".. '. ".' '. '.',<br />

j .: , ... , , . " i." . i·1 . ' 'j<br />

~.<br />

., .. ! .. ··'JI·l·; ,1" I' ,,;.,.<br />

!:'" !,:<br />

i'l' " "<br />

:T :::;.;<br />

,I-. ... , ,. .... '.<br />

t;..: .;:' ., ., ,. ." '1'" .. :., . ,,1·£<br />

" V::<br />

;<br />

~. ;. j I ..... ,<br />

. .!. ,.<br />

I . . :. ..'. . : ! ; l , . .. . l' . 1 , ~ j :<br />

~ 1" :::1: :~ ::i ;iI;i;; '. ! ::'1 ;,'1' ": . ,. i:J<br />

: ~ ': , .. . I . : , V ' ; " ;:. i ;'<br />

: ',' : : j 1<br />

... , i i' . . .. ..<br />

~ .:, .:):/: ::'h li: J<br />

l :ij 'I: il":'I·!::.i,,; :,;:'~'. ":':1:,1<br />

~


6/<br />

TABLE A-2<br />

CORRECTION FACTORS FOR GLYCERINE VISCOSITY<br />

EQUATION<br />

Temperat1Jll:'@l liT f'<br />

(eC) (ex- 1 ) (eeJ5lt-1~(l)is$)<br />

100 2 .. 68 x 10- 3 0<br />

90 2 .. 75 x 10 -3<br />

0<br />

80 2 .. 83 x 10- 3 0<br />

70 2.91 x 10- 3 0 •.5<br />

60 3 .. 00 x :LO -3 3.0<br />

,50 3 .. 09 :x 10- 3 9 .. ,5<br />

L~O 3 .. 19 x 10"'3 27<br />

30 3.30 x 10- 3 '71<br />

20 3.41 :x ].0 -3 222<br />

10 3 .. 53 x. 10- 3 6:>67<br />

~e eerreetion f'aeter was p10tted versus liT ~d<br />

f'ouad to deseribe a straight liJ5le on semileg pa~er (Figure<br />

A-2). It eould thus be expressed<br />

i' := C 10 D/T<br />

(A-6<br />

T1:le i'our eonstaJ.fl.ts were evaluated as<br />

A ::: -4.14.5<br />

B ::: 1.88 x 10 3<br />

C ::: -12 .. 23


162<br />

I ,<br />

. I .<br />

"I<br />

'1<br />

I<br />

i<br />

I<br />

1 I<br />

1· '; I<br />

I<br />

II<br />

ii<br />

I<br />

. I<br />

I<br />

10 J<br />

.<br />

I·<br />

"<br />

i·:::<br />

::<br />

1:::<br />

I .... .., , , , :V:: I' '.. :'::1:<br />

I : J:::<br />

i ., .<br />

I<br />

j:IY;':,:<br />

,;: ,! I ;, :<br />

I, II I '!, : .<br />

: iii<br />

9 :1': : .. ' :1.: :j:.', ,I::' ........ 1<br />

. '1;<br />

i: , ,<br />

t, !<br />

1:<br />

3<br />

L:<br />

'.<br />

. !


6..3<br />

expressed as<br />

-5 1880 13 h270<br />

7.17 x 10 x 10 T + 5.81 x 10- x 10 ~ {A-7<br />

1-Jhere ft is expressed in centipoise and T in degrees Kelvin.<br />

Expressing the viscosity in the proper tel~s ru~d converting<br />

the temperature term to degrees Centigrade gives<br />

K = 6.72 x 10-4 [ 7.17 x 10- 5 x 10<br />

4270 Jl<br />

10 273+ rt<br />

1880 13<br />

273 +T + 5 .. 81 x 10- x<br />

{A-8<br />

This equation was solved <strong>for</strong> the temperatures listed in Table<br />

A-I and reproduced the data to Hi thin ± three percent.<br />

Non-Newtonian Fluids<br />

Carbopol solutions have been reported to be well represented<br />

by the pov.Jer lavr (63, 165) but the fluid consistency<br />

index and flolN behavior index have not been determined <strong>for</strong><br />

a ll1Tide range <strong>of</strong> concentrations.<br />

Furthermore, the Carbopol<br />

resin seems to vary slightly. The method <strong>of</strong> solution preparation<br />

and the degree <strong>of</strong> neutralization seem to effect<br />

the values <strong>of</strong> the flmr! behavior properties. Thus it was<br />

necessary to measure these properties.<br />

"<br />

The flow properties Here measured using a Brookfield""<br />

LVT-5x-600 Synchro-Lectric Viscometer equipped vd th cylindrical<br />

spindles.<br />

This model has eight different speeds<br />

<strong>of</strong> rotation; 3, 6, 15, 30, 60, 120, 300, and 600 revolutions<br />

-l~<br />

Trademark <strong>of</strong> Brookfield Engineering Laboratories


64<br />

ncr --~iIluto e<br />

torque <strong>of</strong> the ins trDI'10n t, 1Jl-:.:i.cll <strong>for</strong> t1:, i s nodal 336P.5<br />

d-:rne centi:'leters. The fl~:cicl contLineI' used UD"l [' 600 "'ill.<br />

The shenr roto 2~ ~10 8vrf 0 cP <strong>of</strong> t~o opindlo c~n bo<br />

c[llcnlntod from<br />

w~ere N is t~e rotn~ion~l 8pcod <strong>of</strong> tho snindle o~pr0330d<br />

8.3 r0vC',J;'.tions por :r1innte (or 38 conel depondin2; npon the<br />

V,(,. A']" lOr< .J th0. .l. _~ "'l"pe '_-J • ~) __ ~-' ".0 \....Jl. ("<br />

10~nriUTIic Dlot <strong>of</strong> tho tor~ue<br />

verSHS tho rototionnl speed <strong>of</strong> tl,o s}JindIe.<br />

nec;l:L sible A.nd oClun.tion 2-11 :11'l;{ be .'3 :iJllplif i e d to<br />

(2-12<br />

(2-5<br />

1-!hore Ts , l8 tho torql.l.e<br />

• 1<br />

renUlroc, to rot8.to the sp:i.mlle<br />

Bb is the r'Jdi'18 ,)f tho sp in ell e 01'"<br />

bob


6S<br />

some R~en~ ~t the onds <strong>of</strong> t~8 suindle 2nd therefnro the<br />

, ., -l-. 1<br />

310 l ~n '-', l.le' 2.8 disCU3'Jnc 1 in Chaptor 2. Theref-:;re<br />

(A-9<br />

dr~ 'J cri bed in Cho.pter 29 ·US inr; n Droolcfii31d vi s cos :tty<br />

8t'~n(lcrd,<br />

L-3, <strong>of</strong> ,Thich the visco8i ty 1Tas repnrtod to be<br />

dI'll ro:::dlnS In perc~nt,. X, ',-188 V'on c~tlc111['ted <strong>for</strong> e"eh<br />

snindle usinc the eff'ectivo hei rr ]:1t.<br />

T8.ble A-3.<br />

These 2.n' list0d in<br />

TriBLE A-3<br />

CI;:AnAC':L'ERLj';.'ICS c.:;t' B~OOEF'ISLD<br />

SFIFDLES<br />

CYLID) fUCAL<br />

3FIlTDLE Il.."lDILJS lIEIG1S EF:!?EC~IVE I=EI1J.JIJ; :3~~:S!l.R<br />

( dpl.o S / cn )<br />

(~r~"'f1.nr< ... ,<br />

o .l.l'Li2.J0 '~.J<br />

rTU: iLsn ( e:'1 ) ( cn) (err:, ) / 2<br />

1 0.9L12 6 c::?<br />

"/'- 7. 7L~ 0.782X<br />

2 0.513 5.30 6.11 3.35x<br />

3 o. 29L~ Lt .• 28 L!._ 95 12.52X<br />

4 0.159 3.10 3.62 53.6ox<br />

rrornue - 'c - V'''''''''l)''' .~~,-, •.•). ro+-' 10.'. t·; J. 0-- L·. 1 "1 °p"od ,,-, 'G ("0 ,.), 0, LO 120 :II J ')00 8.nc 1<br />

600 RPM) dnta was taken in triplicate <strong>for</strong> each fluId at


166<br />

rive different temperatures; about 17~<br />

25, 40, 60 and 82 °e.<br />

The fluid Has maintained at the desired temperature by<br />

iramersing the 600 ml ..<br />

beaker in a constant temperature<br />

bath..<br />

The constant temperature bath was placed on a magnetic<br />

stirrer (the stirring bar Has in the 600 ml.. beru-rer)<br />

which was run l'lhile bringing the fluid up to temperature,<br />

but Has shut <strong>of</strong>f while rheological data 14ere being taJcen.<br />

The temperature could be held constant 1AJ"ithin 0.1 degree<br />

Centigrade,<br />

A grooved cast acrylic lid was also fabricated<br />

to cover the 600 mI. beaker Hhile the Carbopol solutions<br />

were at the higher temperatures to prevent evaporation<br />

losses..<br />

The apparatus is sh01m in Figure A-3.<br />

The average <strong>of</strong> the three readings <strong>of</strong> torque 1...ras used<br />

to calCUlate the shear stress. nn, the slope <strong>of</strong> the logaritlLmic<br />

plot <strong>of</strong> torque (or shear stress) versus rotational<br />

speed, ""'las needed to calculate the shear rate. n ll v-Jas evaluated<br />

<strong>for</strong> each fluid at each temperature using a linear regression.<br />

The actual calcu~ations Here per<strong>for</strong>med by the IB}1<br />

1620 digital computer. The computer programs are enclosed<br />

at the End <strong>of</strong> this Appendix.<br />

The slope <strong>for</strong> each condition<br />

is listed in Table A-4.<br />

The shear rate at each point was then calculated using<br />

equation 2-12.<br />

The apparent viscosi t·y Has calculated using<br />

(2-23


VISCOMETeR<br />

LID<br />

~ODML BKAK€R<br />

TO CONSTANT<br />

TEMP CIRCULATOR<br />

SPINOLE<br />

-<br />

CONSTANr<br />

T€MP BArN<br />

-<br />

.5T1RRIIVG<br />

BAR<br />

rlf'OM CONSTANT<br />

TEMP CII(t:tJLATOR.<br />

MAGNETIC<br />

STIRRER.<br />

riG 4-3<br />

COfJSTANT TEMPERATURE APPARATt/S FoR j//S(,O#67c/?


168<br />

TABLE A-4.<br />

SLOPE OF "LOG SHEAR STRESS VERSUS ROTATIONAL<br />

SPEED II<br />

FLUID TEMPERATURE SLOPE<br />

0 .. 15% Carbopo1 18.5 0.656<br />

25.0 0 .. 651<br />

41 .. 3 0 .. 681.<br />

63 .. 0 0 .. 720<br />

82 .. 0 0 .. 717<br />

0 .. 20% Carbcpol 17.5 0 .. 433<br />

25 .. 0 0 .. 436<br />

~.2.7 0 .. 422<br />

61.7 0.427<br />

83 .. 8 0.457<br />

18.6 0 .. 370<br />

25 .. 0 0 .. 366<br />

41.8 0 .. 363<br />

59 .. 5 0.374<br />

83.5 0.341


The results are tabulated ~ Table A-5.<br />

The flow behavior index~ ~, am~ fluid 00nsisteRey<br />

logarithm <strong>of</strong> the shear stress and Shear rate. T~e results<br />

are listed ~ Table A-b. Since the fluid properties were<br />

needed as functions <strong>of</strong> temperature, the fluid eonsistency<br />

index was p10tted versus the temperature on semrllogarithmie<br />

eeordinates; as suggested by Ferment (63).<br />

The poi~ts<br />

deseribed a straight line vJhiel3. CaE. be expressed as<br />

IGg K :: A + B (T)<br />

(A-IO<br />

The constamts~ 'A ~d BI were calculated using a linear<br />

regression. The flew behavior index was mot very temperature<br />

dependent but eould be expressed as<br />

m :: C + D (T)<br />

(A-II<br />

vrhere C and D Here evaluated using a linear regression.<br />

The results are given in Table A-7.<br />

TABLE A-7<br />

CONSTANTS FOR EQUATIONS A-IO ~d A-il<br />

A~;'<br />

Fluid B C D<br />

C"C- l )<br />

(oC-l)<br />

0.15% Capbopol 0 .. 702 -0 .. 00947 0.631 0.00117<br />

0 .. 20% Carbo])ol 1 .. 607 -0.00bl0 0.423 0.00027<br />

0 .. 24$& CarbQPol 1.906 -0.00308 0.378 -0.00034<br />

,:. Tke use <strong>of</strong> tl'il.ese e0l1lsta:mts gives K in. d'J1llles see. Ja jelii1. 2


TABLE 11.-5<br />

RHEOLOGICAL DATA FOR CARBO POL SOLUTIONS<br />

0 .. 15% CARBOPOL<br />

SHE ... ffi ST~SS ROTATIONAL SHEAR APPARENT<br />

(liple'ls/e:m) SPEED RATE VISCOSITY<br />

(RPM) (sec- 1 ) (eentipoise)<br />

II J<br />

93<br />

t • ".<br />

..<br />

63 .. 0<br />

-, - $1. ,<br />

82 .. 0<br />

14 .. 2 30 9 .. 55 1.49<br />

22.5 &0 19 .. 1 118<br />

36.2 120 38 ..:2 95<br />

. 64 .. 7 300 95 .. 6 68<br />

. 101·2 600 191.2<br />

" "~"1 t , r .a 53 .<br />

13 .. 1 30 9 .. 63 136<br />

21 .. 3 60 19 .. 3 111<br />

32 .. 7 120 38.5 85<br />

59.3 300 96.3 62<br />

1 600<br />

" ,- ~t , ... 19,,2 .. 6 48<br />

!r !"f ~ t -,rr9 "- r<br />

•<br />

9 .. 7 30 9.21 105<br />

15 .. 0 60 18 .. ~ 81<br />

24.5 120 36. 67<br />

45~8 300 92 .. 1 50<br />

. 73~8 .• 600 , 1.84",.1 40<br />


TABLE A-5 (e011t .. )<br />

/7'<br />

0 .. 20% CARBOPOL<br />

TID-fPERATURE SHEAR ST~SS ROTATIOJlTAL SHEAR APPARENT<br />

(GC) (dynes/em) SPEED RATE VISCOSITY<br />

(RPM) (see-I) (eentipo ise )<br />

17 .. 5 97 .. 6 30 14-.. 5 674<br />

128 .. 8 60 29 .. 0<br />

170 120 '57.9<br />

255 300 ~8 17<br />

~~<br />

359, " .. , 600 ,a ,Q;6 124<br />

25.0 91.3 30 ~.5 635<br />

122 .. 6 60 2,.8 42~<br />

160 120 51.5 278<br />

241 300 1%3 .. 8 168<br />

.. ..,.341 600 2. 7.6 11;9 , .<br />

I :it<br />

42 .. 7 7'5 .. 2 30 1.4 .. 9 ~O6<br />

97.8 60 29 .. 7 329<br />

127 .. 8 120 59·t 215<br />

193.5 300 1Q.8. 130<br />

26~ 600 2~:Z .. 2 82<br />

61.7 59 .. 7 30 14.7 407<br />

76 .. 8 60 29 .. 4 262<br />

99 .. 8 120 58 .. ~ 170<br />

151 .. 5 300 146 .. 103<br />

j t ..<br />

.21,2 600<br />

\ I ' 223.7 13<br />

83 .. 8 39.3 30 13 .. 7 286<br />

53.3 60 27 .. 4 194<br />

68 .. 3 120 54 .. 9 124-<br />

107.7 300 137 .. 2 78<br />

156,,3 600 274 .. 4 57<br />

. b<br />

rt


TABLE A-5 (eollt. )<br />

/12<br />

o . 24;;& CARBOPOL<br />

TEMPERATURE SHEAR ST~SS ROTATIONAL SHEAR APPARENT<br />

(®C) (d-yE.es/em ) SP"RED RATE VISCOSITY<br />

(RP~.iI) (sec-I) (®ellltiJloise)<br />

18.6 205 30 17~O 12tO<br />

259 60 33.9<br />

358 120 67.8 J2%<br />

462 300 169..;5 272<br />

. 628 ..<br />

6,00<br />

v IIIIILdI 4''''1<br />

338 .. 2 .185:<br />

25 .. 0 197 30 17 .. 1 1150<br />

247 60 34.3 721<br />

312 120 68.5 455<br />

438 300 171 .. 3 256<br />

593 600 342 .. 6 17~<br />

. . •<br />

41.8 172 30 17 .. 3 996<br />

215 60 34 .. 6 622<br />

2~1 120 69.1 392<br />

3 3 300 172.7 222<br />

... 51g 600 345 .. 5 , ,lJA,8<br />

d<br />

59 .. 5<br />

, ,<br />

30 16.8 859<br />

~<br />

60 33.'5 537<br />

235 120 67.'1 350<br />

327 300 167 .. 7 195<br />

.W±2 600 3.35 .. 3 132<br />

83 .. 5 130 30 18 .. ~ 707<br />

157 60 36 .. 42~<br />

197 120 73 .. 8 26<br />

274 300 183 .. 9 149<br />

359 600 367.7 98


TABLE A-6<br />

FLOW BEHAVIOR INDEX AND FLUID CONSISTENCY INDEX<br />

OF CARBOPOL SOLUTIONS<br />

FLUID<br />

TEJ:1PERATURE<br />

(@C)<br />

K<br />

(dynes<br />

18.5 0.656 3.25<br />

2.5.0 0.651 3.05<br />

41.3 0 .. 681 2 .. 11<br />

63.0 0 .. 720 1 .. 19<br />

82.0 0.717 0.87<br />

0.20% Carbopo1 17 .. 5 0.433 30 .. 1<br />

25 .. 0 O.L~36 28 .. 1<br />

~.2 .. 7 0.422 23 .. 5<br />

61 .. 7 0.427 18.3<br />

83 .. 8 0.457 11.6<br />

0.24% Carb0po1 18 .. 6 0.370 72.0<br />

25.0 0.366 68 .. 2<br />

41.8 0 .. 363 59 .. 7<br />

59 .. 5 0.373 L~9 .. 2<br />

83 .. 5 0 .. 341 46.7<br />

sE!\e:rljem2)


'11<br />

The flow behavior index and fluid consistency index<br />

expressed i~ the proper units are given iE. Table A-8. The<br />

data are pletted in Figures A-4, A-5 and A-6.<br />

li~es<br />

The solid<br />

are the values <strong>for</strong> the shear stress calettlated using<br />

equations A-9 and A-IO with the constants in Table A-6 while<br />

the plotted points are the data from which the constants<br />

were es.leulated ..<br />

The effects <strong>of</strong> turbulence were noticed when measur~<br />

the 0.15% Carbopol at high speed. H.:noJever, these r'llE.S were<br />

then redone using a smaller diameter spindle as suggested<br />

in. Chapter 2.. . The data Has also che eked .<strong>for</strong> tem]5erature<br />

rise due to <strong>heat</strong> generation..<br />

The <strong>heat</strong> generated per unit<br />

vol~ can be calculated using equation 2-16.<br />

""""',..}J<br />

Heat Generation = / ~ (2-16<br />

The most viscous fluid at the highest shear rate generated<br />

8 .. 31 x 10- 5 cale/see.. A series <strong>of</strong> measurements at aay one<br />

tem.1gerature at any s]'ced took about five minutes at the<br />

longe s t. This amoUJ:71.ts to a maximum temperature rise <strong>of</strong><br />

0.025°0. which is negligible. Not only was this rise<br />

calculated on the basis <strong>of</strong> the conditions most prone to give<br />

I<br />

hi~~ rates <strong>of</strong> <strong>heat</strong> generation, but alsG the system was considered<br />

to be adiabatic, whiCh is untrue..<br />

did not influence the rheological :m.easurem.emts ..<br />

Thus, <strong>heat</strong> generation<br />

The torque required to rotat~<br />

the spindle at a constant


f7S<br />

TABLE A-8<br />

FLOW BEHAVIOR INDEX A1TD FLUID CONSISTENCY<br />

INDEX FOR CARBOPOL SOLUTIONS<br />

0,.1,5% CA,RBOP,oL<br />

n a<br />

0.631+ 0.OOl17T<br />

0.20% CARBOPO~<br />

n- 0 .. 423 + 0.000267T<br />

K= 6 .. 72 x 10-2 x 10 (1.607 - o .. oo610T)<br />

0,.24$ CftRB.oT!,oL<br />

. (<br />

B= 0 .. 378 - 0.00034T<br />

K= 6 .. 72 x 10-2 x 10 (1.906 - O .. 00308T)<br />

K is given in 1~aeen-2/ft. amd m is dimensi0nleas ..<br />

T MUst be eXFreased 1m degrees Centigrade.


i .f.C<br />

·F<br />

s o 6 1 6 I


177


· . . .<br />

" ,<br />

· . :::11" ':<br />

"'" ~ .' . ,<br />

· , j<br />

" .;<br />

.. ,<br />

::1:",<br />

j<br />

"" J<br />

"':'1<br />

::1:<br />

."<br />

. . ,<br />

"': v: "" , :1~<br />

" ie-­<br />

--,--,-,-~,'-.--'-t--7-~,-j-'~'-,-' ~-+--,--1r--M-:-'b:+. -:~ ~-- -+-,,-,',~ 'c..c


179<br />

speecil. did Rot eha:mge td tk i:m.ereasim., times @f skear..<br />

Carb0:fJ®1 s01'U.tiollS therei"@!l'e we~ net t:i.l¥!.e-cii.epemGl.emt.<br />

The<br />

The<br />

retatimg shaft <strong>of</strong> the spindle aE.Cl.<br />

als@ ue impeller sha.f't<br />

were checked to see if' the f'luid (t.rept up the shaft.. Tlaere<br />

WillS aJ!l absence <strong>of</strong>' creep and tkerei'ore the f'luiCl.s were assum.ed<br />

to he ROB-viscoelastic.<br />

THERMAL CONDUCTIVITY<br />

.. nf1t .. 1 it I<br />

The thermal eonductivity, k, is used in beth. the Nusselt<br />

number a:m.d the Pr~dtl llumber.<br />

Bates (11) reports the<br />

thermal eOllcil.uctivity <strong>of</strong>' both water ~d glycer:i:m.e..<br />

Tke<br />

thermllll eellduetivity <strong>of</strong>' water is ex~ressed<br />

as<br />

(A-12<br />

:ror k iIt caL./em. 2 0C see./em. and T in degrees Centigrade.<br />

Tkis is multiplied by 242 to give the thermal conductivity<br />

im tae desi~ed umits ..<br />

k = 0.325+ o.ooo888T<br />

(A-13<br />

TRe ~ermal<br />

eoncil.uetivity <strong>of</strong> glyeeriae does not vary<br />

with temperature above a eomeentratien <strong>of</strong>' 90 percent. Tke<br />

taer.mal eonauetivity is 0.00072 ~d 0.00070 at 90 &na 95<br />

percent pure respectively. The thermal conductivity <strong>of</strong>'<br />

93.7 percent glyeerille was inte~olated to he 0.00071 cal./<br />

8m. 2 8ee.oC/e111.. or 0.172 Btujhr. :rt. 2 ~/tt. The aceuraey


180<br />

Tke thermal e€l1'!ciluetlvity CDf.'<br />

tile Carbop~aratu.s built by<br />

tlae a.utk®l' and €l.esel"ibed in ref'erel'lee 83. Tlae aee'a!'ae.,-<br />

<strong>of</strong>' the instrt'll'ael11t was esti..'l1l1ate€i to be ± .5.0~e The ex­<br />

~erimem.ta.l va1u.es are presented i:m. Ta.b1e A-9. Wlthm the<br />

accuracy <strong>of</strong>.' tBe data there is mo signif.'ie~t dlf.'f'erel1lee<br />

betl.reen the values <strong>for</strong> the dif'f'eremt solutioRS. A regressiol1t.<br />

analysis was per<strong>for</strong>med, usin~ all the data points to obtain<br />

a linear relationship between the tRer.mal conductivity <strong>of</strong>.'<br />

the solutior.J.s and temperature. Tb.e rela tioP.l.ship "t-TaS f.'0und<br />

to be<br />

(A-14<br />

2 ®<br />

<strong>for</strong> k in Btu./Br .. ft. (F/f't .. ) an.d T in degrees Centigrade ..<br />

Tb.e thermal cemductivity <strong>of</strong>' the solutloD.s was about the same<br />

as water at 20°C ~d about 10 percent l0wer at 80@c ..<br />

HEAT CAPAC ITY<br />

1 1<br />

The <strong>heat</strong> capacity <strong>of</strong>' water (given in Perry (143) at<br />

several diff'erel1lt temperatures) varies yery little with<br />

t~perature. A eOl1lst~t value <strong>of</strong>' 1.003 Btu/lb.@F C0vers<br />

t~ range between 0° &Rd 100Ge vnth a Max~ <strong>of</strong>' 0.6 per-<br />

TRe <strong>heat</strong> capacity CDf' glycerine so,lutioE.s crua be expressed<br />

by (130)


18/<br />

TABLE A-9<br />

EXPERIt1ENTA~<br />

VALUES FOR THE THEID'!IAL CONDUCTIVITY<br />

OF CARBO POL SOLUTIONS<br />

CARBOPOL<br />

CONCENTRATION<br />

0.15%<br />

0 .. 20%<br />

0.24%<br />

18 .. 9<br />

41.8<br />

62.2<br />

80 .. 6<br />

17.7<br />

4_0 .. 5<br />

60 .. 5<br />

80 .. 1<br />

18.4<br />

L~0.5<br />

60 .. 6<br />

80.6<br />

0 .. 340<br />

0 .. 355<br />

0 .. 363<br />

0 .. 353<br />

0 .. 342<br />

0 .. 350<br />

0 .. 348<br />

0 .. 362<br />

0 .. 348<br />

0 .. 365<br />

0 .. 345<br />

0 .. 358


182<br />

Heat capacity data <strong>for</strong> 100% glycerine is reported at many<br />

temperatures (49, 95, 1~.3)<br />

and can be expressed as<br />

Cp(lOO% GLYCERINE) :: 0.535 + 0.00132T<br />

<strong>for</strong> C p<br />

in Btu/lb.op <strong>for</strong> T in degrees Centigrade.<br />

(A-16<br />

Substituting<br />

the above value <strong>for</strong> water and equation A-16 <strong>for</strong><br />

100%, glycerine in equation A-1S yields<br />

Cp(SOLN) :: (1.003) (0.063) + 0 .. 937 (0.535+0.00132T)<br />

(A-I?<br />

or<br />

Cp (93.?% GLYCERINE) ... 0.565 + 0.0012LI·T<br />

(A-IS<br />

with an estimated accuracy <strong>of</strong> ± 3 .. 0 percent.<br />

The <strong>heat</strong> capacity <strong>of</strong> Carbopol solutions <strong>of</strong> approximately<br />

the same concentrations used in this thesis Here reported<br />

by Ferment (63) to be the same as <strong>for</strong> water.<br />

Ferment<br />

estimated the accuracy <strong>of</strong> his measurements to be ± 5.0 percent.<br />

Thus the <strong>heat</strong> capacity <strong>of</strong> the Carbopol solutions vIas<br />

1.003 ~ 5.0% Btu/lb.Op.<br />

DENSITY<br />

Values <strong>of</strong> the density, f ' <strong>of</strong> water at various temperatures<br />

are reported by Badger and McCabe (10).<br />

The data<br />

l,.Jere ass1Lrned to be represented by an equation <strong>of</strong> the <strong>for</strong>m.


183<br />

{A-19<br />

3 -4 Z<br />

f= 62.12 -1.6tfSx/o- T- 2.1-8 x/o T (A-20<br />

where f is expressed m lb.m/ft .. 3 8.l!ld T is expressed m<br />

degrees Ce~tigrade.<br />

represent the data to witlaL-q T 0.3% ..<br />

~e use <strong>of</strong> this equatio~ was found to<br />

TJn.e density Elf' 93.7 1E>ereent glyeerim.e was gral!>hieally<br />

interpolated from data supplied by the Glycerine Producers'<br />

Assoeiati0R (74). Tke Eiensity WitS f®'U:l:ad t® va:r'Y linearly<br />

with. tem.pEIlrature aJ3.a coulcil. be representea. 't.J"ithb ± O.35b by<br />

(A-2l<br />

where f is expressed in lb.m/f't. 3 fer T i~ degrees Centigrade ..<br />

The density <strong>of</strong> tae Carbo~0l solutions was determimed<br />

experimentally using ealibrated pyenemeters. Tome data<br />

listed in Table A-lO were obtained ~rlth an estL~ated aeeuraey<br />

<strong>of</strong>' ± 0 .. 1%.. Tl1.te dens i ty was ilie s rune Hi th1:a experimen tal<br />

aeeura~y<br />

fer all three solutions ~d was eonsistently about<br />

0.1% above the eorresponding values <strong>for</strong> water. Multiplying<br />

the equation fer the density <strong>of</strong>' water by 1.001 yields<br />

(A-22


IB4-<br />

wkiek ex~resses the aensity e£ tae Carbe~el s@lutions witk<br />

run estbuated err0l? 0£ ± 0 .. 35~ ..<br />

TABLE A-lO<br />

DENSITY OF CARBOPOL SOLUTIONS<br />

19 .. 9<br />

40 .. 8<br />

60 .. 7<br />

79 .. 9<br />

2<br />

DENSITY (g/em)<br />

0.15% Carbop01 0 .. 20%<br />

Carb0}!'01<br />

0 .. 999 1 .. 000<br />

0 .. 993 0 .. 994<br />

0.984 0.986<br />

0 .. 973 0 .. 972<br />

0 .. 24%<br />

CarbeF>Gl<br />

1 .. 000<br />

0.993<br />

O .. 98~<br />

0 .. 972


ISS<br />

NOMENCLATURE FOR APPENDIX A<br />

E:t~GLISH<br />

ALPHABET<br />

A<br />

B<br />

C<br />

G p<br />

C<br />

~SOLN)<br />

::::: Constant iJa eq. A-9 aJ!I.Gl eq. A-IO<br />

::::: C0nstant in eq. A-9 and eq. 11.-10<br />

::: Constant in eq .. A-6 ara.d eq .. A-ll<br />

1111 Heat capacity<br />

::: Heat capacity <strong>of</strong> an aquE!lcs)''as glycerine<br />

s01uti0l'l.<br />

G]l<br />

(H20 )<br />

c<br />

11009&<br />

D<br />

::: Heat ea1'laci ty <strong>of</strong> water<br />

• Heat capacity <strong>of</strong> 1009& ~lyeeriRe<br />

glycerine) -<br />

::::: Colltstant in eq. A-6 and eq .. A-ll<br />

hb ::: Height <strong>of</strong> spinale<br />

K<br />

k<br />

N<br />

-<br />

=<br />

, I<br />

Effective height <strong>of</strong> spindle<br />

C~nver~iom<br />

factor <strong>of</strong> mechanical energy to <strong>heat</strong><br />

energy 2.39 x 10- 8 cal./dyne-em.<br />

Fluid consistency index<br />

Thermal conductivity<br />

Rotational s]leed <strong>of</strong> spindle (Revolutions per<br />

minute or second)<br />

n ::: Flow behavior ~dex<br />

n" = Slope <strong>of</strong> logarithmic plot <strong>of</strong> the torque versus<br />

R<br />

e<br />

IiIII<br />

rotational speed <strong>of</strong> spindle<br />

Radius <strong>of</strong> cup<br />

Rb<br />

11111<br />

.-<br />

Radi~s <strong>of</strong> spindle<br />

T ::: Temperature


186<br />

Ts - Torque<br />

X :: Peree~t 0~ full seale readim~ en viseemeter<br />

A ::<br />

ft


18 7<br />

Computer Programs For<br />

Evaluating Rheological Data


Phase I Calcu13tiJ~ <strong>of</strong> Slope <strong>of</strong> !oGarithnetic ~lot <strong>of</strong><br />

i.)he~1.r· ....itress Versus ap:t:<br />

3 REAO,N,M<br />

4 EN=N ',(i0<br />

EM=M<br />

Sx=O.<br />

Sy=O.<br />

SXY=O.<br />

sx2=O.<br />

Sy2=O.<br />

D051=! .N<br />

REAO.TEMP.SHST.RPM<br />

X=.4343*LOGCRPM)<br />

Y=e4343*LOG(SHST)<br />

sx=sx+x<br />

SY=SY+Y<br />

SXY=SXy+x*Y<br />

SX2=SX2+x*x<br />

5 SY2=SY2+Y'~Y<br />

XBAR=SX/EN<br />

YBAR=Sv/EN<br />

CX2=SX*sx/EN<br />

CXy=sx*sv /EN<br />

VX2=SX2-CX2<br />

VXY=SXY-CXY<br />

BcVXy/vx2<br />

A=YBAR:-B*XBAR<br />

C=SXY/SX2<br />

R=CC(EN*SXY-SX*SYl**2!/( (EN*sx2-SX*SX)*(EN*SY2-SY*sY»i~*.5<br />

IF(R)6.7.7<br />

6 RA=-R<br />

GO TO 8<br />

7 RA=R<br />

B S2SX=(EN*SX2-SX*SX)/CEN*(EN-l.»<br />

S2SY=IEN*SY2-SV*SY)/(EN~(EN-l.)1<br />

YGX=(CEN-l.)/(EN-2a»)*<br />

·CI }<br />

, ,(J (t<br />

JC ~~f<br />

, le!fl,<br />

: l(ll)<br />

',f) I<br />

,(I' J<br />

'.lor<br />

J~)O '"}<br />

~ ., () 1<br />

)'<br />

~ ,f J j<br />

',i1 I<br />

"i)<br />

, ,\) '~)


189<br />

NOIVlENCLATURE FOR PHASE I<br />

B II Tfle l('i)gari tlimUe slope <strong>of</strong> shear stress versus<br />

DF2 II<br />

N ..<br />

RA ;:<br />

RPM<br />

Il:<br />

SHST ;:<br />

SB :::<br />

TA<br />

II<br />

rotatie)llal speed <strong>of</strong> viscem.ett:llor ~€ib<br />

Degrees <strong>of</strong>' freedom<br />

Number <strong>of</strong> data poimts<br />

,<br />

Correlatio~<br />

coeffieient<br />

Rotational speed <strong>of</strong> viscometer bob 1m rev./mime<br />

Shear stress 1m dYRes/~2.<br />

Standard error in B<br />

T <strong>of</strong> the T test<br />

TEMP ;:<br />

DATA<br />

Tke first card <strong>of</strong> a set <strong>of</strong> data had the values <strong>for</strong> N and<br />

M. M was a constant with value 2.0. Tke next N cards<br />

each had ~ree nttmbers corresponding to the temperature,<br />

s'fu.ear stress~ !':U'td'retati0na1 s:peed <strong>of</strong>' a particular run.<br />

The temperature w~s not needed 1m this program but was on<br />

the eard fer later use.


3 REAL). N. ti •• D<br />

4 cN=N<br />

E'I'1 = [·1<br />

SX=Lo.<br />

'SY=W.<br />

SXY-o.<br />

SX2=,O.<br />

Sy2=O.<br />

D051=1.N<br />

--~---RE·AtS'.~TE:lqp~ SHST. RPtC---------<br />

Z= ~209*RPI'l/D<br />

SX2=SX2+X*X<br />

5 SV2=SV2+V*V<br />

XBAR=SX/EN<br />

YEIAR-SY7EN<br />

'j<br />

i<br />

---~------,~-~--- ---------------,5"'0"'o",.-+\<br />

.. , -------------~ --------------:S=-C=-=-O-li<br />

500<br />

500<br />

500<br />

~. ---- -·--·------~-~-----------;=5-;;:0-;;:O-l<br />

500<br />

.... - ..... -------------1<br />

W=ShST/Z ------------.---------------------------------------~;<br />

PUNCH. TEji,P. r.(Pf.1. Z. Vi<br />

----·X- .4343*LOG IZ)<br />

Y=.4343*LOGISHST)<br />

--,------ -SX=SX+X<br />

SY=SY+Y<br />

SXY=SXYtX*V<br />

6<br />

CX2=SX*SX/E"!<br />

ex,' -:3X*S i ; EO!'"<br />

VX2=SX2-CX2<br />

VXy=SXY-CXy<br />

d=VXY/VX2<br />

A=YL,AR-8*xaAR<br />

C=SXY/Sx2<br />

R=<br />

~------... -, ,--_ .... -_ ...<br />

7<br />

8 S2SX=IEN*SX2-SX*SX)/IEN*CEN-l.) I<br />

S2SY-IEN*SY2-~y*SYI)(EN*C~N I.})<br />

YGX=IIEN-l.I/(EN-2.»*CS2SY-d*O*S2SX)<br />

SYGX-YGx**.S<br />

se=SYGX/I(S2SX*IEN-l.)I**.51<br />

!F(B)9.10.1C ·__ n ---- ~oo<br />

~~~ I'<br />

500<br />

500 I<br />

~~~ I<br />

~oo (<br />

5'00 !<br />

50<br />

500 1<br />

500 '<br />

500 I<br />

----.------------~<br />

500<br />

500<br />

9 i3A=-B 500<br />

;,a GO TO II SOo<br />

' ,7 ( 10 BA=8 500<br />

~'6 --·!·1-·....,.-:s-A"'/"'s"8:r-------------·---- -- 500<br />

15 IFIT)12t!3.13 500<br />

I ,'· 12 TA=-T 500<br />

1~'<br />

12 14 DF 2=EN-2. 500<br />

'\<br />

500 {<br />

___________ ~~G~O~~T~O---1-4----------------------~-----------------------------------------______ ~5~0~,O~<br />

13 TA-t 500<br />

(<br />

,'1 ( SEX- ( !Sx2-Sx*Sx7ENj7 tEN I. I )**.::><br />

':<br />

SEY.=((Sv2-SY*SY/EN)/(EN-l.)I**.S<br />

1 1''-'" xK=IQ**A<br />

'76el.____\ __ ~P~U~N~C~H~.~T~E~M~P~.~8~.~.~X~K~----------------________________________________________________________ __<br />

POi


191<br />

A - Leg @f f1uid eonsiste~cy ~dex<br />

B IIlII Fl0W behaviGr index<br />

D .. Sle~e <strong>of</strong> logal"ith:m.ie £llet 0f shear stress Versus<br />

DF2 -<br />

N ::<br />

11 ::<br />

RPM (B at PJ:lase I)<br />

De~rees<br />

<strong>of</strong> rreeaom<br />

Number <strong>of</strong> data ~oints<br />

C@nstamt equal te 2<br />

£leI' set<br />

RA ::<br />

RPM ::<br />

SB :::<br />

SHST :::<br />

SXGX ::<br />

TA ::<br />

TEl'-1P :::<br />

Xl{<br />

-<br />

Correlatien coefficient<br />

Rotational speed <strong>of</strong> impeller bob<br />

Standard error in computed B<br />

Shear stress (dynes/em,2)<br />

Standard errer in Y<br />

i<br />

T <strong>of</strong> T test<br />

Temperatulte<br />

Fluid e~nsisteBey<br />

DATA<br />

TRe first eard <strong>of</strong> a. set <strong>of</strong> data had the values at H, M<br />

and D.<br />

The l'lext H cards each l:.Lad three values cerres]lo:ading<br />

to the temperature, shear stress, and shear rate.


~~-- ~---- --~--~ ~~~------------------------------<br />

Phase- III Calculation <strong>of</strong> Fluid __ G.nnsl stency ___ _<br />

----~<br />

Index as Functiou <strong>of</strong> Temperature ______ _<br />

LQg K = B(~emp.)<br />

3 READ.N.M<br />

4 EN-~N~------------------------------------~<br />

EM=M<br />

Sx=o.<br />

Sy=o ..<br />

---_.-- -~------<br />

SXy=o.<br />

Sx2=O.<br />

Sy2=O.<br />

D05I=1.N<br />

-- ---- --~ ------._-----------<br />

READ.CONC.TEMP.XINT.XSL<br />

X=TEMP<br />

'"--- -'- -- ----~---.--.---.----<br />

Y=XINT<br />

SX=SX+X<br />

SY=SY+Y<br />

SXY=SXy+x*y<br />

Sx2=SX2+X*X<br />

5 SY2=SY2+Y*Y<br />

- . -----------.----------~-<br />

XBAR=SX/EN<br />

YBAR=SY /EN<br />

CX2=SX*SX/EN<br />

CXY=Sx*sy/EN<br />

VX2=SX2-CX2<br />

VXY=SXY-CXY<br />

B=VXY/VX2<br />

A=YBAR-B*XBAR<br />

-----~----------~-- ---------- ----<br />

C=SXY/SX2<br />

+ A<br />

-- -------~~---------<br />

-------------------------------------<br />

R = ( ( (EN*SXY-Sx*SY )**2 / ( (EN*SX2:-~X~~X ) * (EN*SY_?-=-~_!'~::;~LL:liI"_~.. 5 _____ _<br />

IF(R)6.7,7<br />

6 RA=-R<br />

GO TO 8<br />

7 RA=R<br />

8 S2SX=(EN*SX2-SX*SX)/(EN*(EN-l.»<br />

S 2 S Y = ( EN* S Y?= ?Y_*5,_'('_!~~N'lE-~ N- l_!_ ~L ____<br />

YGX=«EN-l.)/(EN-2.»*(S2SY-B*B*S2SX)<br />

11 T=BA/SB<br />

IF(T)12.13.13<br />

12 TA=-T<br />

GO TO 14<br />

13 TA=T<br />

14 DF2=EN-2.<br />

-------- ----- ----- -----------~--- ----<br />

~EX:: (LSX2____ SX *5 XLEI"L1L---LE~_._LL*~5<br />

SEY=«SY2-SY*Sy/EN)/(EN-l.»**.5<br />

PUNCH .. CONC.A.B<br />

---<br />

PUNCH.RA.TA,DF2<br />

PUNCH.SB.SYGX<br />

-- - -"."'- -- - ----<br />

GO TO 3<br />

------~----~-- -~--<br />

----------- ~-----<br />

------


NOMENCLATURE FOR PHASE III<br />

.... t -<br />

A<br />

A<br />

B<br />

= B 1m aO@Te eq~ati0B<br />

CONC = Coneentra tion o:f Carb0:pol (used :<strong>for</strong> identif'i~ation<br />

N<br />

}!<br />

TEMP<br />

XINT<br />

XSL<br />

;;<br />

=<br />

=<br />

=<br />

::<br />

l''1.lJ:'Iposes)<br />

Number o:f sets o:f aata :<strong>for</strong> each :fluid<br />

C@nstant equal te 2.0<br />

Tellq3eratui"e<br />

L0g K<br />

Flew behavior index (used in Phase IV)


Phase IV<br />

Correlation <strong>of</strong> Flow Behavior Index<br />

With Temperature<br />

3 READ.N.M<br />

4 EN=N<br />

500<br />

EM=M<br />

SX=O.<br />

n<br />

500<br />

B(Temp.) + A<br />

SV=O.<br />

500<br />

SXV=O.<br />

500<br />

-----------------------------------S-oo-·<br />

SX2=0.<br />

Sv2=0.<br />

500<br />

(Nomenclature Same as<br />

0051 = 1 .N<br />

506<br />

READ.CONC.TEMP.XINT.XSL<br />

X=TEMP<br />

V=XSL<br />

SX=SX+X<br />

Phase III except A<br />

and B are defined --.----soo--<br />

Sv=sv+v<br />

500<br />

as above)<br />

SXY=SXy+x*y<br />

500<br />

Sx2=SX2+X*X<br />

5 sv2=Sv2+v*Y<br />

XBAR=SX/EN<br />

YBAR=Sv/EN<br />

CX2=SX*Sx/EN<br />

CXY=SX*sv/EN<br />

VX2=SX2-CX2<br />

vxv=sxv-cxv<br />

B=VXY/VX2<br />

A=VBAR-B*XBAR<br />

C=Sxv/SX2<br />

R= ( (


I!JS<br />

APPENDIX B<br />

~<br />

1. Heat Transfer Data<br />

2. Computer Programs For Calculating Heat<br />

Transfer Results<br />

3. Heat Transfer Results


96<br />

HEAT TRANSFER DATA<br />

FOR WA'fER<br />

USING NON-STANDARD<br />

Ifc1PELLER POSITIONS


DATA<br />

137<br />

'tfATER<br />

Batch Weight<br />

94.0 Ibs. 'rime 2.0 min.<br />

Run<br />

Heatine;<br />

47<br />

48<br />

49<br />

50<br />

Diameter<br />

x Height<br />

(inches x<br />

inches)<br />

9.0<br />

9.0<br />

9.0<br />

9.0<br />

RP~I Are:J. 2<br />

(ft. ) Dynamometer Temperature (oC)<br />

Scale Batch Aa11<br />

(lbs) 1 2 1 2<br />

Ancho:!: -<br />

50<br />

go<br />

1 ')5<br />

210<br />

Clearance = 3.0 inches<br />

6.20<br />

6.20<br />

6.23<br />

6.3S<br />

0.?7<br />

1. "?8<br />

4. ')5<br />

8.73<br />

61.0<br />

74.7<br />

73.1<br />

66.0<br />

78.0<br />

88.7<br />

88.6<br />

84.1<br />

77. 1 +<br />

tl.5.1<br />

C32.3<br />

74.9<br />

89.2<br />

95.7<br />

94.0<br />

'90.0<br />

Cool~n.£<br />

47<br />

48<br />

49<br />

50<br />

9.0<br />

9.0<br />

9.0<br />

9.0<br />

50<br />

90<br />

15')<br />

210<br />

6.20<br />

6.20<br />

0>.27;<br />

6.'S')<br />

0.37<br />

1.38<br />

'-1.55<br />

8. T5<br />

8'S.5<br />

58.1<br />

73.3<br />

51. 9<br />

69.6<br />

49.0><br />

60.2<br />

1+3. ')<br />

70.3<br />

51.0<br />

66.0<br />

l't-7.7<br />

59.6<br />

/~.L~. 0<br />

54.5<br />

40.0<br />

!:!eati~<br />

55<br />

54<br />

53<br />

52<br />

51<br />

Cooling<br />

55<br />

5L~<br />

53<br />

52<br />

51<br />

9.0 x 0.7<br />

9.0 x 0.7<br />

9.0 x 0.7<br />

9.0 x 0.7<br />

9.0 x 0.7<br />

9.0 x 0.7<br />

9.0 x 0.7<br />

9.0 x 0.7<br />

9.0 x 0.7<br />

9.0 x 0.7<br />

llO<br />

170<br />

242<br />

365<br />

445<br />

llO<br />

170<br />

21+2<br />

)65<br />

445<br />

6.20<br />

6.20<br />

6.23<br />

6.23<br />

6.27<br />

6.20<br />

6.20<br />

6.23<br />

6.


DATA<br />

/98<br />

Batch \'ieight '" 94 •. 0 1bs.<br />

PADDLES<br />

Time = 2.0 min.<br />

Run Center Diameter RPJ'v! Area 2<br />

Dynamometer Temperature COC)<br />

Height x Height (ft. ) Scale Batch Wall<br />

(inches) (inches x (lbs) 1 2 1 2<br />

inches)<br />

Heatin~<br />

60 4.5 8.0 x 1.0 126 6.20 0.53 71.0 84.5 85.8'95.5<br />

61 4.5 6.0 x 1.0 127 6.20 O~15 68.1 S1.3 sri


'"<br />

Run Center Diameter RP}! Area Scale Temperature cOe)<br />

Height x Hei~ht Batch 'rlall<br />

1 2 1 2<br />

43 9.0 8.0 x 2.0 250 6.35 7.70 '15.8 90.6 82.9 94.5<br />

108 9.0 5.0 x 1.5 104 6.20 0.16 75.0 86.5 88.8 95.7<br />

109 9.0 5.0 x 1.5 190 6.20 0.48 77.3 89.7 87.1 95.7<br />

110 9.0 5.0 x 1.5 =535 6.23 1.76 70.7 86.3 80.3 92.5<br />

111 9.0 5.0 x 1.5 515 6.2'/ 4.23 63.0 81.2 71.7 87.6<br />

56 10.0 8.0 x 4.0 49 6.20 0.43 60.7 77.8 75.5 88.2<br />

57 10.5 8.0 x 1.0 125 6.20 0.56 68.0 134.3 82.2 93.0<br />

Cooli!lli<br />

60 4.5 8.0 x 1.0 126 6.20 0.5"-> 87.5 7~).1 76,,3 62.3<br />

61 4.5 6.0 x 1.0 12'7 6.20 0.10 57.1 49.3 L~5.0 38.9<br />

28 5.0 ,-~. 0 x 2.0 100 6.20 0.03 1i4.8 39.5 33.5 28.6<br />

29 5.0 '4-.0 x 2.0 luO 6.20 0.03 43.3 37.8 3~.7 30.2<br />

30 5.0 4.0 x 2.0 190 6.20 0.09 1~5 .2 39.0 35.9 29.3<br />

31 5.0 4.0 x 2.0 :s :~5 6.23 1.00 57.6 48.0, 51.0 '+1.9<br />

32 5.0 4.0 x 2.0 53~ 6.2-; 2.10 '+0.0 ~jl • • (.; 35.8 31.7<br />

33 5.0 4.0 x 2.0 620 6.27 2.8') 56.0 i·7.6 50.6 43.0<br />

38 6.0 5.0 x 2.0 92 6.20 0.15 53.7 46.5 '4-2,7 37.2<br />

37 6.0 5.0 x 2.0 185 6.20 0.55 75.8 62.7 64.3 53.5<br />

36 6.0 5.0 x 2.0 2'1-2 G.20 1.00 51. 5 43;9 46.7 39.9<br />

35 6.0 5.0 x 2.0 390 fl,23 (~. 85 54.1+ '-1-6.0 ~9,2 41.8<br />

34 6.0 5.0 x 2.0 1+75 6.27 4.70 46.'1 39·7 11-0).2 36.'1<br />

59 6.5 8.0 x 1.0 125 6.20 0.57 8'3.7 69.6 71.4 58.8<br />

63 6.5 6.0 x 1.0 125 6.20 0.15 60.7 52.3 48.7 41.7<br />

66 6.5 i •• O x 1.0 125 6.20 0.02 83.8 72.3 65.5 54.5<br />

116 6.63 5.0 x 0.75 120 6.20 0.11 65.0 56.5 49.5 42.8<br />

117 6.63 5.0 x 0.75 '320 6.20 0.40 5?0 1+5.6 ll-S,8 39.3<br />

118 6.63 5.0 x 0.75 515 6.23 1.28 68.4 57.'+ 59.4 51. 3<br />

119 6.63 5.0 x 0.75 715 6.2;; 2.63 56.0 46.9 50.2 42.3<br />

112 7.63 5.0 x 0.75 l:.)U 6.20 0.05 54.9 413.8 41.6 36.8<br />

113 7.63 5.0 x 0.75 315 ':'.20 O.4:S 53.9 4b.4 46.5 40.0<br />

114 7.63 5.0 x 0.'75 5l? 6.23 1. 31 54.8 46.9 48.2 41.5<br />

115 7.63 5.0 A 0.75 705 6.23 2.56 60.8 5L3 54.8 46.8<br />

21" 8.0 7.0 x 2.0 7H 6.27 0.24- h6.6 il-0.6 41.B :56.3<br />

t::2~ 8.0 7.0 x 2.0 117 6.27 0.85 65.5 56.1 S'7.3 50.0<br />

23" 8.0 '7.0 x 2.0 184 6.27 2.20 51.2 44.0 46.7 40.1<br />

24' 8.0 7.0 x 2.0 220 6.27 ? .1+3 't7.5 1+1.0 43.0 37.9<br />

25' 8.0 7.0 x 2.0 260 6.27 4.93 82.0 68.0 74.0 62.0<br />

27' 8.0 7.0 x 2.0 285 6.20 6.1'7 61.0 51.6 55~8 47.8<br />

58 8.5 B.O x 1.0 125 6.20 0.58 69.7


zoo<br />

Run Center Dia!!1ec;er Ri'M Area Scale TemDerature COO)<br />

Heip,-ht Batch \'Iall<br />

1 2 1 2<br />

44 9.0 B.O x 2.0 190 6.27 4.28 78.2 65.7 71.3 60.0<br />

43 9.0 fl.. 0 x 2.0 250 6.35 7.70 l1-2.5 36.5 39.0 33.7<br />

108 9.0 5.0 x 1.5 101~ 6.20 0.16 41. 3 36.6 34.9 31.3<br />

109 9.0 5.0 x 1. '5 190 6.20 0.48 51.1 44.2 44.9 38.6<br />

110 9.0 5.0 x 1.S 33S 6.23 1.76 [I-LI- o 9 '59.0 40.8 35.3<br />

111 9.0 5.0 x 1.5 515 6.27 4.23 60.9 51.1 56.3 47.2<br />

56 10.0 8.0 x 4.0 49 6.20 0.43 71.0 60.5 60.8 52.8<br />

57 10.5 8.0 x 1.0 125 6.20 0.56 :;'4./ 47.7 48.0 41.7<br />

• Batch '1leir;ht


WATER -<br />

Batch i'ieight = 94.0 Ibs.<br />

DATA<br />

PROPELLERS<br />

Time", 2.0 min.<br />

Run Clearance Diameter RPf'l Area? Dynamometer Temperature (oC)<br />

Cinches) (inches) (ft.·- ) Scale Batch viall<br />

(lbs) 1 2 1 2<br />

Heating<br />

147 6.0 5.2 110 6.20 0.04 73.0 85.1 90.6 97.8<br />

148 6.0 5.2 350 6.20 0.32 64.8 81. 5 79.2 91.0<br />

149 6.0 5.2 540 6.20 0.79 6'?6 81.3· 76.3 89.4<br />

150 6.0 . 5.2 765 6.20 1.74 f.i6.8 84.3 '77.1 91.2<br />

151 8.0 5.2 105 6.20 0.02 71.6 83.8 89.7 96.3<br />

152 8.0 5.2 315 6.20 0.26 64.3 80.5 79.0 90.3<br />

153 B.O 5.2 535 6.20 0.86 70.8 84.8 81.0 91.2<br />

154 8.0 5.2 768 6.20 1.84 77.8 92.2 87.0 97.4<br />

161 12.0 5.2 116 6.20 0,04 56.4 72.1 79.5 88.0<br />

164 12.0 5.2 327 6.20 0.32 63.3 80.1 76.8 89.4<br />

162 12.0 5.2 335 6.20 0.28 56.2 82.4 78.8 90.8<br />

163 12.0 5.2 628 6.20 1.25 6l~.3 82.3 74.2 89.5<br />

Cooling<br />

147 6.0 5.2 110 ().2u 0.04 l~9. 7 43.7 38.8 -53.5<br />

148 6.0 5.2 350 6.20 0.32 l~6.4 40.0 40.0 35.0<br />

149 6.0 5.2 540 6.20 0.79 52.2 .44.5 46.6 39.7<br />

150 6.0 5.2 765 6.20 1.74 62.7 52.3 56.8 47.7<br />

151 8.0 5.2 105 6.~0 0.02 4'7.8 42.5 35.8 31.8<br />

152 8.0 5.2 315 (').20 0.26 '+6.5 1.0.2 40.0 34.9<br />

153 8.0 5.2 )35 h.20 0.86 53.9 '-1-5.9 48.2 40.9<br />

154 8.0 5.2 7613 6.20 1.84 39.7 33.8 36.2 31.0<br />

161 12.0 5.2 116 6.20 0.04 49.0 4,.5 3.9.4 35.0<br />

164 12.0 5.2 327 6.20 :).32 54.8 47.4 '+8.3 42.0<br />

162 12.0 5.2 335 6.20 0.28 85.9 71. '5 75.5 62.2<br />

163 12.0 5.2 628 6.20 1.25 62.0 52.0 5,:0.5 47.3<br />

2tJ/


DATA<br />

20l.<br />

WATER - TUHBINSS<br />

Batch Weight = 94.0 Ibs.<br />

Time = 2.0 min.<br />

Run Center Diameter RPi'l Area2 Dynamometer Temperature (oC)<br />

Height x Height Ut. ) Scale Batch 'liall<br />

(inches) (inches (lbs) 1 2 1 2<br />

x inches2<br />

HeatinG<br />

Disk & Vane 'l'urbines<br />

132 5.0 6.0 x 1.25 85 6.20 0.28 5~.2 ~6.3 77.1 88.3<br />

133 5.0 6.0 x 1.25 145 6.20 0,86 6 .8 0 •. 0 76.6 ·89.2<br />

134 5.0 6.0 x 1.25 260 6.23 3.14 76.0 90.7 85.3 96.1<br />

135 5.0 6.0 x 1.25 338 6.27 5.64 '17.8 91.7 85.5 96.2<br />

136 9.0 6.0 x 1.25 80 6.20 0.24 62.2 77.8 77.5 -87.2<br />

137 9.0 6.0 x 1.25 155 6.20 1.16 73.7 88.3 83.8 94.9<br />

138 9.0 6.0 x 1.25 255 6.23 3.31 58.7 77.7 67.8 84.7<br />

139 9.0 6.0 x 1.25 330 6.27 5.70 65.3 84.0 73.1 89.5<br />

Six-Blad~d - Open Bladed 'l'urbine - 3trai6ht Blades<br />

177 7.0 4.0 x 0.75 III h.20 0.05 52.0 68.2 77.7 86.4<br />

178 7.0 4.0 x 0.75 235 6.20 0.23 67.8 83.2 82.2 93 •. 7<br />

179 7.0 4.0 x 0.75 320 6.20 0.48 69.3 81~.4 82.3 93.4<br />

180 7.0 4.0 x 0.75 505 6.20 1.38 69.3 85.0 81.0 92.3<br />

lEll 7.0 4.0 x 0.75 705 6.23 2.73 ;:)6.9 83.7 76.0 90.1<br />

Six-Bladed ~n Bladed Turbine - Curved Blades<br />

182 7.0 4.0 x 0.50 218 6.20 0.25 73.0 85.3 88.1 96.0<br />

183 7.0 4.0 x 0.50 453 6.20 0.51 69.0 84.1 80.8 92.7<br />

184 7.0 4.0 x 0.50 710 6.20 1.41 68.1 84.? 79.4 92.1<br />

185 7.0 4.0 x 0.50 940 6.20 2.68 65.6 83.0 75.9 89.8<br />

Cooling<br />

Disk & Vane Turbines<br />

132 5.0 6.0 x 1.25 85 6.20 0.28 47.8 41.7 40.0 35.5<br />

133 5.0 6.0 x 1.25 145 . G.20 ,) .86 49.1 42.1 42.9 36.9<br />

134 5.0 6.0 x 1.25 26,; 6. ,~3 3.14 54.5 46.0 49.0 41.7<br />

135 5.0 6.0 x 1.25 33['. (.,.27 5. ;.',4 51.0 L~2 .8 46.8 39.4<br />

136 9.0 6.0 x 1.25 80 6.20 0.24 68.7 58.1 58.1 50.2<br />

137 9.0 6.0 -x 1. 25 155 6.20 1.16 41.3 40.7 L~2. 7 36.7<br />

138 9.0 6.0 x 1.25 2')5 6.,23 3.31 52.7 44.7 48.7 41.2<br />

139 9.0 6.0 x 1.25 ?:,O 6.27 5.70 49.6 42.4 45.8 39.7<br />

Six-Bladed - Open Bladed I.'urbine -·otrai[.!;ht rllades<br />

177 7.0 4.0 x 0.75 111 6.20 0.05 61.7 54.3 48.0 41.8<br />

178 7.0 4.0 x 0.75 235 6.20 O.d L~J.j.. 1 -j8.L~ 37.7 32.8<br />

179 7.0 4.0 x 0.75 320 6.20 . 0.48 !14.0 ?ti.O 38.1 33.0<br />

180 7.0 4.0 X 0.75 505 6.20 1. 38 54.5 lj·6.3 4tL7 41.7<br />

181 7.0 4.0 x 0.75 705 G.2~ 2.73 45.5 313.7 41.3 35.7


Run<br />

Center<br />

Height<br />

Six-Bladed -<br />

182 7.0<br />

183 7.0<br />

184 7.0<br />

185 7.0<br />

Diameter<br />

x Heicht<br />

Open Bladed Turbine -<br />

4.0 x 0.50 218<br />

4.0 x 0.50 453<br />

4.0 x 0.50 710<br />

4.0 x 0.50 940<br />

Area<br />

Curved<br />

6.20<br />

,S.20<br />

0.20<br />

6.20<br />

Dynamometer -Temperature (°0)<br />

Scale Batch Wall<br />

1 212<br />

Blades<br />

0.25 51.3 44.4 41.9 36.9<br />

0.')1 56.7 48.3 49.6 42.2<br />

1.41 5'1.5 48.'1 51.7 44.1<br />

2.68 61.8 52.0 56.2 47.2


204-<br />

HEAT T'rtANSFEH DATA<br />

USED IN CORRELATIONS


DATA<br />

ANCHOR<br />

2. OJ<br />

~'IA:l'ER<br />

Batch Weight = 94.0 Ibs.<br />

Clearance = 5.0 inches<br />

Run Diameter RPl"l Area2 D;}'TIamometer Temperature (oC) Ti:ne<br />

(inches) (ft. ) Scale Sutch Wall<br />

(lbs) 1 2 1 2<br />

Heating<br />

67 9.0 55 6.20 0.56 .">7.;') 7"'5.1 72.7 8'5.6 2.0<br />

68 9.0 90 6.23 1.58 77.4 89.0 85.8 94.2 2.0<br />

69 9.0 150 6.27 4.68 ('9.5 92.7 86.2 97.0 2.0<br />

70 9.0 207 6.38 8.83 67.3 84.3 75.2 90.1 2.0<br />

Coolin[3:<br />

67 9.0 55 6.20 0.56 42.2 36.6 36.7 31.7 2.0<br />

68 9.0 go 6.23 1. S8 40.1 34.8 36.2 31.4 2.0<br />

69 9.0 150 6.27 4.68 L~7. 3 40.7 4":.L!. 37.2 2.0<br />

70 9.0 207 6.38 8.53 59.5 49.5 54.5 45.8 2.0<br />

93.7% GLYCERINE<br />

Batch Weight 117.7 Ibs. Clearance 5.0 inches<br />

!:!~atinfl:<br />

235 9.0 56 6.20 0.6-') :)'5.9 64.0 96.4 97.8 2.0<br />

236 9.0 96 6.20 2.15 59.3 71.6 92.8 97.2 2.0<br />

237 9.0 152 6.20 5.4-0 52.7 66.3 81.g 30.0 2.0<br />

238 9.0 196 6.23 ;;.25 5,.0 :")0.8 79.9 68.3 2.0<br />

CooliQ15.<br />

235 9.0 56 6.20 0.63 62.9 55.7 26.4 23.1 2.0<br />

236 9.0 96 6.20 2.15 09.8 58.7 36.1 29.1 4.0<br />

237 9.0 152 6.20 5.40 68.2 56.? 1+0.6 31.4 L~. 0<br />

238 9.0 196. 6.23 9.25 45.3 38.2 ;~5.2 20.4 4.0


DATA<br />

ANCHor;:<br />

206<br />

Batch :'Ieight = 94.4 1bs.<br />

CARnOPOL :::;OLU ~'ION3<br />

C1e8.rilnce = 5.0 inches<br />

Run Diameter RPf\~ Area;? ;)ynHmOr.1eter Tempp.I":--=-.ture CoC) Time<br />

(inches) (ft. ) 0cf11e Batch I'lall \r:lin)<br />

(lbs) 1 c:. 1 2<br />

---------- ... _- ------- ~.-.<br />

0.1 ';, :r'crce!'1t CATrF',O?OL<br />

!!~~tinr:<br />

373 9.0 5B h.20 0.h7 53.2 6'>. C; 8R.8 9/).6 2.0<br />

374- 9.0 97 6.20 1.8": 56.) 68.1 83.8 90.5 2.0<br />

375 9.0 1')8 '.20 ':>.0;) 52.7 G0.? '10.3 82.(\ 2.0<br />

376 9.0 ,'06 6.27<br />

:~ _ 9 'I<br />

:)/·1-.5 GEl.7 69.5 Hl.2 2.0<br />

Q£()ling<br />

373 9.0 5t3 6.20 (J. ;',7 58.6 50. L~ :,8.1 -,2.'> le.O<br />

374- 9.0 97 6.20 1.S'i ,6.5 5'-1.2 '+7.7 59.4 4.0<br />

375 9.0 158 6. ,:0 5.03 59.2 4·6.d 47.5 '>7.2 11-.0<br />

376 9.0 =0(; 6.27 8.9'> ,,6.0 50. '3 5 L I.8 41.8 4.0<br />

0.c.0 re~£ent<br />

Q~RJOPO~<br />

Heo.t:i!l3.<br />

415-2 9.0 .8 38.2 11-.0<br />

Heating<br />

~24 ~~~ceg!_f~~TIQ?OL<br />

1~56 9.0 157 6.20 5.2l~l 50.3 60.8 :-,d. (-) Cj2.1 2.0<br />

455 9.0 186 6.20 6.6:'; 4.c:l.7 61.3 8').4· ClO.l 2.0<br />

Lj·54 9.0 20 L I- 6.20 B.O:S 40.d 54.1 '79.0 8').2 2.0<br />

Cooling<br />

457-2 9.0 138 6.20 3.36 ll-'l. ~~ 42.7 27.8 211-.8 6.0<br />

4·56 9.0 167 6.20 5.28 5'i·O 1+4.3 -3'L5 28. l j- 6.0<br />

,'- r- 'Z<br />

455 9.0 186 6.20<br />

~) .. 8) 60.1 118.7j 42.5 =53.6 6.0<br />

454 9.0 2()L, 6.20 8.0'; 52.U 11-2.1 37.3 )0.7 l) .0


DATA<br />

PADDLBu<br />

207<br />

:?lJl.'J'ER<br />

Batch ',,{eight 94.0 lbs. Center Heie;ht = 7.0 inches<br />

Run Diameter RPf~l Area 2<br />

Dynamometer 'rern!)ersture (oC) Time<br />

x Heic;ht (ft. ) Scale Batch Wall (min.)<br />

(inches x (lbs) 1 2 1 2<br />

inches)<br />

------------- -~<br />

iIeatinr;<br />

124 L~. 0 x 1.0 llO 6.20 0.07 56.6 71.0 79.8 90.0 2.0<br />

125 L~. 0 x 1.0 3l~0 6.20 0.3? 65.0 80.5 bO.6 91.0 2.0<br />

126 L~. 0 x 1.0 525 6.20 0.87 72.9 86.8 83.5 93.9 - 2.0<br />

127 4.0 x 1.0 724 6.23 1.84- 82.0 9l~. ::; 89.3 98.8 2.0<br />

120 LJ-.O x 2.0 105 6.20 0.15 67.6 eO.7 84.5 92.4 2.0<br />

121 4.0 x 2.0 304 6.20 0.59 64.7 80.7 n.5 H9.? 2.0<br />

122 4.0 x 2.0 472 6.,23 1.69 69.7 85.7


2.08<br />

Run Diameter RP!'1 Area Dynamometer I'empcrature CoC) Time<br />

x Height Batch \;,Iall<br />

1 2 1 2<br />

84 7.0 x 3.0 75 ;:'.20 0.50 '71.1 8').0 82.7 92.8 2.0<br />

85 7.0 x 3.0 120 6.20 L "38 61.7 79.8 74.1 '38.2 2.0<br />

86 7.0 x 3.0 195 6.2-5 3.98 62.3 8L3 72.7 88.6 2.0<br />

87 7.0 x 3.0 270 6.27 8.0:;; 63.7 E12.5 72.3 (58.5 2.0<br />

75 8.0 x LO 78 6.20 0.17 76.7 87.8 ()9.7 96.8 2.0<br />

76 8.0 x 1.0 77 6.20 0.15 82.8 92.3 94.0 99.0 2.0<br />

77 8.0 x 1.0 150 (:,.20 0.82 76.0 87.6 8h. l l- 95. 1 + 2.0<br />

78 8.0 x 1.0 260 6.2>; 2.85 59.0 78.0 70.7 86.7 2.0<br />

79 8.0 x 1.0 360 6.27 5.:>8 72.7 88.? 81.2 94.0 2.0<br />

71 8.0 x 2.0 58 6.20 0.25 63.3 83.0 83.1 92.7 2.0<br />

72 8.0 x 2.0 105 6.23 1.15 64.1 81.4 77.1 90.1 2.0<br />

73 8.0 x 2.0 194 6.23 4.25 83.0 9i~ .. 2 89.5 97.9 2.0<br />

74 8.0 x 2.0 260 6."31 8.28 79.0 92.2 85.6 96.3 "2.0<br />

80 8.0 x 4.0 60 6.20 0.53 4·5.3 65.4 61.9 ;8.9 2.0<br />

81 8.0 x 4·.0 92 6.20 1. 59 58.() 76.1 70.7 85.3 2.0<br />

82 8.0 x 4.0 l L I-8 6.23 1+.75 58.6 77.2 68.7 84.5 2.0<br />

83 8.0 x 4.0 200 6.'55 9.03 62.3 al.'5 70.0 87. 7 , 2.0<br />

Coo line;<br />

124 4.0 x 1.0 llO 6.20 0.07 66.9 58.5 49.1 112.8 2.0<br />

125 4.0 x 1.0 340 S.20 0.33 55.7 47.9 47.0 41.2 2.0<br />

126 4.0 x 1.0 525 6.20 0.87 48.3 LI-1. 3 42.3 '56.7 2.0<br />

127 4.0 x 1.0 724 6.23 1.8a 56.7 48.8 50.7 43.2 2.0<br />

120 4.0 x 2.0 105 6.20 0.15 66.9 50.6 46.2 1-l·0.·3 2.0<br />

121 4.0 x 2.0 304 6.20 0.5'3 66.8 57.0 58.1 50.0 2.0<br />

122 4.0 x 2.0 472 6.23 1.69 52.7 1+5.2 1+7.8 40.3 2.0<br />

123 4.0 x 2.0 598 6.23 2.89 52.6 [1-4.8 4/.6 41.1 2.0<br />

lll-3 5.0 x 1.0 96 6.20 0.05 4·9.8 4 1 +.2 40.3 36.1 2.0<br />

146 5.0 x 1.0 112 6.20 0.11 6LI-.2 55.5 52.3 .45. 1 1- 2.0<br />

144 5.0 x 1.0 295 5.20 0.70 56.5 48.3 50.4 42.8 2.0<br />

14·5 5.0 x 1.0 475 6.23 1.38 49.5 42.2 45.0 38.5 2.0<br />

104 5.0 x 1.5 98 6.20 o.n 42.0 36.9 34.1 29.7 2.0<br />

105· 5.0 x 1.5 185 6.20 0.40 i1-6.0 33.9 39.8 3L~. 7 2.0<br />

106 5.0 x 1.5 356 6.23 1. 73 4'7.3 [j·0.6 112.6 3to.5 2.0<br />

107 5.0 x 1.5 540' 6.27 4 •. 28 T5.8 61.3 66.8 55.8 2.0<br />

100 5.0 x 2.0 107 6.20 0.25 47.4 42.1 39.8 35.1 2.0<br />

101 5.0 x 2.0 11'35 6.20 0.33 44.0 3(:,.2 38.8 53.8 2.0<br />

102 5.0 x 2.0 335 6.2"3 2.03 54.3 4·6.2 l~9. 0 42.2 2.0<br />

103 5.0 x 2.0 455 6.23 3.88 73.3 60.4- 66.3 55.3 2.0·<br />

96 6.0 x 1.0 112 6.20 0.21 61.9 53.4 4 ).5 il·,.O 2.0<br />

97 6.0 x 1.0 190 6.20 0.47 ')0 .. ') 43.5 42.7 37.5 2.0<br />

98 6.0 x 1.0 358 6.20 1.9, 51.8 44.3 46.5 3).5 2.0<br />

99 6.0 x 1.0 478 6.23 "')."73 51.6 43.7 47.0 40.0 2.0<br />

33 6.0 x 2.0 85 6.20 O.!? 49.5 4'5.3 42.1 36.2 2.0<br />

40 6.0 x 2.0 130 6.20 0.55 62.7 52.9 54.0 46.0 2.0


209<br />

Run Diameter RH1 Area !)ynamometer Temperature (oC) 'rime<br />

x Height Batch 1:lnll<br />

1 2 1 2<br />

41 6.0 x 2.0 260 6.23 2.59 5Lj .8 47.1 50.1 L"3.1 2.0<br />

42 6.0 x 2.0 350 h.27 5.08 60.7; 50.9 55.6 47.0 2.0<br />

92 7.0 x 1.0 108 6.20 0.24 67.8 57.3 55.7 46.5 2.0<br />

93 7.0 x 1.0 1'76 6.20 0.61 61.5 52.2 53.7 45.5 2.0<br />

94 7.0 x 1.0 305 6.23 2. ::s6 68.2 57.1 60.7 50.8 2.0<br />

95 '1.0 x 1.0 407 6.2'S L". -;; 3 50.1 42.4 45.9 ')9.0 2.0<br />

88 -7.0 x 2.0 77 6.20 0.29 76.R 64.4 65.8 55.2 2.0<br />

89 7.0 x 2.0 l?5 6.20 1.16 51.8 44.5 46.0 -)-l. 6 2.0<br />

90 7.0 x 2.0 225 ,:;.23 3.58 77.7 67.0 69 •. 5 57.2 2.0<br />

91 7.0 x 2.0 326 6.27 7.88 53.7 44.8 49.8 42.0 2.0<br />

84 '7.0 x 3.0 75 6.20 0.50 70.2 ,')0.0 61.7 52.7 2.0<br />

85 7.0 x 3.0 120 6.20 1. 58 61.7 52.3 55.':> 47.1 2.0<br />

86 7.0 x 3.0 195 6.23 3.98 49.2 L~1.6 l>5.1 38.2 2.0<br />

,r ~<br />

87 '7.0 x 3.0 270 6.27 8.03 .(") • .? S I I.8 60.7 50.8 2.0<br />

75 8.0 x 1.0 78 6.20 0.17 50.4 !;·3.5 LI-2.0 36.0 2.0<br />

76 8.0 x 1.0 '77 6.20 0.15 43.9 78.4 76.9 32.3 2.0<br />

'77 8.0 x 1.0 150 6.20 0.82 54.4 46.8 48.0 41.0 2.0<br />

78 8.0 x 1.0 260 6.d 2.85 59.1 50. L " 53.6 45.6 2.0<br />

79 8.0 x 1.0 360 6.27 5.58 46.4 39.4 42.8 36.1 2.0'<br />

71 8.0 x 2.0 58 6.20 0.25 58.5 50.3 49.8 11-2.6 2.0<br />

72 8.0 x 2.0 105 6.23 1.15 46.7 40.0 4] .2 35.3 2.0<br />

73 8.0 x 2.0 194 6.23 4.25 8'1.0 /0.9 7-).5 (')4.9 2.0<br />

74 8.0 x 2.0 260 6.71 8.28 4').3 :;i6.8 40.Lj- ':>4.4 2.0<br />

80 8.0 x 4.0 60 6.20 0.53 i32.2 67.9 70.1 59.0 2.0<br />

81 8.0 x 4.0 92 6.20 1. 59 62.2 52.') 55.7 47.2 2.0<br />

82 8.0 x 4.0 148 6.2') 4-.75 'j5.0 44.B 4£3.7 41.1 2.0<br />

83 8.0 x 4.0 200 6.35 9.07 60.0 l19.9 55.0 4-6.4 2.0


DAT_':<br />

210<br />

"i'ADDI,ES<br />

9:5.7'10 GLYCERINE<br />

Batch ':!eie;ht 117.7 lbs. Center Height = '1.0 inches<br />

Run Diameter R?t'i Area 2<br />

Dynamometer 'l'emperature COC) Time<br />

x Heie;ht (ft. ) ;Scale Batch \'la11 (min)<br />

(inches x (lbs) 1 2 1 2<br />

inches)<br />

----------------------<br />

He§:~i!!E<br />

262 4-.0 x 1.0 2L~0 h.20 0.23 4-4-.S 53.2 96.0 96.S 2.0<br />

261 4-.0 x 1.0 11-65 0.20 0.69 53.3 64.3 94-.2 96.0 2.0<br />

260 4-.0 x 1.0 70S 6.20 1.80 54-.8 67.5 90.7 94-.8 2.0<br />

259 4-.0 x 1.0 935 6.20 '5.35 bl.8 74-.8 gO.8 95.4 2.0<br />

258 4.0 x 2.0 22lJ. 6.20 0.37 48.2 5';.7 gil-. 2 96.8 2.0<br />

257 4.0 x 2.0 520 6.20 0.81 (-)4-.1 73.9 95.8 QS.3 2.0<br />

256 lJ..0 x 2.0 4-25 6.20 1. 1 1-5 53.5 66.0 a8.S 96.3 2.0<br />

255 4-.0 x 2.0 570 6.20 2.60 59.7 72.'+ 90.3 95.S 2.0<br />

253 6.0 x 1.0 105 6.20 0.15 LI-0.2 i~j. LI ')5.2 97.2 2.0<br />

254- 6.0 x 1.0 198 6.20 0.68 56.5 66.7 96.5 97.8 2.0<br />

252 6.0 x 1.0 333 6.20 1.d8 69.3 79.5 96.8 ?9.2 2.0<br />

251 6.0 x 1.0 1+98 6.20 4-.'75 55.5 69.7 BS.2 93.5 2.0<br />

250 6.0 x 2.0 S5 6.20 0.25 Y?9 Lj.9.8 96.1 96.7 2.0<br />

24-9 6.0 x 2.0 152 6.20 1.10 58.1 67.0 93.1 93.2 2.0<br />

24-S 6.0 x 2.0 280 6.20 3.25 ')9.7 '72.1 89.13 95.3 2.0<br />

21.1·7 6.0 x 2.0 355 6.20 5.60 1~-6.8 53.2 SO.) 91.0 2.0<br />

246 8.0 x 1.0 90 6.20 0.37 i1-9.8 59.3 95.8 98.2 2.0<br />

24-5 8.0 x 1.0 Fi4- 6.20 1.11 lJ.9.8 61.3 92.8 95.7 2.0<br />

244- 8.0 x 1.0 260 6.20 ;;.50 '.00. 1 1- 7"'5.2 -n.9 95.7 2.0<br />

24·3 8.0 x 1.0 336 6.?0 ':"i. 95 48.0 64.1 83 .(~ 90.3 2.0<br />

242 8.0 x 2.0 78 6.2(; 0.55 50.6 GO.8 95.7 97., 2.0<br />

24-1 8.0 x 2.0 122 6.2u 1.67 \-)f,.0 76.0 9').2


2JJ<br />

DATA<br />

PADDLES<br />

93.7'}6 GL'!CEfUNE<br />

Batch \'ieight 117.7 Ibs. Center Height = 7.0 inches<br />

Run Diameter RPM Area 2<br />

Dynamometer Temperature (oC) Time<br />

x Height (ft. ) Batch \'iall (min)<br />

(inches x 1 2 1 2<br />

inches)<br />

-----.--- - --------------<br />

Q~~l~~g<br />

262 1~. 0 x 1.0 2L~0 6.20 0.23 60.3 55.1 23.3 20.1 4.0<br />

261 4.0 x 1.0 465 6.20 0.69 66.8 5t3.2 30.8 24.2 l~. 0<br />

260 4.0 x 1.0 708 6.20 1.80 65.0 55.2 35.2 26.3 4.0<br />

259 4.0 x 1.0 935 6.20 3.35 5g.7 49.7 32.2 211.4 4.0<br />

258 4.0 x 2.0 224 6.20 o. )7 57.6 51.9 22.7 20.5 4.0<br />

257 4.0 x 2.0 320 6.20 0.81 64.6 56.5 29.9 25.3 4.0<br />

256 4.0 x 2.0 425 6.20 1,1+5 '-';5.8 76.3 32.Q 27.6 4.0<br />

255 4.0 x 2.0 570 6.20 2.60 64.0 53.7 3S.6 28.2 4.0<br />

253 6.0 x 1.0 105 6.20 0.15 60.6 55.8 21.3. 19.4 4.0·<br />

254 6.0 x 1.0 198 6.20 0.68 62.5 55.':: 25.2 23.5 4.0<br />

252 6.0 x 1.0 1'33 6.20 1.Ba 65.8· 55.8 34.8 27.0 4.0<br />

251 6.0 x 1.0 498 6.20 4.55 60.7 50.5 35.0 2'7.2 1~.0<br />

250 6.0 x 2.0 85 6.20 0.25 (;1.2 55.7 22.8 21.6 1+.0<br />

249 6.0 x 2.0 15.:: 6.20 1.10 56.L~ ')0.0 2L~. 7 21.2 L~. 0<br />

248 6.0 x 2.0 280 6.20 3.25 58.Li l~9. 5 31. 5 24.7 4.0<br />

247 6.0 x 2.0 355 6.20 5.60 5E.2 11·8.4 34.0 25.2 4.0<br />

246 8.0 x 1.0 90 6.20 0.37 57.8 52.2 19.8 18.7 4.0<br />

245 8.0 x 1.0 154 6.20 1.11 ;:)4.0 55.7 28.0 23.2 4.0<br />

244 8.0 x 1.0 260 6.20 3.50 6/+~6 54'03 34.7 27.2 lj·.O<br />

243 8.0 x 1.0 336 6.20 5.95 80.9 71. 3 57.3 43.3 4.0<br />

2LI2 8.0 x 2.0 78 6.20 0.55 61.3 54.8 23.7 21.2 4.0<br />

241 8.0 x 2.0 122 6.20 1.67 66.4 56.8 33.3 27.1 4.0<br />

240· 8.0 x 2.0 192 6.20 4.60 65.7 52.4 ;>6.8 29.5 4.0<br />

239 8.0 x 2.0 2:;'5 6.23 8.10 64.3 52.7 38.9 30.Lj· L~. 0


212<br />

DATA<br />

PADDLES<br />

0.15 PEHC:::N'r CARBOPOL<br />

Batch Weight 94.4 l'bs. Center Height = 7.0 inches<br />

Run Diameter RPt'l Area 2<br />

Dynamometer Temperature cOe) Time<br />

x Height (ft. ) Scale Batch Wall (min)<br />

(inches x (Ibs) 1 2 1 2<br />

inches)<br />

Heating<br />

345 4.0 x 1.0 224 6.20 0.17 48.6 57.1 94.8 96.5 2.0<br />

346 4.0 x 1.0 j24 6.20 0.20 56.8 66.0 92.13 95.2 .2.0<br />

=547 '+.0 x 1.0 540 6.20 0.83 53.8 65.2 8i).7 93.1 2.0<br />

348 4.0 x 1.0 696 6.20 1.45 49.5 61.8 76.2 87.9 2.0<br />

31.19 4.0 x 2.0 216 6.20 0.25 55.3 64.5 89.8 92.8 2.0<br />

350 4.0 x 2.0 320 6.20 0.61 56.9 67.5 88.1 93.4 2.0<br />

351 lj-.O x 2.0 494 6.20 1. 71 62.0 7,.3 88.3 93.7 2.0<br />

352 4.0 x 2.0 622 6.20 2.78 51.7 65.0 73.3 86.8 2.0<br />

357 6.0 x 1.0 103 6.20 0.15 38.7 47.7 92.3 94.3 2.0<br />

358 6.0 x 1.0 272 6.20 1.05 58.9 69.8 89.5 93.6 2.0<br />

359 6.0 x 1.0 416 6.20 2.63 58.3 70.7 83.7 91. 3 2.0<br />

360 6.0 x 1.0 526 6.20 4.33 53.8 67 .L~ 73.4 86.3 2.0<br />

361 6.0 x 2.0 93 6.20 0.31 L16.7 56.9 '-;9.7 92.7 2.0<br />

362 6.0 x 2.0 167 6.20 0.85 51.6 63.1 86.7 93.0 2.0<br />

363 6.0 x 2.0 292 6.20 2.93 60.7 73.2 84.3 92.7 2.0<br />

364 6.0 x 2.0 390 6,20 5.28 54.7 68.7 72.9 85.8 2.0<br />

365 8.0 x 1.0 94 6.20 0,4') 4Q.7i ')9.0 QO.2 94.8 2.0<br />

366 8.0 x 1.0 11~3 6.20 0.77 50.S 62.2 86.0 93.0 2.0<br />

367 8.0 x 1.0 280 6.20 3.35 45.8 60.2 73.3 84.2 2.0<br />

368 8.0 x 1.0 _354 6.20 5.63 (')3.7 76.5 84.8 92.0 2.0<br />

369 8.0 x 2.0 70 6.20 0.43 L1-8. ') 59.2 87.7 92.2 2.0<br />

370 8.0 x 2.0 121 6.20 1. 35 52.9 6l1-.8 83.8 90.8 2.0<br />

371 - 8.0 x 2.0 206 6.?O ll-.38 59.2 72.3 80.2 90.3 2.0<br />

372 8.0 x 2.0 254· 6.27 7.03 53.8 67.8 70.3 82.2 2.0


i!.IJ<br />

DATA<br />

PADDLE::;<br />

0.15 PERCENT CARBOPOL<br />

Batch ~Ieight 94.4 lbs. Center Height = 7.0 inches<br />

Run Diameter RPM Area Dynamometer Temperature (oe) Time<br />

x Height (ft. 2) Scale Batch Wall (min)<br />

(inches x (lbs) 1 2 1 2<br />

inches)<br />

---.~----------------<br />

Cool~<br />

345 4.0 x 1.0 224 6.20 0.17 62.8 56.6 37.6 32.3 4.0<br />

346 4.0 x 1.0 324 6.20 0.20 61.0 53.3 38.8 32.2 4.0<br />

347 4.0 x 1.0 54-0 6.20 0.83 64.8 54.3 45.0 37.7 4.0<br />

348 4.0 x 1.0 696 6.20 1.45 60.2 50.2 43.0 36.7 4.0<br />

349 4.0 x 2.0 216 6.20 0.25 55.8 49.7 36.1 31.3 4.0<br />

350 4.0 x 2.0 ':>20 6.20 0.61 60.7 52.0 42.2 36.2 4.0<br />

351 4.0 x 2.0 494 6.20 1.71 61. 3 50.7 44.8 38.2 4.0<br />

352 4.0 x 2.0 622 6.20 2.78 61.3 49.7 47.0 37.7 4.0<br />

357 6.0 x 1.0 103 6 •. 20 0.15 68.8 52.8 32.8 30.2 4.0'<br />

358 6.0 x 1.0 272 6.20 1.05 67.8 56.':> 46.7 39.8 4.0<br />

359 6.0 x 1.0 416 6.20 2.63 61.3 49.9 45.7 37.7 4.0<br />

360 6.0 x 1.0 526 6.20 L~. ':>3 71.8 55.8 55.5 1+4.0 4.0<br />

361 6.0 x 2.0 93 6.20 O. ':>1 61. 7 54.7 35.3 30.7 4.0<br />

362 6.0 x 2.0 167 6.20 0.85 60.7 51. 3 40.3 33.1 4.0<br />

363 6.0 x 2.0 292 6.20 2.93 60.2 48.8 44.8 36.3 4.0<br />

364 6.0 x 2.0 390 6.20 5.28 60.9 1+8.3 4-8.0 38.4 4.0<br />

365 8.0 x 1.0 9 l !- 6.20 0.45 56.7 49.8 34 .L~ 30.7 4.0<br />

366 8.0 x 1.0 143 6.20 0.77 59.7 50.7 39.7 '33.0 4.0<br />

367 8.0 x 1.0 280 6.20 3.35 58.3 47.3 l~/+ .1 '35.7 4.0<br />

368 8.0 x 1.0 354 6.20 5.63 60.2 47.7 47.4 37.9 4.0<br />

369 8.0 x 2.0 70 6.20 0. 1 +3 62.2 53.8 37.9 34.4 4.0<br />

370 8.0 x 2.0 121 6.?O 1. 7j C; G1. 'J '31..2 1+2.5 35.9 4.0<br />

371 8.0 x 2.0 206 6.20 1+.38


211-<br />

D!~ 'I'l\.<br />

PA-:JDLES<br />

0.20 PERCENT CAR BOPOL<br />

Batch ',)eic;ht 9l~.4 1bs. Center Height = 7.0 inches<br />

Run Diameter RPJVj At'ea2 Dynamometer 'I'emperature (oC) Time<br />

x Height (ft. ) Scale Batch \va11 (min)<br />

(inches x C lOs) 1 2 1 2<br />

inches)<br />

Heati!!!l<br />

395 4.0 x LO 556 6.20 0.86 49.3 57.0 95.7 96.3 2.0<br />

394 L~. 0 x LO 626 .,i,20 1.05 ')4.2 1+3.d 89.7 9L6 2.0<br />

397 4.0 x LO 714 6.20 l.l~3 49.3 58.4 92.3 95.0 '2.0<br />

392 1+00 x 2.0 340 6.20 1.n 42.':> 4B.3 90.3 94.2 2.0<br />

393 4.0 x 2.0 412 6.20 1.21 5".2 60.5 92.1 93.0 2.0<br />

"01 L~. 0 x 2.0 496 6.20 2.13 52.2 61.8 9L7 94.2 2.0<br />

390 4.0 x 2.0 618 6.20 2.83 11-2.2 5 1 1-.2 82.3 87.7 2.0<br />

402 6.0 x 1.0 278 h.20 1.11 /11.2 49.3 92.9 9'1-.9 2.0<br />

403 6.0 y. 1.0 376 6.20 2.0? Ij.Fl • Po S;~. Pi '-\;. ': (1';;.7 2.0'<br />

P') ('\<br />

404 6.0 x 1.0 432 6.20 2.73 50.7 61. '5 Do' .0 ')L7 ,-.J<br />

405 6.0 x 1.0 532 6.20 I~ .• ? '} 57.2 68.1 8G.b 0~ -;Jr... '" ,j 2.0<br />

399 c-.O x 2.0 240 6.20 2.1') 51.1 61.] 92.0 95.3 2.0<br />

398 6.0 x 2.0 290 6.20 3.08 38.5 51. 7 8ll'.7 88.8 2.0<br />

400 6.0 x 2.0 342 6.20 4.33 ')(').3 6(').3 8').3 90.4 2.0<br />

401 6.0 x 2.0 370 (').20 5.15 ')3.8 66.2 83.4, g1.1 2.0<br />

411 8.0 x 1.0 163 6.20 1.13 52.5 ')9.5 96.6 97.7 2.0<br />

410 8.0 x 1.0 220 6.20 2.13 37.7 48.8 87.3 91.8 2.0<br />

412 b.O x 1.0 272 6.20 3.33 ')2.7 63.2 90.3 94.3 2.0<br />

413 8.0 x 1.0 358 6.20 S.68 50.4 G1.9 80.7 .B9.2 2.0<br />

407 8.0 x 2.0 130 6.20 1.65 46.3 53.8 95.7 98.1 2.0<br />

406 8.0 x 2.0 182 6.20 3.08 11-8.8 59.8 87.4 90.7 2.0<br />

408-2 8.0 x 2.0 216 6.20 4.48 61.1 70.0 85.7 92.2 2.0<br />

409 8.0 x 2.0 265 6.20 7.1'3 f,2.7 73.9 87.h 93.9 2.0


DATA<br />

PADDLES<br />

0.20 PEHCENT CARSOPOL<br />

Batch \veight 94.4 lbs. Center Height = 7.0 inches<br />

21$<br />

Run Diameter RPt'-l Area 2<br />

Dynamometer :i:'emperature<br />

-<br />

COC) Time<br />

x Height (ft, ) Scale B!3.tch Wall (min)<br />

(inches x (lbs) 1 2 1 2<br />

inches)<br />

Q£oli~<br />

395 LI-.O x 1.0 556 6.20 0.86 54.9 47.7 30.2 26.2 6.0<br />

394 4.0 x 1.0 626 6.20 1.05 49.3 42.9 27.8 24-.3 6.0<br />

397 4.0 x 1.0 714 6.20 1.4'5 ')0. E3 h8.2 ')2.3 27.9 6.0<br />

392 4.0 x 1.0 340 6.20 1.13 53. l l- L1-6.8 26.6 25.2 6.0<br />

393 4.0 x 1.0 412 0.20 1. 21 54.1 46.3 '50.4 26.7 6.0<br />

391 1+.0<br />

... ........-\<br />

x 1.0 LI-96 \-:>,.::'-" 2.13 60.4 50.2 3ELll- 30.8 6.0<br />

390 1-1-.0 x 1.0 618 6.20 2.83 57.3 4G.3 37.1 31.8 6.0<br />

402 6.0 x 1.0 271:\ 6.20 1.11 52.9 40.3 2b.a 2h.l 4-.0<br />

403 6.0 x 1.0 376 6.20 2.02 60.7 5'5.3 39.1 32.6 4.0-<br />

4-04 6.0 x 1.0 432 b.20 2..73 59.7 51. ? 39.7 33.8 11-.0<br />

405 6.0 x 1.0 5?2 6.20 4-. ")3 67.9 56.7 48.7 l!-0.2 4.0<br />

399 6.0 x 2.0 2LI-O 6.20 2.15 58.2 51.2 37.2 31. El 4.0<br />

398 6.0 x 2.0 290 6.20 7).OB 60.0 SloB 42.,> 35.2 4.0<br />

400 6.0 x 2.0 342 6.20 4. '53 59.2 49. 0 4-2.6 7,0).7 4-.0<br />

401 6.0 x 2.0 370 6.20 5.15 63.7 53.0 46.4 39.3 4.0<br />

411 8.0 x 1.0 163 6.20 1.13 55.7 50.7 29.9 28. 1 1- 4.0<br />

410 8.0 x 1.0 220 6.20 2.13 52.4 46.7 31.8 28.7 4.0<br />

412 8.0 x 1.0 272 6.20 3.?3 53.7 46.8 >\'5.2 30.2 I~_.O<br />

413 8.0 x 1.0 358 6.20 5.68 ')5.2 46.7 4-0.3 33.5 4.0<br />

407 S.O x 2.0 130 6.20 1.65 57.9 52.5 29.6 26.8 1+.0<br />

406 8.0 x 2.0 182 6.20 3.08 57.7 50.2 38.8 33.7 4-.0<br />

408 8.0 x 2.0 216 6.20 4.4-8 62.1 52.3 43.8 36.9 4.0<br />

409 8.0 x 2.0 265 6.20 7.13 62.8 52.2 47.0 39.2 4.0


~;:. 'I'A<br />

3.16<br />

P.;'DDLES<br />

0.24 PEHCEl'!'r CArt::BOPOL<br />

Batch Weight ')4.4 Ibs. Center Height = 7.0 inches<br />

Run Diameter HPI"! Area 2<br />

Dynamometer Temperature (oC) Time<br />

x Heir:;ht (ft. ) Scale Batch \


DAi'A<br />

217<br />

P::10?;;;LL :i~S<br />

WA'P'SR<br />

Batch = 94.0 Ibs.<br />

Cleo-trance = 10.0 inches<br />

Run Diameter RP~l Area2_ Jynamometer 'l'empera ture (oC) Time<br />

(inches) (ft. ) l:::)cale :Batch \'iall (min)<br />

(lbs) 1 2 1 2<br />

Heating<br />

155 5.2 135 6.20 0.01 73.1 84.9 89~2 96.4 2.0<br />

159 5.2 319 6.20 o.:n 68.0 83.5 80.2 92.5 2.0<br />

156 5.2 332 6.20 0.26 79.2 91.3 88.5 97.4 2.0<br />

157 S.2 545 6.20 0.88 71.0 86.8 81.9 93.5 -2.0<br />

158 5.2 765 6.20 1.86 82.5 95.0 89.8- 98.8 2.0<br />

Coolin[?;<br />

1';15 5.2 135 6.20 0.01 55.4 48.7 45.2 39.9 2.0<br />

159 5.2 319 6.20 0.31 67.9 56.4 58.6 48.7 2.0<br />

156 5.2 332 6.20 0.26 47.8 41.1 42.1 %.6 2.0<br />

157 5:2 545 6.20 0.88 46.8 40.0 42.3 36.3 2.0<br />

158 5.2 765 6.20 1.86 46.9 40.0 43.i 36.9 2.0<br />

Heating<br />

93.7% GLYCERINE<br />

Batch \'ieight 117.7 Ibs. Clearance 10.0 inches<br />

278 4.1 253 6.20 0.12 43.3 51.2 96.7 97.3 2.0<br />

277 4.1 L~94 5.20 0.35 54.3 64.2 94.2 96.2 2.0<br />

276 4.1 835 (').20 0.92 48.2 61.6 87.0 93.9 2.0<br />

275 4.1 1035 6.20 1.45 42.3 57.2 83.8 90.2 _ 2.0<br />

274 n.O 120 6.20 0.14 1+3.6 51.8 95.4 96.9 2.0<br />

273 6.0 234 6.20 0.43 4-6.3 57.5 91.7 95.2 2.0<br />

272 6.0 420 6.20 1.40 5">.0 66.3 88.4 94.2 2.0<br />

271 6.0 62,? 6.20 "'i.20 61. 3 74.9 8(3.,) 94.3 2.0<br />

Cooling<br />

278 4.1 253 6.20 0.12 58.3 54.7 J 9.3 19.4 4.0<br />

277 4.1 4g4 6.20 0.'i'3 h1. p. C;C,.0 25.5 24.1 4.0<br />

276 4.1 835 6.20 0.92 67.2 57.5 35.3 29.0 4.0<br />

275 4.1 1035 6.20 1.L~5 63.9 54.1 35.4 28.2 4.b<br />

274 6.0 120 6.20 0.14- 61.8 56.6 22.3 20.7 4.0<br />

273 6.0 23L~ 6.20 0.43 61.1 51~. 3 2:,.5 24.2 4.0<br />

272 6.0 420 6.20 1 ;1+0 60.1 _51.7 32.2 26.0 4.0<br />

271 6.0 625 6.20 3.20 60.1 49.8 36.3 28.5 4.0


2/8<br />

DATA<br />

PROPELL:SH3<br />

0.15 P:~RCEN'l' CARBOPOL<br />

Batch Weigbt 94.4 Ibs. Clearanc"<br />

~<br />

10.0 inches<br />

Run Diameter RPM 'u'ea 2 Dynamometer 'l'emperature (oC) Time<br />

Cinches) (ft. ) Scale T:l;d;ch VIall (min)<br />

(lbs) 1 2 1 2<br />

------ --<br />

Heati~G<br />

341 4.1 372 - 6.20 0.17 47.7 ')7.8 91.7 94.2 2.0<br />

342 4.1 482 6.20 0.21 58.2 1)7.2 91,5 95.2 2.0<br />

343 4.1 596 6.20 0.27 54.0 (;4-,9 f\8.9 92.8 -2.0<br />

3L~4 4.1 766 6.20 0.55 L~9. 2 (-)1.5 82.8 89.8 2.0<br />

353 6.0 113 6.20 0.11 53.8 61.3 95.3 97.2 2.0<br />

35L~ 6.0 315 6.20 0.55 55.G ()6.7 84-.8 91.7 2.0<br />

355 6.0 496 6.20 1.43 53.8 (:'7.1 77.7 88.9 2.0<br />

356 6.0 630 6.20 2.43 55.8 69.0 '7'-1-.7 87.7 2.0<br />

Q2.01~~<br />

341 4.1 372 6.20 0.17 59.9 53.5 35.2 31.7 4.0<br />

342 4.1 482 6.20 0.21 61.0 53.2 38.2 38.8 4.0<br />

343 4.1 596 6.20 0.27 60.6 52.1 39.8 34.2 4.0<br />

344 /-1-.1 766 6.20 0.55 58.7 1-I-9. l e 40.0 35.3 4.0<br />

354_ 6.0 315 6.20 0.55 66,0 55.4- Le7.0 39.9 4.0<br />

355 6.0 496 6.20 1.43 58.8 1-1-8.2 45.3 37.5 4.0<br />

356 6.0 630 6.20 2.43 64.0 50.8 50.7 41.2 4.0


DATA<br />

PROPELJ,SRS<br />

219<br />

CARBOPOL SOLUTIONS<br />

Batch Weight 94.4 lbs. Clearance = 10.0 inches<br />

Run Diameter RPM Area2 Dynamometer 'remperature COC) Time<br />

(inches) (n. ) Scale Batch Wall (min)<br />

(lbf?) 1 2 1 2<br />

Heatine;<br />

0.20 Percent CARBOPOL<br />

381 6.0 324 6.20 0.73 43.3 49.7 88.8 91.8 2.0<br />

382 6.0 396 6.20 0.88 37.8 47.0 90.1 92.8 2.0<br />

383 6.0 572 6.20 2.08 51.2 62.1 85.3 90.7 2.0<br />

Cooli!!E;<br />

385-2 4.1 766 6.20 0.55 38.2 34.1 22.7 20.7 6.0<br />

381 6.0 324 6.20 0.73 55.7 49.4 30.9 27.3 6.0<br />

382 6.0 396 6.20 0.b8 ':;6.3 48.7 35.0 29.2 6.0<br />

383 6.-0 572 6.20 2.21 62.1 49.7 43.3 33.8 6~0<br />

0.24 Percent CARBOPOL<br />

Heatine;<br />

427. 6.0 500 6.20 1. 58 45.7 52.8 94.3 96.2 2.0<br />

428 6.0 572 6.20 2.08 49.8 57.9 94.9 95.8 2.0<br />

L~29 6.0 650 6.20 2.65 48.8 58.3 88.3 90.2 2.0<br />

Cooline;<br />

427 6.0 500 6.20 1.58 51~ .3 48.7 30.8 27.8 6.0<br />

428 6.0 572 6.20 2.08 56.3 49.2 34.9 30.1 6.0<br />

429 6.0 650 6.20 2.65 52.4 44.8 34.6 29.3 6.0


DATA<br />

DISK & VANE 'l'URBINE<br />

\'iATER<br />

Batch Weight 94.0 Ibs. Center Height = 7.0 inches<br />

2.2.0<br />

Run Diameter RPf>1 Area2 Dynamometer Temperature (oe) Time<br />

x Height (:ft. ) Scale Batch Wall (min)<br />

(inches x (lbs) 1 2 1 2<br />

inches)<br />

Heating<br />

173 4.0 x 0.75 118 5.20 0.06 57.1 71.0 75.2 85.8 2.0<br />

174 4.0 x 0.75 ::>12 6.20 0.61 73.'+ 87.5 83.8 94.1 2.0<br />

175 4.0 x 0.75 492 6.20 1.64 66.3 83.1 76.0 89.7 2.0<br />

176 4.0 x 0.75 712 6.23 3.68 67.8 85.1 76.3 90.8 2.0<br />

169 5.0 x 1.0 102 6.20 0.14 74.1 87.0 87.8 96.4 2.0<br />

170 5.0 x 1.0 268 6.20 1. ~2 66.8 83.5 '16.8 90.1 2.0<br />

171 5.0 x 1.0 402 6.23 .~.17 (',7.2 84.3 76.2 90.0 2.0<br />

172 5 .• 0 x 1.0 L~98 6.23 4.88 72.8 139.0 BO.2 93.3 2.0<br />

128 6.0 x 1.25 70 6.20 0.21 72.3 84.7 86.2 94.2 2.0<br />

129· 6.0 y: 1.25 145 6.20 0.97 50.7 77.4 73.3 86.5 2.0<br />

130 6.0 x 1.25 254 6.23 3.15 0,5.5 82.9 74.5 89.0 2.0<br />

131 6.0 x 1.25 346 6.27 5.98 78.7 93.2 85.8 97.7 2.0<br />

165 7.0 x 1. 375 70 6.20 0.48 67.0 82.3 80.5 91. 5 2;0<br />

166 7.0 x 1.375 113 0.20 1.20 63.8 81.0 74.6 89.0 2.0<br />

167 7.0 x 1.375 202 6.20 4.33 65.2 82.2 73.7 88.6 2.0<br />

168 7.0 x 1. 375 273 6.27 8.18 68.1 85.6 76.2 91.0 2.0<br />

CoolinEi<br />

173 4.0 x 0.75 118 6.20 0.06 65.8 56.5 53.0. 46.1 2.0<br />

174 4.0 x 0.75 312 6.20 0.61 84.7 69.2 74.0 61.3 . 2.0<br />

175 4.0 x 0.75 492 6.20 1.64 51.3 43.6 46.0 39.3 2.0<br />

176 4.0 x 0.75 712 6.23· 3.68 53.5 45.3 49.8 42.1 2.0<br />

169 5.0 x 1.0 102 6.20 0.14 53.2 46.3 44.9 39.6 2.0<br />

170 5.0 x 1.0 268 6.20 1.32 47.0 40.2 42.2 36.7 2.0<br />

171 5.0 x 1.0 402 6.23 3.17 51.2 43.5 47.0 39.8 2.0<br />

172 5.0 x 1.0 498 6.2"') 4.88 50.3 42.6 4f>.5 39.6 2.0<br />

128 6.0 x 1.25 70 6.20 0.21 49.9 42.9 41.4 36.5 2.0<br />

129 6.0 x 1.25 145 6.20 0.97 82.3 67.5 72.5 60.2 2.0<br />

130 6.0 x 1.25 254 6.23· 3.15 61.0 51.3 55.3 46.7 2.0<br />

131 6.0 x 1.25 346 6.27 5.98 L~5. 5 38.6 41.8 36.4 2.0<br />

165 7.0 x 1.375 70 6.20 0.48 67.7 57. 1 + 58.9 49.6 2.0<br />

166 7.0 x 1.375 11') 6.20 1 •. ?0 4g·9 IL) .7 4L~. 0 38.2 2.0<br />

167 7.0 x 1.375 202 6.20 11.,? :)2.3 44.0 48.1 40.7 2.0<br />

168 7.0 x 1.375 273. 6.27 8.18 49.3 41.4 45.7 38.7 2.0


DATA<br />

221<br />

DISK 8"-<br />

VANE TURBINES<br />

93.7% GLYCEitINE<br />

Batch WeiGht<br />

Center HeiGht = 7.0 inches<br />

Run Diameter RPI'1 Area2 Dynam.ome te r Temperature (oC) 'rime<br />

x Height (ft. ) deale Batch l>Jall (min)<br />

(inches x (lbs) 1 2 1 2<br />

inches)<br />

Heating<br />

270 4.0 x 0.75 226 6.20 0.3~ 48.5 59.0 96.8 97.1 2.0<br />

269 4.0 x 0.75 412 6.20 I.E> 57.7 69.6 9').1 95.6 2.0<br />

268 4.0 x 0.75 560 6.20 2.30 55.8 69.1 89.5 94.0· 2.0<br />

267 4.0 x 0.75 730 6.20 3.80 45.2 61.4 81.7 89.1 2.0<br />

266 6.0 x 1.25 93 6.20 0.37 l~7. 5 58.3 94.3 97.3 2.0<br />

265 6.0 x 1.25 158 6.20 1.18 53.5 65.2 91.7 95.7 2.0<br />

264 6.0 x 1.25 276 6.20 3.75 59.2 68.2 89.5 95.5 2.0<br />

263 6.0 x 1.25 345 6.20 6.25 50.3 61.2 84.2 90.8 2.0<br />

Cooli!!;8<br />

270 4.0 x 0.75 22~ 6.20 0.:;;:0; h4.g 57.7 2"".1 22.1 4.0<br />

269 4.0 x 0.75 lH2 6.20 1.13 62.8 54.2 31.8 26.2 4.0<br />

268 4.0 x 0.75 560 6.20 2.30 63.3 53.3 34.7 29.1 4.0<br />

267 4.0 x 0.75 730 6.20 3.80 60.0 49.9 35.0 28.3 4.0<br />

266 6.0 x 1.25 93 6.20 0.37 57.7 52.2 20.8 19.8 4.0<br />

265 6.0 x 1.25 158 6.20 1.18 67.8 58.3 32.4 26.2 4.0<br />

:264 6.0 x 1.25 276 6.20 3.75 60.7 51.1 .32.8 25.2 4.0<br />

263 6.0 x 1.25 345 6.20 6.25 61. 7 50.2 36.6 27.2 ll-.O


2.22<br />

DATA<br />

Tu.'i:SINES<br />

0.15 PERCENT CARBOPOL<br />

Batch \veight 94.4 Ibs. Center :iei(l;ht = 7.0 inches<br />

Run Diameter RP~1 Area2 DJ'namometer Temperature (oC) Time<br />

x Heicht (ft. ) Scale Batch ~/al1 (min)<br />

(inches x (lbs) 1 2 1 2<br />

inches)<br />

Heating<br />

337 4.0 x 0.75 216 6.2u 0.21 46.6 57.2 89.3 89.7 2.0<br />

338 4.0 x 0.75 326 6.20 0.57 51.5 (.,2.7 85.8 90.7· 2.0<br />

339 4.0 x 0.75 498 6.20 1. 57 61.2 72.7 86.3 92.7 2.0<br />

340 4.0 x 0.75 684 6.20 3.13 65.0 77.1 84.9 93.6 2.0<br />

333 6.0 x 1.25 104 6.20 0.35 50.6 61.2 89.8 92.8 2.0<br />

334 6.0 x 1.25 152 6.20 0.87 51.2 63.0 85.0 92.7 2.0<br />

335 6.0 x 1.25 266 6.20 :>i.17 57.5 70.7 79.4 89.7 2.0<br />

336 6.0 x 1.25 348 6.20 5.73 54.7 68.6 71.8 84-.3 2.0<br />

Cooling<br />

337 4.0 x 0.75 216 6.20 0.21 61.9 ')4.3 37.8 32.7 4.0<br />

338 4.0 x 0.75 ?26 6.20 0.57 G1.8 52.3 l~l. 7 35.B 4.0<br />

339 4.0 x 0.75 498 6.20 1. 57 68.4 55.2 50.5 40.9 4.0<br />

340 4.0 x 0.75 684 6.20 -? .13 64.2 50.9 49.7 40.1 4.0<br />

333 6.0 x 1.25 104 6.20 0.'>5 '35.8 49.2. '33.2 30.4 4.0<br />

334 6.0 x 1.25 152 6.20 0.87 53.7 l~5. 8 ;;5.6 '51. ;; IhO<br />

335 6.0 x 1.25 266 6.20 3.17 68.5 54.3 51.6 41.7 4.0<br />

336 6.0 x 1.25 ')48 6.20 5.73 63.7 49.9 50.8 40.7 4.0


DA'rA<br />

22.J<br />

'l'LlTIBINES<br />

CAR30POL SOWl'IONS<br />

I3atch "'ieight 94.4 lbs. Center Height = 7.0 inches<br />

Run Diameter ~~PM .tu:ea,;) -:ynamometer :.re:nperature CoC) Time<br />

x Height (ft.-) Scale Batch \'lall (min)<br />

(inches x (lbs) 1 2 1 2<br />

inches)<br />

0.20 P~~cent_Q!g~Q?OL<br />

Heati!l5.<br />

31)9 4.0 x 0.75 4 L W 6.20 loll 56.6 63.5 92.8 94.9 . 2.0<br />

387 4.0 x 0.75 518 6.20 1. 55 49.4 58.2 91.2 94.5 2.0<br />

386 4.0 x 0.75 645 6.20 2.58 42.6 55.2 85.3 87.8 2.0<br />

419-2 6.0 x 1.25 187 6.20 1.28 51.2 58.5 97.7 98.2 2.0<br />

418 6.0 x 1.25 230 6.20 2.05 4-2.3 53.2 91.8 92.0 2.0<br />

420 6.0 x 1.25 275 6.20 3.13 53.2 64.0 8'7.8 92.3 2.0<br />

421 6.0 x 1.25 350 6.20 5.48 53.0 65.2 83.1 90.8 2.q<br />

QooliJ.:!f!l<br />

389 L,.O x 0.75 4AO 6.20 1.11 60.2 51.6 35.3 30.7 6.0<br />

3d7 4-.0 x 0.75 5Hi 6.20 1. 55 57.0 48.5 3 1 1-.8 29.7 6.0<br />

j88 4.0 x 0.75 592 b.20 1.93 43.1 37.1 28.0 24.7 6.0<br />

386 4.0 x 0.75 645 6.20 2.58 59.7 48.7 42.3 ?3.6 6.0<br />

'+19 6.0 x 1.25 187 6.20 1.28 '56.3 4ii.7 30.3 27.2 6.0<br />

1+18 6.0 x 1.25 230 6.20 2.05 50.) 43.0 30.8 26.1 6.0<br />

1+20 6.0 x 1.25 275 6.20 3.13 62.3 50.5 43.4 34.5 6.0<br />

421 6.0 A 1.25 350 6.20 ';',48 62.2 48.3 4-5.7 35.7 6.0<br />

0.21+ Percent CARIlOPOL<br />

He~!ini5<br />

459 6.0 x 1.25 342 6.20 4-.65 4-9.2 59.0 90.2 93.8 2.0<br />

i}58 6.0 x 1.25 365 6.20 5.43 36.5 49.2 84.1 89.2 2.0<br />

Cooling<br />

459 6.0 x 1.25 - 3 1 Q 6.20 I~- .65 52.8 4i~.9 31.3 27.3 6.0<br />

458 6.0 x 1.25 =)65 6.20 5.4.3 49.6 41.7 32.8 27.8 6.0


CALCULATION OF HEAT TRANSFER<br />

AND PRANDTL NUIVlBERS<br />

1. Program <strong>for</strong> calculating dimensionless groups based<br />

on apparent viscosity derived by dimensional analysis<br />

2. Program <strong>for</strong> calculating diQensionless groups based<br />

on Metzner1s apparent viscosity<br />

3. Fluid properties used in above programs. (STATE:1ENTS<br />

12-30)<br />

4. Nomenclature


• _________ H ___ -.5_J<br />

n __ 41._<br />

_._._-_.<br />

5 REAO.N.DA.W.T!~E<br />

- ______ h n.Q65-L=-l-J..I-----------------------------------<br />

59 PUNCH,DF,OME,QNLT,HP<br />

_ 6it 2UNCH,.J::1...LhJ\JNU-, Xl'-.L~E.-"1M2.Q ___________________ _<br />

61 PUNCH.oV,XNPR.VCFl.VCF2<br />

. [:; ::'_~l..JNC~H._-"LC::£_3_j,jj_CF_4-,-' L' --,,-V-,C,,-,-F_-=~:....:.,-,X~R,-"c=..!K--,,--________________<br />

70 GO TO 5<br />

____ ~~JLOJe _______________________________________<br />

72 END<br />

_<br />

----------------.. ------~---~<br />

---- .<br />

Note; . AhmlB __ p-ro.grams lNxitt-en. £o.I'--conl:i:ng-runs.-<br />

For <strong>heat</strong>ingjstatement 36--illUSt. read-<br />

_________ ~ 36 QNET<br />

=: QDT ""-QM.K--------


________________ ~parent viscosity deri veQ.~v dimensional analysj s<br />

6 D06SI=1.N<br />

7 REA~.RUN.RPM.A.~CAL.LTl.~T2. Tl. T2<br />

8 dTAV=(UTl+bT2,*C.5<br />

9 liJ T A V = ( l.c-'Tl.+ iJJ_",,?~) -x,-,-'~-"C,-,-e!'-='S'---______________<br />

10 DF=AOSIWTAV-HTAV)<br />

--- ---------_/<br />

_ _ _ ____ ll~_.I_C:i=_A U SId T 2 --,o=--T-=l-,-_<br />

----------------------~<br />

--------------- ----<br />

-------------------------- ------------ ----------------- ------------ ----.--~<br />

31 XPOW=12H.3E-3,*SCAL*PPM<br />

___ --"3"-!2=---"OfY1E::: ( 7 " 7 2 Ec_--'L=-'-'-)-.:*:...:x"'/'-P-->OL':::c,\! ________________ _<br />

33 DENO=IRPM**3I f CDA**51*DENS<br />

:3 4 >3"-0",,c---,-H~:::-,-H",-,-'<br />

P~*-,I~l,--,,-G -'.;O,-+,-,H-,-,-p_",_L-=-1-=,,'-.7L..7-'.-4,--,L=-_-_4,-',-'_____________<br />

39 XNNU=1.1b6*H/TC<br />

f+ l_tL,£:::_X_I


. ________ ---'F"'-l uid prope-rty statements <strong>for</strong> water<br />

12 VIDA=dTAv-o.435<br />

13V LLlLt::;b,-'7B .... A+\j~lLliUt'\LLLR _____<br />

14 VltJC=Vlhdi< I:-JW =.L~': _~__ ~.<br />

26 DENS=62 .. 42-(1 .. 645L-3l*UTAV-(2.4HL-4)*DTAV**2 .. 0<br />

~ ____ ~2~_-~7_T~C~-~u-,.,-,3~2~5~,~'~D~·T~A~\L/~~;


------------------------ -_._--------------'<br />

--____ -Rluid-J].I'operty statements Tor 93" 7 percent 8;1 ycerj ne<br />

. _____ 2.2...8--./<br />

--.. ---------~<br />

12 _DENS.= 7 u ... ~.3_=L!_IAVJLL..4...aj _ 4 b ic_c::::2J, _____________ _<br />

-------_---./<br />

14 TC=0.172<br />

______ ~1~~L_~(~~ _________________________________________ /<br />

16 CP=O&~6~+uTAV*( I .~4~-JI<br />

___. __ L1 __ C PW := Q." :).6?t ~ILT lL\L}LU_~? 4 E:. - .:.tL.____________<br />

18 LXUl=lbHO./(273.+0TAVI<br />

_ J_.?_. _.E:XtjZ-==.9-'?' 7l)_!!LC2_7.J " + L:l T A V )<br />

---------.---/<br />

20 VI~=(7.17E-5)*1: .• L**Lxbl+(~.8~E:.-13)*ln.~**~xu~<br />

_______ ~21~~X~K~~. (6.72E:.==-~4~'~)~*~V~I~~~____________________________ /<br />

LXWl=18HC./(273.+~TAV)<br />

__ ;;:_~ ___ C;.X "il; = 4 L -L~L(.Z_7 :;;-,-' '!." 2+..."1-,,--, -,-T.:.:./~~V'!....!.) ____________________ _<br />

24 VI~~=(7.17c-~)*lO.C**~X~I+(~.81C-1J)*1~.n**cX:L<br />

_____ ...f:'.2 __ X!


12 D~NS=6~.48-(1&G61E-3)*0TAV-(2~48E-4)*wTAV**2.C<br />

_____ L~± __ I~=_~~t+_L+d J_A \I * 2.3 I L ~


~--~, ~<br />

---- ---- -----------~---------<br />

___ 2..3--",O,--~<br />

--------------~<br />

12 DE f,S::: 62 e 4 G- ( 1 .06 1 L -,3 ) ~~L~ T A V


lfJ1]ld p.rD.p£..:C.Ly statements <strong>for</strong> 0./4- percent C.arbopo]<br />

"---<br />

-------------<br />

1 2 Dc i'-J::' = 6 L " 4 U - ( 1 "b 6 1 c:.. - -.5 ) ~< u T ;'., V - ( 2 •


232<br />

NOMEliCLATURE FOR BEAT TRANSFER GALC1J1A TIONS<br />

.", 'i J c· •• .... --'''-" -,,;' .' ,<br />

A<br />

BTl<br />

BT2<br />

OP<br />

DA<br />

DENS<br />

DF<br />

II<br />

If<br />

= Heat <strong>transfer</strong> area<br />

III<br />

::<br />

::<br />

=<br />

iii<br />

::<br />

::<br />

::<br />

First bate~ temperature<br />

Seeo~a<br />

~aten temperature<br />

Heat capacity<br />

Impeller diameter inches<br />

Density<br />

Driving f0ree. ($e)<br />

Batek <strong>heat</strong> <strong>transfer</strong> coeffieient (Btu/hr @F ft2)<br />

QWT<br />

RPM<br />

RUN<br />

SOAL<br />

TO<br />

VCF2<br />

W<br />

WTl<br />

WT2<br />

XX<br />

XN<br />

XNNU<br />

XNPO<br />

XNPR<br />

XNRE<br />

::<br />

::<br />

::<br />

::<br />

IIIiiI<br />

::<br />

l1li<br />

..<br />

::<br />

::<br />

::<br />

::<br />

::<br />

::<br />

::<br />

items on first eard<br />

Net <strong>heat</strong> <strong>transfer</strong> rate (Btu/mi~)<br />

Impeller speed (rev./min.)<br />

Rua number <strong>for</strong> identifieati0B<br />

DJ~aaometer seale reading (lbs)<br />

Tftermal conductivity<br />

,<br />

Viseosity rati<br />

Batch weight (lbs)<br />

First 1-rall tem}!lerature<br />

Second wall temperature<br />

Fluid e0nsisteney index<br />

F10wbehavior index<br />

Generalized Prandtl Number<br />

Generalized Reynolds N~ber


2.33<br />

CALCULATED RESUVrS<br />

FOR \\fArrER RUNS<br />

UNDEH<br />

NON-STANDARD CONDITIONS


2.34-<br />

CALCULATED RSSULTS<br />

WATER<br />

Run Diameter h NNu N po N N Re<br />

K/K<br />

x Height<br />

Pr w<br />

(2tu_ )<br />

(inches x <strong>of</strong> hr ft2<br />

inches)<br />

Anchor - Clearance 3.0 inches<br />

~eat~~<br />

47 9.0 517 1861 2.01 104,265 2.57 1.19<br />

48 9.0 828 2430 2.33 218,092 2.13 1.11<br />

49 9.0 1126 3309 2.59 371,921 2.16 1.09<br />

50 9.0 1295 313'34 2.70 LJ-70 ,007 2.35 1.10<br />

C0S2.li!2E;<br />

47 9.0 599 1777 2.02 113,986 2.30 0.85<br />

48 9.0 676 2115 2.30 149,991 3.36 0.90<br />

49 9.0 106L1 3228 2,57 311,592 2.68 0.91<br />

50 9.0 1145 3636 2.66 316,819 3.77 0.93<br />

!::!eat~~<br />

B~ve~in~<br />

Pitch Paddle - Center Height = 6.0 inches<br />

55 9.0 x 0.7 556 16:;'8 O. »2 261,793 2.18 1.13<br />

5 L I- 9.0 x 0.7 685 2071 0.32 347,996 2.62 1.18<br />

53 9.0 x 0.7 832 2528 0.34 483,526 2.70 1.17<br />

52 9.0 x 0.7 1107 3~Jl8 0.56 785,678 2.47 1.12<br />

51 9.0 x 0.7 1196 3500 0.37 938, :::'18 2.53 1.12<br />

Cooling<br />

55 9.0 x 0.7 609 1802 0.32 255,508 2.25 0.86<br />

54- 9.0 x 0.7 638 1961 0.32 316,071 2.95 0.89<br />

53 9.0 x 0.7 690 2252 0.34 299,129 4.75 0.93<br />

52 9.0 x 0.7 909 2808 0.35 657,2»1 ».06 0.91<br />

51 9.0 x 0.7 1042 3155 0.37 905,470 2.64 0.91


CAl/jULATED REBULTS<br />

23S<br />

""A'l'!m<br />

PADDLES<br />

?un Center Diameter h NNu Iii N N- A/K<br />

Height x Height<br />

Po Re rr w<br />

( Btu )<br />

(inches) (inches x <strong>of</strong> hr ft2<br />

inches)<br />

!i~~!::\:'~<br />

60 4-.5<br />

61 4-.5<br />

S.O x 1.0<br />

6.0 x 1.0<br />

517<br />

3-)1<br />

1531<br />

1164-<br />

0.82 230,279<br />

0.96 125,,(8?<br />

2.26 1.17<br />

2.36 1.22<br />

28 5.0 Ll.O x 2.0 7,75 111L~ 2. :s6 44,785 2.31 1.21<br />

29 5.0 4.0 x 2.0 361 1100 2.54 38,852 2.75 ·1.30<br />

30 5.0 LI-. () x 2.0 531 1551 1.97 93,258 2.06 1.13<br />

31 5.0 4.0 x 2.0 766 2253 5.08 198,696 2.00 1.10<br />

32 5.0 4.0 x 2.0 9::;::; 2707 5.81 271 ,644 1.98 1.08<br />

33 5.0 4.0 x 2.0 945 2755 5.86 306,0=)4- 2.05 1.09<br />

38 6.0 5.0 x 2.0 1+50 1328 /1-.57 66,193 2.24- 1.17<br />

37 6.0 5.0 x 2.0 673 1986 4.15 134,060 2.22 1.12<br />

36 6.0 5.0 x 2.0 8W:S 24-68 4.4-2 182,14 5 2.11 1.09<br />

35 6.0 5.0 :( 2.0 1019 2983 '+ .85 293,876 2.11 1.09<br />

34 6.0 5.0 x 2.0 1264 368::;


2,36<br />

Run Center Diameter h NNu Npo<br />

Height x Height<br />

p<br />

-'Re<br />

r~Pr<br />

K/Kw<br />

108 9.0 5.0 x 1.5 493 1l~4B :'.82 /6,931 2.16 1.14<br />

109 9.0 5.0 x 1.5 806 2'>54 3.44 145,059 2.08 1.10<br />

110 9.0 5.0 x 1.5 1037 3063 4.05 241,318 2.23 1.10<br />

111 9.0 5.0 x 1.5 12


23<br />

7<br />

Run Center Diameter h NNu N N N K/K<br />

Height x Eeight<br />

llo Re<br />

Pr \~<br />

108 9.0 5.0 x 1.5 390 1265 3. 7L~ 41,482 4.51 0.89<br />

109 9.0 5.0 x 1.~ 584 1857) 3.38 88,397 3.78 0.90<br />

110 9.0 5.0 x 1.5 T?2 2484 3.97 141,165 4.24 0.93<br />

111 9.0 5.0 x 1.5 1239 3855 4.06 273,834 3.23 0.93<br />

56 10.0 8.0 x 4.0 ")85 1780 4.37 76,779 2.73 0.88<br />

57 10.5 8.0 x 1.0 547 1723 0.87 157,826 3.53 0.')0


2.38<br />

CALCULAT'ED ~E~:UL'rS<br />

?!ATER<br />

PROPELLi':RS<br />

Run Clearance Dia:neter h NNu II! N<br />

Po Re<br />

l~Pr K/K<br />

Iv<br />

(inches) Cinches) ( 3tu )<br />

<strong>of</strong> hr ft.2<br />

Iieating<br />

lL~7 6.0 5.2 387 1143 0.70 86,267 2.21 1.19<br />

148 6.0 5.2 70~) 2119 0.55 255,5 0 6 2.Lj·2 1.16<br />

149 6.0 5.2 882 2641 0.57 390,513 2.4') 1.1l.J<br />

150 6.0 5.2 107b 320 1 + 0.63 575,105 2.53 loll<br />

151 8.0 5.2 387 11'45 0.38 81,028 2.20 locO<br />

152 8.0 5.2 667 1998 0.55 227,655 2.45 1.17<br />

153 8.0 5.2 873 2582 0.6 L • 413 ,356 2.26 loll<br />

154 8.0 5.2 1055 3074 0.66 644,973 2.03 1.09<br />

161 12.0 5.2 391 1193 0.63 75,223 2.80 1.29<br />

164 12.0 5.2 751 2255 0.63 234,224 2.lj.8 1.16<br />

162 12.0 5.2 791 2358 0.53 24 7,974 2.38 1.14<br />

163 12.0 5.2 1121 3252 0.67 459,066 2.42 1.U<br />

CooliQ.g<br />

147 6.0 5.2 271 863 0.69 54,4'72 3.85 0.82<br />

14-8 6.0 5.2 55g 1792 0.54 163,118 4.13 0.90<br />

149 6.0 5.2 757 2398 0.57 274,931 3.73 0.91<br />

150 6.0 5.2 1051 3260 0.62 450,040 3.14 0.92<br />

151 8.0 5.2 221 705 0.313 50, 63 L j. 3.97 0.81<br />

152 8.0 5.2 529 1697 0.55 147,196 4.12 0.90<br />

153 8.0 5.2 765 2416 0.63 279,440 3.62 0.91<br />

154 8.0 5.2 990 3227 0.65 317,816 4.74 0.94<br />

161 12.0 5.2 2'31 926 0.62 57,005 3.88 0.85<br />

164 12.0 5.2 62L I. 1965 0.63 174,158 7,.'73 0.90<br />

162 12.0 5.2 765 2260 0.53 261,321 2.23 0.88<br />

163 12.0 5.2 1038 3221 0.66 366,680 3.17 0.92


CALCULA'l'BD RE.::iUI/I'S<br />

2.39<br />

DISK ,'I".<br />

'4A'.PSR<br />

VANE 'l'URBINES<br />

Run Center Diameter h NNu Fipo N . Re N K/K<br />

Height x 'ieight<br />

Pr w<br />

(~~-<br />

(inches) (inches 2)<br />

x <strong>of</strong> hr ft.<br />

inches)<br />

~~tine;<br />

132 5.0 6.0 x 1.25 569 1724 3.99 76,972 2.6 I i· 1.21<br />

133 5.0 6.0 x 1.25 764 2293 4.22 1)7,744 2.49 1.16<br />

134 5.0 6.0 x 1.25 1051 ';072 1+.83 285,357 2.08 1.09<br />

135 5.0 6.0 x 1.25 1209 3522 5.14 376,860 2.04 ,l.07<br />

136 ).0 6.0 x 1.25 633 1906 3.87 74,6'51 . 2.54 1.17<br />

137 9.0 6.0 x 1.25 907 26h4 5.02 165,587 2.15 1.10<br />

138 9.0 6.0 x 1.25 1269 3838 5.25 232,306 2.62 1.11<br />

139 9.0 6.0 x 1.25 15 L ,4 J,I599 5.42 326,635 2.37 1.09<br />

Cooline;<br />

132 5.0 6.0 x 1.25 425 1359 3.95 5L, ,194 LI-.OO 0.88<br />

l?3 5.0 6.0 x 1.25 (',16 1964 4.17 93,818 3.98 0.90<br />

134· 5.0 6.0 x 1.25 899 2836 4.74 181,838 3.59 0.92<br />

135 5.0 6.0 x 1.25 1148 3651 5.04 223,599 3.83 0.93<br />

136 9.0 6.0 x 1.25 569 1741 '5.85 68,25? 2.84 0.87<br />

137 9.0 6.0 x 1.25 785 2514 4.92 97,540 4.06 0.92<br />

138 9.0 6.0 x 1.25 1134 3592 5.20 173,E~57 3.70 0.94<br />

139 9.0 8.0 x 1.25 1181 3765 5.34 21 L I·,9B6 3.90 0.94


CALCULA'rED 1-{E8iiLlJ. 1 S<br />

\.;!\.'fER<br />

TURBINES<br />

2.10<br />

Run Center Diameter h NNu<br />

N N N Re pr K/K<br />

Height x Height<br />

Po<br />

w<br />

(~l~_ ;;)<br />

(inches) I.inches x <strong>of</strong> hr ft.-<br />

inches)<br />

Heating<br />

Six Bladen - O~n Bladed iJurbines -<br />

:Straight Blades<br />

177 7.0 4-.0 x 0.75 ;';56 1098 3.16 40,151 'S.OO 1. 35<br />

178 7.0 4.0 x 0.75 620 1844 3.27 104,472 2.">4 1.16<br />

179 7.0 4.0 x 0.75 695 2060 3.69 1 /+4,627 2.29 1.14<br />

180 7.0 4.0 x 0.75 853 2527 Le.26 ~29,071 2.,28 1.12<br />

181 7.0 4.0 x 0.75 1151 '5424 1+. ',2 312,644 2.34 1.10<br />

Qooligg<br />

177 7.0 4.0 x 0.75 269 83 Ll- 3.16 38,929 3.11 0.81<br />

178 7.0 4.0 x 0.75 4b6 1504 3.22 62,581 4.30 0.89<br />

179 7.0 4.0 x 0.75 547 1764 3.62 84,1330 4.32 0.90<br />

180 7.0 4.0 x 0.75 En2 2561 4.20 157,354 3.58 0.91<br />

181 7.0 4.0 x 0.75 980 3152 4-.25 190,643 4.22 0.93<br />

§ix_Bladed =--Q£~n BleLded i'urbines - Curved Blades<br />

.!:~eating<br />

182 7.0 4.0 x 0.50 4-68 1380 4.15 101,283 2.21 1.16<br />

183 7.0 4.0 x 0.50 755 2240 1.96 203,993 2.30 1.13<br />

IB L e 7.0 L~ .0 x 0.50 866 2573 2.20 318,167 2.31 1.12<br />

185 7.0 4.0 x 0.50 1075 ')207 2.38 411,720 2.38 1.11<br />

Q2-0lin U;<br />

182 7.0 4.0 x 0.50 397 1259 4-.07 65,129 3.76 0.86<br />

183 7.0 4.0 x 0.50 64-0 2009 1.93 14-5,992 3.4-4 0.89<br />

184 7.0 4.0 x 0.50 880 2756 2.17 230,997 3.40 0.92<br />

185 7.0 4.0 x, 0.50


CALCULATED RESULTS<br />

USED FOR CORi{ELATIONS


CALC:_:LA'i'ED _12:-)ULTS<br />

24c.<br />

ANCHOR - 5.0 inch Clearance<br />

Run Diameter h NNu Npo N N pr K/Kw<br />

x Height<br />

He<br />

( Btu<br />

')<br />

(inches x<br />

)<br />

<strong>of</strong><br />

inches) hr ft.'-<br />

\J.jATEH<br />

Heatine;<br />

67 9.0 \:,02 1834 2.':>1 108,,624 2.74 1.19<br />

68 9.0 gbO 2571 2.67 221,871 2.0B 1.08<br />

69 9.0 1287 ;!j7-;'B 2.86 381,98'1 2.00 1.07<br />

70 9.0 1437 L.2·~7 2.81 469,317 2.31 1.09<br />

Coolinr;;<br />

67 g.O 534 172(3 2.48 71 ,675 4.47 0.90<br />

68 g.O 7% 2;)f., 2.61 113,068 l~. 66 0.93<br />

69 9.0 921 29C,1 2.79 212,385 4.06 0.94<br />

70 9.0 1208 37T5 2.G8 34H,485 3. ')2 0.93<br />

93.7 Fercent GLYCERIN'E<br />

Heatin!?i<br />

235 9.0 98 ',63 2.19 1596 3.';)5 4.23<br />

236 9.0 157 10b5 2.55 36ll!- 2.56 2.98<br />

237 9.0 193 1306 2.55 fl.l~'38 ::S.27 2.83<br />

238 9.u 213 144J!- 2.63 ,)821• :-S. -.?1 2.61<br />

Cooling<br />

235 9.0 38 258 2.19 1621 3.30 0.13<br />

236 9.0 65 ll,lj-2 2.55 3438 2.68 0.19<br />

237 9.0 8l~ 5572 2.55 5001 2.9'1 0.26<br />

238 9.0 67 456 2.60 2367 7.70 0.28


CALCULATED REdULTS<br />

ANCHOR - CLE.~.RA';CE .. 5.0 inches<br />

CARBOPOL SOLUTIONS<br />

Z..,.J<br />

Run Diameter h NNu Npo N' N' K/Kw Nil<br />

Re Pr Re N"<br />

(inches)<br />

Pr<br />

( Btu )<br />

oJ;' hr n. 2 , ,<br />

HeatinE,i<br />

0.15 Percent CARBOPOL<br />

373 9.0 147 484 2.69 728 468 2.05 349 976<br />

374 9.0 225 737 2.63 1523 373 1.72 739 768<br />

375 9.0 388 1276 2.72 2736 339 1.45, 1317 704<br />

376 9.0 504 1655 2.84 4002 301 1.35 1938 622<br />

Coolin~<br />

373 9.0 99 326 2.68 678 505 0.66 ,22 1064<br />

374 9.0 173 567 2.63 1473 386 0.69 '111 800<br />

375 9.0 280 924 2.71 2444 382 0.79 1155 ,809<br />

376 9.0 386 1271 2.84 3774 321 0.81 1810 669<br />

0.20 Percent CARBO POL<br />

Heatins<br />

415-2 9.0 101 331 2.39 193 2559 1.64 49 IJ,080<br />

414 9.0 105 352 2.45 206 3026 1.98 52 12,085<br />

416 9.0 200 656 2.61 550 1'139 1.47 140 6848<br />

41'1 9.0 247 810 2.61 851 1483 l.l~2 216 5837<br />

Coo1in~<br />

415 9.0 58 192 2.39 193 2562 0.70 ' 49 10,095<br />

414 9.0 61 202 2.45 222 2798 ·0.79 56 11 ,130<br />

416 9.0 156 513 2.60 534 1798 0.81 135 7089<br />

417 9.0 205' 676 2.60 811 1562 0.83 206 6165<br />

0.24 Percent CAR130POL<br />

Heatin5<br />

456 9.0 141 /.1-65 2.55 2L~4 4042 1.28 51 19,329<br />

455 9.0 167 556 2.58 291 3774 1.26 . 61 18,047<br />

454 9.0 181 598 2.59 317 3824 1.28 67 18,165<br />

Coolin~<br />

457-2 9.0 51 170 2.37 165 4972 0.87 35 23,592<br />

456 9.0 79 261 2.54 231 4298 0.89 49 20,592<br />

455 9.0 115 378 2~58 288 3818 0.89 60 18,239<br />

454 9.0 120 396 2.59 316 3837 0.91 67 18,224


CALCULATEDR3SULTS<br />

PADDLE - CENTER H;':IGHT = 7.0 inches<br />

WATER<br />

244-<br />

Run Diameter h I\ Npo N N Re K/K 1 "<br />

x Height Btu<br />

Nu<br />

Pr<br />

(<br />

(inches x<br />

2)<br />

<strong>of</strong> hr<br />

inches)<br />

ft.<br />

Heatine;;<br />

124 4.0 x 1.0 328 1003 4.52 41,9'+lj- 2.82 1. 32<br />

125 4.0 x 1.0 . 593 1775 2.24 146,046 2.44 1.18<br />

126 4.0 x 1.0 806 2374 2.49 245,940 2.19 loll<br />

127 4.0 x 1.0 1090 3152 2.78 372,433 1.95 1.07<br />

120 4.0 x 2.0 . 448 1338 10.69 45, L~2 3.49 70,131 2.25 1.17<br />

105 5.0 x 1.5 535 15'/2 3.02 137,088 2.16 1.13<br />

106 5.0 x 1.5 845 2L~')5 3.52 256,292 2.23 loll<br />

107 5.0 x 1.5 1164 3408 3.77 359,4 L·5 2.46 loll<br />

100 5.0 x 2.0 526 1605 5.59 65,134 2.'74 1.23<br />

101 5.0 x 2.0 784 2306 2.49 1'36,609 2.10 loll<br />

102 5.0 x 2.0 988 2d84 4.69 257,356 2.06 1.08<br />

103 5.0 x 2.0 1101 330L~ 4.82 300,740 2.48 1.11<br />

96 h.O x 1.0 497 147~ 1.73 114,032 2.29 1.16<br />

97 6.0 x 1.0 662 1942 1. 35 203,449 2.15 1.12<br />

98 6.0 x 1.0 913 275~ 1. 55 331,140 2.57 1.15<br />

99 6.0 x 1.0 1057 .3179 1.68 '+48,539 2.53 1.13<br />

39 6.0 x 2.0 613 1805 1.87 89,435 2.19 1.13<br />

40 6.0 x 2.0 766 2220 3.40 149,003 1.97 1.08<br />

41 6.0 .c. 2.0 927 281L~ 3.95 231,513 2.69 1.15<br />

42 6.0 x 2.0 1124 -';')25 4. :.sO 360,026 2.26 1.09<br />

92 7.0 x 1.0 494 14


24S<br />

:lun Diameter h hi<br />

-, "0 N,-, H<br />

' t,e I\jI\,r<br />

x Heie;ht<br />

Pr<br />

84 '7.0 x 3.0 729 2155 4.27 105,323 2.25 1.13<br />

85 7.0 x 3.0 905 2720 4.58 153,864 2.51 1.14<br />

86 7.0 x 3.0 1141 3421 :;.00 253,433 2.47 1.12<br />

87 7.0 x 3.0 1395 L~171 5.27 356,'758 2.42 1.10<br />

75 8.0 x 1.0 493 111~)0 0,69 150,292 2.11 1.14<br />

76 8.0 x 1.0 526 1 S2L~ O.G) 15'7,412 1.96 1.11<br />

77 8.0 x 1.0 642 ldS? 0.30 28},S31 2.13 1.11<br />

78 8.0 x 1.0 ':373 29L~0 L03 1+22,769 2.61 1.14<br />

79 8.0 x 1.0 1163 3'+1') 1.06 679,140 2.17 1.09<br />

71 8.0 x 2.0 600 1784 1.83 103,329 2.3."3 1.16<br />

72 8.0 x 2.0 816 2441 2.56 180,409 2.1+4 1.15<br />

73 8.0 x 2.0 1169 3".)78 2.80 401,123 1.93 1.06<br />

74 8.0 x 2.0 1315 3823 3.03 520,265 2.02 1.06<br />

80 8.0 x 4.0 674 2102 3,58 80,864 3.27 1. 25<br />

81 8.0 x 4.0 854 2=)89 4-,59 146,722 2.67 1.16<br />

82 8.0 x 4.0 1135 34:i5 5.30 238,739 2.63 1.12<br />

83 8.0 x 4.0 1500 41+99 5.5--; :>39,502 2.47 1.09


CALCULATED HESULTS<br />

216<br />

PADDLES - CENTEI~ HEIGHT 7.0 inches<br />

'rJA1'ER<br />

Run Diameter h NNu N N Re<br />

N pr K/K<br />

x Height<br />

Po<br />

w<br />

(Bt~_ )<br />

(inches x <strong>of</strong> hr ft.2<br />

inches)<br />

--------------------------------------<br />

Cooling<br />

124 4.0 x 1.0 238 728 4.51 41,301 2.87 0.77<br />

125 4.0 x 1.0 500 1570 2.22 108,360 3.49 0.88<br />

126 L~. 0 x 1.0 667 2133 2.44 148,B98 4.00 0.91<br />

127 4.0 x 1.0 756 2:S71 2.73 2j3,514 3.L~4 0.91<br />

120 4.0 x 2.0 287 897 10.57 3l~, 512 ':;'.36 0.84<br />

121 4.0 x 2.0 627 1923 4.98 112,852 2.91 0.89<br />

122 L~. 0 x 2.0 829 2fl23 5.88 lLJ·3,618 3.68 0.92<br />

123 4.0 x 2 .. 0 937 2gf,6 6.26 181,205 3.70 0.93<br />

143 5.0 x 1.0 305 970 1.38 Lj4,177 3.83 0.85<br />

146 5.0 x 1.0 384 118'5 2.24 6"5,071 3.01 0.84<br />

144 5.0 x 1.0 718 2255 2.05 148,314 3. Lj·8 0.91<br />

145 5.0 x 1.0 927 2955 2.23 214,345 3.91 0.93<br />

104 5.0 x 1.5 325 1052 3.43 39,45 1 -1- '+ .1+7 0.86<br />

105 5.0 x 1.5 530 1702 2.96 79,362 Lj .• 15 0.90<br />

106 5.0 x 1.5 777 2490 3.46 155,438 4.07 0.92<br />

107 5.0 x 1.5 1051 3183 3.76 338,673 2.65 0.91<br />

100 5.0 x 2.0 350 1120 5.54 47,376 4,00 0.87<br />

101 5.0 x 2.0 605 1950 2.44 76,768 4.31 0.91<br />

102 5.0 x 2.0 903 2849 4.60 162,702 3.59 0.92<br />

103 5.0 x 2.0 1138 3451 '-1-.80 282,688 2.68 0.92<br />

96 6.0 x 1.0 360 1117 1.72 87,918 3.13 1.83<br />

97 6.0 x 1.0 500 1591 1. 33 125,905 3.83 0.88<br />

98 6.0 x 1.0 760 2411 1. 54 241,455 3.'/5 0.92<br />

99 6.0 "J 1.0 1002 3181 1.67 320,238 3.78 0.93<br />

39 6.0 x 2.0 417 1327 1.83 55,755 3.87 0.88<br />

40 6.0 x 2.0 631 1955 3.34 102,277 3.12 0.88<br />

41 6.0 x 2.0 920 2i:S96 ).91 183,913 3.54 0.93<br />

42 6.0 x 2.0 1164 3625 4.25 266,353 3.25 0.93<br />

92 7.0 x 1.0 Lj·49 137f, 0.98 123,922 2.88 0.84<br />

93 7.0 x 1.0 64 5 2004 0.93 185,801 3.18 0.89<br />

94 '7.0 x 1.0 826 2529 1. 21 350,460 2.8'7 0.90<br />

95 '7.0 x 1.0 1076 3427 1.23 362,445 3.88 0.93<br />

88 7.0 x 2.0 615 1850 2. 3L~ 98,538 2.52 0.87<br />

89 7.0 x 2.0 691 2190 3.01 12 1 -1-,138 3.'74 0.91<br />

90 '7.0 x 2.0 1115 3356 3.38 287,001 2.53 0.91<br />

91 '7.0 x 2.0 1464 1.~630 3.50 305,288 75.6f:, 0.94·


:Run Diameter h Np .,u<br />

N N Re<br />

N pr K/K<br />

x Height<br />

Po w<br />

2.1-7<br />

84 7.0 x 3.0 650 1980 4.23 89,176 2.76 0;89<br />

85 7.0 x 3.0 836 2595 4.54 126,969 3.17 0.91<br />

86 7.0 x 3.0 1072 :Slj·~3 4.94 171,139 3.95 0.94<br />

87 7.0 x 3.0 1294 3983 5.23 301,058 2.98 0.93<br />

75 8.0 x 1.0 424 1349 0.68 91, Enl 3.83 0.87<br />

76 8.0 x 1.0 410 1321 0.61 81,872 4.31 0.88<br />

77 8.0 x 1.0 627 1975 0.88 187,564 3.57 0.90<br />

78 8.0 x 1.0 875 2'729 1.02 347,186 3.30 0.92<br />

79 8.0 x 1.0 lu74 yi.50 1.04 395,001 4.16 0.94<br />

71 8.0 x 2.0 49~ 1539 1.80 77,031 4.16 0.94<br />

72 8.0 x 2.0 659 2114 2.52 116,131 4.12 0.91<br />

73 8.0 x 2.0 1260 3710 2.78 363,951 2.19 0.91<br />

74 8.0 x 2.0 1325 4286 2.96 270, ~1l~8 l~ .41 0.95<br />

eo 8.0 x 4.0 689 2051 3.62 106, 1()l.~ 2.3"5 0.87<br />

81 8.0 x 4.0 886 2748 '+' 57 127,621 3.16 0.91<br />

82 8.0 x 4.0 1086 3437 5.25 179,982 3.69 0.93<br />

83 8.0 x 4.0 1263 3938 5.48 267,892 3.29 0.93


248<br />

CALCULATED RESULTS<br />

PADDLES - CENTER HEIGHT 7 • .0 inches<br />

93.7% GLYCERINE<br />

Run Diameter h N Npo N Re<br />

N pr KIT{<br />

x Height<br />

Nu<br />

w<br />

( Btu )<br />

(inches x <strong>of</strong> hr £t.<br />

inches)<br />

2<br />

Heatins.<br />

262 4 • .0 x 1..0 64 lj·32 2.5.0 843 528 6.66<br />

261 4 • .0 x 1..0 112 759 2.01 26.0.0 337 3.99<br />

26.0 4 • .0 x 1..0 15.0 1.016 2.26 4389 3.05 3.32<br />

259 4 • .0 x 1.0 199 1348 2.42 78.09 228 2 •. 49<br />

258 4 • .0 x 2.0 44 ,.01 4.62 868 481 5.86<br />

257 4 • .0 x 2 • .0 132 896 5 • .0.0 2749 222 2.75<br />

256 4 • .0 x 2 • .0 142 961 5 • .05 2478 323 3.51<br />

255 4 • .0 x 2 • .0 178 12.05 5 • .05 4345 25.0 2.72<br />

253 6 • .0 x 1..0 64 433 1.12 667 654 8.25<br />

254 6.0 x 1..0 1.07 723. 1.44 2524 332 4.21<br />

252 6.0 x 1.0 166 1121:) 1.42 .7941 ·182 2.29<br />

251 6.0 x 1..0 189 128.0 1. 52 7392 287 2.93<br />

21:).0 6 • .0 x 2 • .0 69 465 2.84 541 652 8.28<br />

249 6 • .0 x 2 • .0 1.08 734 3.95 2252 288 3.17<br />

248 6 • .0 x 2 • .0 116 1193 3 .L~4 4773 251 2.69<br />

247 6 • .0 x 2 • .0 199 1346 3.67 3756 398 3.44<br />

246 8 • .0 x 1..0 82 554 ·.0.9.0 1658 4.06 5.17<br />

245 8 • .0 x 1..0 1.09 74.0 .0.92 2972 389 4.5.0<br />

244 8 • .0 x 1..0 18.0 1218 1 • .02· 8175 242 2.7.0<br />

243 8 • .0 x 1..0 193 13DB 1.03 6635 38.0 3.lj-4<br />

242 8 • .0 x 2 • .0 92 621 1.77 1516 386 4.81<br />

241 8 • .0 x 2 • .0 149 1DC9 2.22 4537 2.06 2.5.0<br />

24.0 8.0 x 2 • .0 185 1254 2.46 4938 294 2.96<br />

239 8 • .0 x 2 • .0 197 1336 2.45 6672 289 2.3.0


PADDLES -<br />

CALCULATED RESULTS<br />

CENTER HEIGHT = 7.0 inches<br />

249<br />

93.7 :;'::>ercent GL ':,"CL~~INE<br />

Run Diameter h 1')"<br />

-'Nu<br />

x Height ( Btu )<br />

(inches x <strong>of</strong> hr ~t 2<br />

I •<br />

inches)<br />

Npo 1'1<br />

'Re N pr K/K w<br />

Cooline;<br />

262 4-.0 x 1.0 26 178 2.51 1227 353 0.11<br />

261 4.0 x 1.0 45 308 2.01 3055 288 0.14<br />

260 4.0 x 1.0 62 420 2.26 4193 319 0.20<br />

259 4.0 x 1.0 65 4:1)8 2.40 4235 413 0.22<br />

258 4.0 x 2.0 31 211 4.6» 1041 4-03- 0.13<br />

257 4.0 x 2.0 45 306 4.98 1933 313 0.16<br />

256 4.0 x 2.0 57 387 5.05 2623 306 0.19<br />

255 4.0 x 2.0 71 480 5.03 :S194 336 0.23<br />

253 6.0 x 1.0 23 156 1.13 1286 346 0.10<br />

254 6.0 -x 1.0 39 262 1.44 2496 336 0.13<br />

252 6.0 x 1.0 62 419 1.40 4575 309 0.20<br />

251 6.0 x 1.0 77 523 1. 52 -5418 388 0.25<br />

250 6.0 x 2.0 28 Hi7 2.86 1053 342 0.11<br />

249 6.0 x 2.0 38 260 3.93 1477 432 0.15<br />

248 6.0 x 2.0 63 427 3.42 2820 418 0.22<br />

247 6.0 x 2.0 76 517 3.67 3467 430 0.25<br />

246 8.0 x 1.0 28 192 0.90 1693 398 0.10<br />

245 8.0 x 1.0 44 301 0.92 3608 322 0.14<br />

244 8.0 x 1.0 67 453 1.02 5985 527 0.21<br />

243 8.0 x 1.0 144 976 1.04 15,188 171 0.33<br />

242 8.0 x 2.0 33 _226 1.'15 1687 3[1-8 0.12<br />

241 8.0 x 2.0 56 382 2.21 308L~ 299 0.18<br />

240 8.0 x 2.0 84 569 2.45 4152 3L~8 0.26<br />

239 8.0 x 2.0 90 - 611 2.45 5627 341 0.28


CALCULATED RE:>ULTS<br />

2. So<br />

PADDLf~S - C!~NT'E'~ E;;;IGHT = 7.0 inches<br />

0.15 Percent CARBO i 'OJ,<br />

Run Diameter h r~Nu N po N Re<br />

l~<br />

x Heir.;ht (~~ )<br />

(inches x <strong>of</strong> },:r ft. 2.<br />

inches)<br />

I<br />

i\jK Nil l~ 11<br />

, Pr w ~'Re Pr<br />

geatigg<br />

345 4.0 x 1.0 92 0:-05 ~.6J) 760 344 2.54 "359 729<br />

346 4.0 x 1.0 1'52 ll-3/+ 1.Lf8 2~,4 2fA 2.04 \S86 546<br />

3 i l'7 4,.0 x 1.0 17'7 581 2.22 2fi6R 2'55 1. 9 1 + 1284, 4-87<br />

348 4.0 x 1.0 221 72H c.:";, )494 C52 1.'78 1664 487<br />

349 4.0 x 2.0 137 LI51 4.17 81'7 :;;'Oi:; 1.9,8 '594 636<br />

350 4.0 x 2.0 175 ')71+ I~,.EA 1413 262 1.86 ;:'86 5':)9<br />

351 4.0 x 2.0 2'50 7')1 5.48 2707 210 1.f,6 1333 425<br />

352 4.0 x 2.0 2')3 965 5.59 3149 229 1.61 1511 47B<br />

357 6.0 x 1.0 83 277 1 . I. IA- 521 525 2.98 2:;;'


PADDLES -<br />

CALCULATED<br />

RESULTS<br />

CEl'lT'SR HEIGHT = 7.0 inches<br />

0.15 Percent CAITBOPOL<br />

2S1<br />

Run Diameter h iii N.;:>o H' N' K/K Nil Nil<br />

x Height<br />

Nu Re Pr \V<br />

(Btu__ )<br />

Re Pr<br />

(inches x OF hr ft. 2<br />

inches)<br />

Cooling<br />

345 4.0 x 1.0 "-R 190 2.54 853 304 0.58 411 532<br />

345 4.0 x 1.0 85 278 1.48 1322 285 0.53 532 595<br />

347 4.0 x 1.0 135 445 2.22 2670 234 0.57 1285 487<br />

348 4.0 x 1.0 154 507 2.32 3 1 +70 c:34 0.72 1650 1+91<br />

349 4.0 x 2.0 74 2l~5 4.16 723 349 0.66 342 739<br />

350 4.0 x 2.0 119 391 4.6:' 1283 290 0.69 512 608<br />

351 4.0 x 2.0 173 570 5.44 2247 256 0.73 1071 537<br />

352 4.0 x 2.0 210 ()95 5.58 3011 241 0.75 1433 50.6<br />

357 6.0 x 1.0 57 188 1.45 653 La3 0.59 311 368<br />

358 6.0 x 1.0 144 471 1.45 2570. 275 0.66 1246 56B<br />

359 6.0 x l.0 195 6 L "2 1. 55 l~D16 271 0..74 1912 570<br />

360. 6.0. x 1.0 274 90.0 1.61 6212· 220 0.74 3027 451<br />

361 6.0 x 2.0 64 212 3.67 597 4·07 0..58 286 ()i+9<br />

362 6.0 x 2.0 114 375 5.12 1230 356 0.66 586 746<br />

363 6.0. x 2.0 194 640 3. ~)1 2485 308 0.74 1179 650<br />

364 6.0 x 2.0 267 879 3.55 3632 282 0.78 1724 593<br />

365 8.0 x 1.0 77 255 1.2) 9(~4 44·6 0.6L~ 465 944<br />

366 B.O " 1.0 111 367 0.91 1762 378 0.66 838<br />

"'<br />

796<br />

307 8.0 x 1.0 20.3 670 1.04 1+0.65 322 0.75 1920 581<br />

358 8.0 x 1.0 267 6['.0 1.09 5630 293 0.78 2557 519<br />

359 8.0 x 2.0 89 294 2.13 730 L~45 0.62 350 929<br />

370 8.0 x 2.0 139 458 2.24 lLI-I+3 390 0.69 688 d18<br />

371 8.0 x 2.0 273 895 2.51 3127 305 0.74 1512 631<br />

372 8.0 x 2.0 286 9 1 +7 2.64 3313 360 0.82 15 L I-4 '773


PADDLES -<br />

CALCULATED RE6ULTS<br />

CENTSH HEIGHT = 7.0 inches<br />

0.20 Percent CARBOFOL<br />

2Sl<br />

Run Diameter h N Npo N' N' K/K N" Nil<br />

.\U Re<br />

x !1eight<br />

Pr . w . He Pr<br />

( Btu<br />

(inches x ;:»<br />

01" hr<br />

inches)<br />

ft.-<br />

Hee.tinf5<br />

395 4.0 x 1.0 83 274 2.16 682 952 1 ;8') 173 3762<br />

394 4.0 x 1.0 86 287 2.07 689 1076 2.07 173 4295<br />

397 4.0 x 1.0 106 350 2.18 1017 81) 1.75 257 3236<br />

392 4.0 x 2.0 59 196 '7.56 287 1396 1.93 72 5')49<br />

393 /1-.0 x 2.0 95 ')13 5.54 447 1072 1.65 113 4226<br />

391 4.0 x 2.0 125 lHO b.?'> 599 963 1.66 152 3'799<br />

390 4.0 x 2.0 153 S05 5.74- 757 958 1.68 191 3801<br />

402 6.0 x 1.0 77 256 1.l1-6 470 1566 1.98 118 6222<br />

403 6.0 x 1.0 124 408 1.46 B40 1176 1.70 212 4646<br />

'-1-04 6.0 x 1.0 150 ll-95 " 1.50 1073 1054- 1.00 272 4159<br />

405 6.0 x 1.0 190 624 1.57 1611 858 1.46 410 ~~73<br />

399 6.0 x 2.0 12l~ 410 3.82 429 1467 1.69 109 5787<br />

398 6.0 x 2.0 149 493 3.73 502 1532 1.80 126 6088<br />

400 6.0 x 2.0 184 G04 3.80 795 1120 1.l~3 202 4404<br />

401 6.0 x 2.0 215 707 3.86 884 1091 1.47 225 4293<br />

411 8.0 x 1.0 79 260 1.03 416 1825 1.78 105 7203<br />

410 8.0 x 1.0 112 '»71 "1.06 565 1837 1.92 142 7308<br />

412 6.0 x 1.0 111-3 4?l 1.09 948 1333 1.62 241 5253<br />

413 8.0 x 1.0 188 61'1 1.08 1424 1171 1.50 361 4619<br />

407 8.0 x 2.0 74 245 2.36 271 2251 1.93" 68 8916<br />

406 8.0 x 2.0 lll·8 489 2.26 483 1756 1.63 122 " 6938<br />

408-2 8.0 x 2.0 179 585 2.34 727 1367 1. ;9 186 5361<br />

409 8.0 x 2.0 2"2;7 773 2.48 1035 1174 1.37 26') 4597


25.]<br />

CALCULATED RESULTS<br />

PADDLES - CENTER HEIGHT = 7.0 inches<br />

0.20 ?ercent CARBOPOL<br />

Run Dial:1eter h lIiNu N N' N' K/Kw 1'1" Nil<br />

Po Re Pr Re Pr<br />

x Height ( Btu )<br />

(inches x OF hr ft.2<br />

inches)<br />

Cooling<br />

395 4.0 x 1.0 48 1;:'9 2.16 667 976 0;72 168 3862<br />

394 4.0 x 1.0 50 164 2..07 753 978 0.76 190 3886<br />

397 4.0 x l.0 60 197 2.18 1000 834 0.73 253 3298<br />

392 4.0 x 2.0 42 1"39 7.57 ':,,)4 1308 O.TL 77 5182<br />

393 4·.0 x 2.0 56 184 5.52 412 1178 . 0.74 104 4644<br />

391 4.0 x 2.0 77 253 6.72 586 986 0.75 148 3892<br />

390 4.0 x 2.0 100 329 5.75 791 913 0.78 200 3613<br />

402 6.0 x 1.0 46 152 1.47 503 11+55 0.72 127 5764<br />

403 6.0 x 1.0 82 269 1.46 874 1126 0.74 222 4439<br />

40L~ 6.0 :ic 1.0 105 7,47 1. 50 1065 1063 0.77 270 4194<br />

405 6.0 x 1.0 149· I~Bd 1.57 1064 863 0.78 408 3390<br />

399 6.0 x 2.0 81 2Gf} 3.82 421 1495 0.75 107 5904<br />

398 6.0 x 2.0 112 370 3.75 574 1')22 0.79 146 5218<br />

400 6.v -:-: 2.0 143 471 3.79 731 1227 0.81 185 4848<br />

401 6.0 x 2.0 164 5'59 3.85 866 lll5 0.80 220 L~394<br />

411 8.0 x 1.0 48 159 l.03 401 1897 0.71 102 7500<br />

410 8.0 x 1.0 69 227 1.07 612 1685 0.76 155 6676<br />

412 8.0 :x 1.0 87 288 1.09 861 1481 0.77 217 5864<br />

413 8.0 x 1.0 147 475 1.07 l'i34 1256 0.82 337 4973<br />

407 8.0 x 2.0 46 152 2 .?-'7<br />

I 289 2096 0.68 73 E3275<br />

lj·06 d.O x 2.0 99 327 2.26 481 176') 0.78 122 . 6973<br />

408 8.0 x 2.0 140 451 2.3'5 655 15">3 0.79 166 60L.4<br />

'+09 8.0 x 2.0 175 5'76 2.47 905 13'':''1 0.82 230 5365


255<br />

CALCULATED !tESULTS<br />

PROPELLERS - CLEARANCE<br />

10 inches<br />

\AJAT~R<br />

Run Diameter h i'\lU N po N N K/K<br />

(inches)<br />

Re Pr w<br />

(~!~- ?)<br />

<strong>of</strong> hr ft.~<br />

geating<br />

155 5.2 417 1?29 0.12 105,811 2.22 1.18<br />

159 5.2 745 2215 0.65 240,406 2.3:5 1.14<br />

156 5.2 807 2348 0.50 279,594 2.03 1.09<br />

157 5.2 936 2'163 0.63 426,654 2.22 1.11<br />

158 5.2 1203 3472 0.68 669,367 1.93 1.06·<br />

Cooling<br />

155 5.2 340 1067 0.12 73,003 :3. L~7 0.85<br />

159 5.2 68L~ 20,)3 0.64 200,81.J-4 2.90 0.88<br />

156 5.2 663- d2U 0.49 158,165 L~. 03 0.91<br />

157 5.2 859 2755 0.62 254,897 1+ .11 0.93<br />

158 5.2 1065 3 L !-l6 0.66 358,108 4.11 0.94


2.56<br />

CALCTjLATED .l.E8UIJTS<br />

PROPELLERS - CLEARANCE == 10 inches<br />

93.7 Percent GLYCElHHE<br />

Run Diameter h r; ,.<br />

!'ju<br />

(inches) (Btu_ )<br />

Npo If<br />

Re<br />

N pr KIT{<br />

w<br />

<strong>of</strong> hr ft.2<br />

Heating<br />

278 4.1 57 385 1.04 854 575 7.43<br />

277 4.1 102 590 0.80 2960 '130 3.92<br />

276 4.1 139 941 0.73 4106 400 4.09<br />

275 L~ .1 11l-6 988 0.75 3958 509 4.67<br />

274 6.0 61 L~12 0.80 888 564 7.06<br />

273 6.0 98 665 0.h5 2136 460 5.22<br />

272 6.0 117 1062 0.66 5485 325 3.38<br />

271 6.0 224 1517 0.68 11651 230 2.36<br />

Cooling<br />

278 4.1 18 119 1.04 13lj·O 372 0.10 .<br />

277 4.1 37 251 0.80 2851 343 . 0.14<br />

276 4.1 60 L~04 0.73 5725 290 0.20<br />

275 4.1 67 453 0.75 613/+ 334 0.23<br />

274 6.0 25 171 0.80 1537 331 0.10<br />

273 6.0 38 260 0.55 2802 353 0.15<br />

272 6.0 57 389 0.55 4633 382 0.22<br />

271 6.0 85 573 0.68 5597 399 0.28


CALCULA'rED RELmL'l'S<br />

PROPELLr~RS - CL2ARANCE = 10.0 inches<br />

257<br />

0.15 Percent CARBGPOL<br />

Run Diameter h N'l Npo N' lIT' K/Kw N:' Nil<br />

- l\U fie "Pr ~"i.e<br />

(inches)<br />

Pr<br />

( Btu<br />

2)<br />

<strong>of</strong> hr ft.<br />

Heating<br />

341 4.1 117 387 0.8l~ 15'+7 295 2.40 7~'O 625<br />

342 4.1 138 451 0.62 2546 230 1.95 1237 473<br />

'543 4.1 163 537 0.52 3184 228 1.98 1533 474<br />

344 4.1 188 61.0, 0.64 4141 226 1.96 1970 476<br />

353 6.0 90J 2)f-O O.P.~: 759 389 2.33 364 812<br />

3 5L~ 6.0 194 ~)36 D.57 3062 268 l.81 1481 ',54<br />

355 6.0 279 'j15 G.50 54 58 237 1.65 2634 491<br />

355 6.0 '139 1111 0,63 ('676 213 1. 51 3726 440<br />

Cooling<br />

341 4.1 64 210 0.84 1650 . 275 0.60 788 '777-<br />

342 4.1 86 283 0.62 2')27 253 0.63 1113 529<br />

343 4.1 102 337 0.52 3032 240 0.66 1447 504<br />

344 4.1 133 439 0.64 4058 231 0.70 1923 488<br />

354 6.0 144 474 0.57 30L~0 270 0.69 1468 559<br />

355 6.0 208 6$7 0.59 L~88'-I' 267 0.77 2311 564<br />

356 6.0 278 '315 0.63 70')7 2')2 0.78 3396 485


2S8<br />

CALGUL\'F2D TE&)LTS<br />

PS:OPELLJ:;RS - CLE::ArlAIWE = 10 inches<br />

CA:~IlO?OL<br />

SOLU'rIOl,S<br />

Run Diameter h ~'.:i'~u N Nlie IiPr K/Kw i'-J f1 Nil<br />

- ?o<br />

Cinches)<br />

Re Pr<br />

( Btl)<br />

o}l'"l<br />

hr 2)<br />

ft.<br />

0.20 I'ercent CARBOPOL<br />

Heatint;;<br />

381 6.0 68 :~24- 0.71 607 1412 1.85 153 5005<br />

382 5.0 8'7 23) 0.57 790 1332 1.99 198 5:>05<br />

383 6.0 163 537 0.,-,5 IG75 89L~ 1.55 425 '5524<br />

Cooline;<br />

'585-2 LI· .1 LI·4 147 0.64 959 997 0.82 270 3042<br />

3Bl 6.0 41 1'56 0.71 555 1500 0.72 166 5142<br />

382 6.0 58 190 0.57 896 1162 0.75 227 1,596<br />

383 5.0 112 '569 0.69 1660 903 0.78 L~21 3562<br />

0.24 Percent GJLR30FOL<br />

Heatiw5<br />

427 6.0 71 2% 0.5'l- 622 2122 1.39 131 10097<br />

428 6.0 90 298 C).55 h05 1866 1.3L t 159 3910<br />

429 6.0 124 407 0.65 990 1724 1.2':1 207 8231<br />

eooline;<br />

427 6.0 39 129 0.65 623 2078 0.85 133 9907<br />

428 5.0 55 181 0.55 798 1885 0.87 Iv7 8994<br />

429 6.0 72 237 0.54 950 1806 0.89 200 8587


CALCULATED HESULTS<br />

DISK AND VANE ;rURBINE0 - CENT:~R HEIGL-IT 7.0 inches<br />

2S9<br />

vI-HER<br />

Run Diameter h NNu N po<br />

N n KjK<br />

x Height<br />

Re Pr<br />

(_Btu _ )<br />

(inches x oj{' __ h rit. " 2<br />

inches)<br />

Heatine;<br />

'"<br />

--------<br />

173 4.0 x 0.75 411 1256 3.36 45,152 2.80 1.25<br />

174 4.0 x 0.75 857 2521 1+.94 147,191 2.17 Lll<br />

175 4.0 x 0.75 109 l l- 3261 5.~2 216,571 2.36 loll<br />

176 4.0 x o. -;5 1316 3905 5.71 -")20,234 2.30 1.09<br />

169 5.0 ""- 1.0 555 1632 .3 JI-8 75,276 2.17 1.15<br />

170 5.0 x 1.0 1065 3171 4.73 185,358 2.35 loll<br />

171 5.0 x 1.0 1250 3'715 "i.os 2eu,100 2.::S;z, LI0<br />

172 5.0 x 1.0 1529 lI-4':!? 5.09 369,025 2.15 L07<br />

128 5.0 x 1.25 524 1549 4.45 72,611 2.23 L15<br />

129 6,0 x 1.25 '789 2360 4.76 133,592 2.58 1.15<br />

130 6.0 x 1.25 1239 3694 5.05 250,161 2.38 1.10<br />

131 6.0 x ;1-.25 1346 3911 5.21 390,960 2.01 1.07<br />

165 7.0 x 1.375 681 2030 4.69 94,306 2.37 1.15<br />

166 7.0 x 1. 3'15 957 2867 i/-.49 147,990 2.L1-5 1.13<br />

16'1 7.0 x 1.375 1230 3673 5.08 268,931 2.40 1.10<br />

168 7.0 x 1.375 1405 LI-166 5.26 377,867 2.29 1.09


260<br />

Run<br />

CALCULATED ilE0liLTS<br />

DISK Al.lD VANE 'l'URBINE,~ - CENTEH HEIGHT<br />

:i)iameter<br />

x ;Iei ~;ht<br />

(inc!les x<br />

inches)<br />

h<br />

(Bt~___ )<br />

<strong>of</strong> hr ft.2<br />

7.0 inches<br />

K/Kw<br />

--------------------------------- ._---._._---------<br />

':i:1 f1' ~~~R<br />

Coo!.?:,!};E;.<br />

173 L~. 0 x 0.75 389 llSf, 3.36 L~:s,;;;:S6 2.95 0.83<br />

174 1+.0 x ().75 862 2556 Lj·.9:) 1 L I·1 ,183 2.29 0.88<br />

1'75 I~ .• 0 ./-. 0.75 82E3 2631 '.).2'3 1Li·6,005 ;.i .79 0.92<br />

176 1+.0 x 0.75 1296 4·098 5.6:» 218,257 3.6') 0.94<br />

169 5.0 x 1.0 451 1 £.J.2~i "3.42 49,13(:) 3.63 0.88<br />

170 5.0 1.0 8L~7 2715 f+. h6 116,297 '+.10 0.9'5<br />

171 5.0 x 1.0 1028 ~265 067 ::>.00 194,925 3.22 0.92<br />

151 G.O x 1.25 1262 40b2 ').09 210,3"'0 4.23 0.95<br />

165 7.0 x 1. 7 >75 622 1907 LI-.66 gO, "")20 2.88 0.88<br />

166 7.0 x 1.375 702 22% 4.43 li l O,716 3.88 0.91<br />

167 7.0 x 1.375 1193 3782 '),01 185,74-8 3.74 0.94<br />

168 7.0 x 1.~75 1368 ~·368 5.18 .:::'39,388 3.95 o. ')5


DISK AND VAI'E .rU~1BINES<br />

CALCULATED RB.:3ULTS<br />

- CEWPER HEIGHT = 7.0 inches<br />

Run Diameter h N N po<br />

N Re<br />

l'J K/K....,.<br />

x ~~eisht ( Btu<br />

(inches x <strong>of</strong> hr ft. 2)<br />

inches)<br />

Nu<br />

'Pr<br />

2. 6/<br />

Heatin~<br />

93.7 Percent GL~CElnNE<br />

270 4.0 x 0.75 89 601 1~.05 1002 422 5. ?6<br />

269 4.0 x 0.75 145 906 L~.20 2842 275 3.15<br />

268 4.0 x 0.75 170 1154 4.62 3571 289 ).04<br />

267 4.0 x 0.75 186 1261 1+.47 316B 430. 3.70<br />

266 6.0 x 1.25 92 622 3.53 891 458 5.33<br />

265 6.0 x 1.25 126 857 3.91 2037 329 3.71<br />

264 6.0 x 1.25 116 7:-::'9 4.09 4293 274 2.95<br />

263 6.0 x 1.25 126 852 4.34 3780 385 3.55<br />

Coo1in[5<br />

270 4.0 x 0.75 ;;;') 2~i8 4.07 1407 303 0.12<br />

269 4.0 x 0.75 ,)4 36'1 4.1B 2273 341 0.19<br />

268 4.0 x 0.75 70 lj.'75 4.61 ':)062 344 0.23<br />

267 4.0 x 0.75 81 546 4.47 3 1 +25 39.9 . 0.27<br />

266 6.0 x 1.25 29 19') 3.53 982 399 0.11<br />

265 6.0 x 1.25 52 353 3.92 2391 282 0.16<br />

264 6.0 x 1.25 66 l~45 4.07 3045 382 0.21<br />

263 6.0 x 1.25 89 ~~,01 4. )l~ 3815 382 0.26


)::1<br />

t:. 0,-.<br />

CALCUL~_T !':D I~EBU- i 1 8<br />

DISK AND VANE TU!1IlIN"ES .- c;':r':T:R !L~'I:; ;{'r<br />

7_0 inches<br />

0.15 Pc:;:'cent GAR](;l'OL<br />

Run Diameter h i\l')u Hpo Ni~e N' K/K 1~ " [";"<br />

Hei:J;ht '3tu<br />

Pr \\1 ~{e 'Pr<br />

x (----_. ~)<br />

(inches x<br />

0]" hr ft" c'<br />

inches)<br />

Heating<br />

._----------------------";'-.....<br />

33'? L~. 0 x 0.'?5 152 L~;S6 3,W) 71') 354 2.27 -:>36 752<br />

338 ll-.O ., 0.7') 169 ';i,)7 4.17 1 :')1 285 1.97 656 595<br />

)39 l~ .• 0 ". 0.75 2 1 ,3 794 L~. ()5 270li 212 1,611- 1:';;;0 430<br />

340 4-.0 z 0.75 319 1041 5.211 ~-~l!-l 180 1. L/') 2160 362<br />

333 6.0 x 1 ')r::<br />

• "'7 11+0 1;62 7jil)l 662 1+11 2.16 ;16 3D")<br />

331, 5.0 ;( 1.25 175 577 ;:, • ') 2. ,)0 ';;30 7,)0<br />

335 6.0 ;-.: 1.25 310 1017 LJ-.6e 2')83 ~67 1. 56 1260 548<br />

336 6.0 x 1.25 1~13 1 ;5')t) I'. ,35 3513 2,:,g 1.'_1-;;; ::.;~~<br />

1702 ,/ ,.....<br />

Cooli!]£;<br />

337 I; .0 x 0.75 77 .>5 1 1 :0.'50 /92 317 0.61 --";0 (~60<br />

338 4.0 .'. 0.,?5 121 !.ou I~<br />

.17 b"O 2t)S a.t'7 ~:~6 596<br />

339 1'>.0 }: o.,?') 1'3 L I (-,7)3 j~ . • C)~, 2LJ.',:1 2-;;1 0.70 1207 4'(7<br />

340 4.0 b 0.75 25'S 8;2 5.20 ')';'1 ~l ;::'.:.:::£) 0.76 12,tl/~- 1·72<br />

333 6.0 x 1.25 71.j· 21,/1<br />

".31 bc'j L~ 3g O. b L " c:34 9')0<br />

33LJ- 6.0 x 1.25 11::) ;)"74 '). dl. 976 £111 G,,?O 1i-'j7 ';'/7<br />

335 :,.0 x 1.25 22'0 7':A il, .. bc ..) 247U .2SU ~; c 7:S l1')S '')79<br />

336 -.0 :-:- I.e') ~iO:S 9C)f, II. nl! 2qC, 21n 0.79 ISS0 587


DISK AND VANE '.i.'UR13HiES -<br />

CEl'iTER HEIGHT = 7.0 inches<br />

Hun<br />

Diameter<br />

x Heie:ht<br />

(inches x<br />

inches)<br />

F flU<br />

N'<br />

He<br />

X/K w<br />

0.20 Fercent CARBOPOL<br />

Heating<br />

389<br />

387<br />

386<br />

419-2<br />

418<br />

420<br />

421<br />

[1·.0 x 0.75<br />

'+.0 x 0.75<br />

4.0 x 0.75<br />

6.0 x 1.25<br />

6.0 x 0.75<br />

6.0 x 1.25<br />

6.0 x 1.25<br />

95<br />

105<br />

157<br />

77<br />

115<br />

161<br />

207<br />

312<br />

:;;46<br />

519<br />

259<br />

3tH<br />

530<br />

seC)<br />

lj·.46 515<br />

4.83 616<br />

4.BO B16<br />

~.74 2g6<br />

3.95 361<br />

4.24-:'47<br />

l.e,58 802<br />

989<br />

982<br />

927<br />

1717<br />

L·8 L !<br />

1313<br />

1139<br />

1.61<br />

L73<br />

1. 70<br />

1.a3<br />

1.86<br />

1. 56<br />

1.48<br />

131 3892<br />

156<br />

206<br />

3879<br />

3674<br />

72 . 6779<br />

91 6681<br />

139<br />

20 L ><br />

5172<br />

4486<br />

Cool~!lEl<br />

309<br />

387<br />

3e8<br />

386<br />

419<br />

418<br />

420<br />

421<br />

4.0 x 0.75<br />

4.0 x 0.75<br />

4.0 x 0.75<br />

4.0 x 0.75<br />

6.0 x 1.25<br />

6.0 x 1.25<br />

6.0 x 1.25<br />

6.0 x 1.25<br />

58<br />

6 l e<br />

68<br />

106<br />

4·9<br />

66<br />

106<br />

151<br />

192<br />

212<br />

228<br />

Y:il<br />

162<br />

219<br />

::Ab<br />

lj·g8<br />

Lj·.45<br />

le. LIB<br />

lj·.2'::;<br />

4.1..31<br />

'5.74<br />

3.95<br />

LI· o 2LJ·<br />

1+.58<br />

490<br />

608<br />

6 l eO<br />

871<br />

2'7'7<br />

357<br />

532<br />

764<br />

1046<br />

996<br />

1095<br />

863<br />

1773<br />

1703<br />

1353<br />

1200<br />

0.73<br />

0.75<br />

0.82<br />

0.80<br />

0.72<br />

0.77<br />

0.78<br />

0.82<br />

124<br />

151.1-<br />

161<br />

221<br />

70<br />

90<br />

135<br />

194<br />

4128<br />

3937<br />

4565<br />

3410<br />

7012<br />

6758<br />

5338<br />

4·738<br />

Heating<br />

459<br />

458<br />

Cooling<br />

Lj·59<br />

458<br />

6.0 x 1.25<br />

6.0 x 1.25<br />

6.0 x 1.25<br />

6.0 x 1.25<br />

120<br />

135<br />

cl0<br />

269<br />

4.06 347 2587 1.31 73 12359<br />

4.15 352 2}52 1.36 7413023<br />

4.05 333 2715 0.87 70 12912<br />

4.15 360 2682 0.90 76 12722


264<br />

CALCULATED RESULTS<br />

USED<br />

IN REGRESSION ANALYSIS<br />

USING TWO DATA POINTS<br />

FOR EACH PADDLE HEIGHT


26S<br />

RESULT,:; U:3ED FOR<br />

REGRESSION ANALY,:;IS OF PJ\DTlIJE LOCATION t:~F]'F~CT<br />

USING '~':\iO S:~'1':3 OF DATA A'}' EACH<br />

n::?E'IJLER ]~OCA~;ION<br />

FLUID "lATER<br />

Run Center Dianeter I~ l' N N pr K/K<br />

Height x Heigh~<br />

(inches) Cinches C )<br />

_~u Re \'{<br />

60 4.5 8.0 x 1.0 1531<br />

61 L~. 5 6.0 x 1.0 116L~<br />

230,279<br />

125,783<br />

2.26<br />

2.36<br />

1.17<br />

1.22·<br />

28 5.0 L~. 0 Y.: 2.0 1114 4 L I',785 2.31<br />

29 5.0 4.0 x 2.0 1100 38,852 2.75<br />

1.21<br />

1.30<br />

38 6.0 5.0 x 2.0 1328 66,193 2.24<br />

37 6.0 5.0 x 2.0 1986 13LI-,OSO 2.22<br />

1.17<br />

1.12<br />

59 6~5 8.0 x 1.0 1970 2/1-9,573 2.02 loll<br />

63 6.5 6.0 x 1.0 12L~9 124,[302 2.34- 1.20<br />

116 6.63 5.0 x 0.75 1029 67,084 3.04 1. 37<br />

117 6.63 5.0 x 0.75 Hi50 205,955 2.57 1.19<br />

124 7.0 4-.0 x 1.0 1003 41,94 J + 2.82 1. 32<br />

125 7.0 4.0 x 1.0 1775 146,OLj-6 .:'.44 1.18<br />

112 7.63 5.0 x 0.75 880 56,355 3.01 1. ';8<br />

113 7.63 5.0 x 0.75 1977 229 ,48L~ 2.20 1. H)<br />

21 8.0 7.0 "'<br />

v 2.0 1912 109,8(:'5 2 .2L~<br />

22<br />

1.13<br />

8.0 7.0 )~ 2.0 2l~11 111-.:: ,090 2.69 1.17<br />

58 8.5 :-:. ° -~ 1.0 2206 2')1,-030 2.00<br />

64<br />

1.10<br />

8.5 6.0 -r 1.0 16Lj-0 129,818 2.23 1.13<br />

4-6 9.0 3.0 .. -- 2.0 2001 104,619 2.54 1.18<br />

45 9.0 8.0 x 2.0 2707 176,730 2.65 1.15<br />

56 10.0 8.0 x 4-.0 1780 '/6,779 2.73 0.88<br />

56 10.0 8.0 x 4.0 2-:"'71 80,469 2.58 1.18<br />

57 10.5 8.0 x 1.0 172:;' 157,826 3.53 0.90<br />

57 10.5 8.0 x 1.0 2112 ;.:'25,157 2.30 1.14


266<br />

APPENDIX C<br />

CORRELATION OF DATA<br />

Regression Analysis<br />

Various portions <strong>of</strong> the calculations required the<br />

fitting <strong>of</strong> a straight line to a group <strong>of</strong> data points.<br />

A<br />

statistical method based on minimizing the s~un<br />

<strong>of</strong> the<br />

squares <strong>of</strong> the deviations <strong>of</strong> one <strong>of</strong> the variables from<br />

the straight line (least squares method) is described<br />

by Volk (198) and is a reliable and objective method <strong>for</strong><br />

finding a linear relationship bett\l'een tHO or more variables.<br />

Complete descriptions <strong>of</strong> the methods may be fotmd in Levenspiel<br />

et ale (105) and Volk (198).<br />

One depende:nt and one independent variable..<br />

r1any<br />

physical situations can be described by<br />

y=a+·bx<br />

(C-l<br />

Hhere y is a dependent variable and x is an independent<br />

variable.<br />

If several sets <strong>of</strong> data <strong>of</strong> Yi versus the corresponding<br />

xi are taken and plotted, the 1l1east squares lt line<br />

through the data can be expressed<br />

(C-2<br />

v-Jhere the 1\ over the y differentiates betl..reen the predicted<br />

A<br />

y, y, and the measured Y, Yi-<br />

It has been established that the parameters ,_ a and b,


<strong>of</strong> a least squares line can be calculated from<br />

a=y-bi<br />

b =<br />

~ (Xi -X) (Yi - fj)<br />

~ (Xi - X)2<br />

(0-3<br />

(0-4<br />

l"fhere x and y are the averages <strong>of</strong> the xi and Yi data values ..<br />

A relationship such as<br />

(c-5<br />

can be rewritten as<br />

log 'I = log K + n log if<br />

(C-6<br />

so that it is expressed in the <strong>for</strong>m <strong>of</strong> equation 0-1, Hhere<br />

y :: log I<br />

x = log 1)<br />

a = log I{<br />

b = n<br />

Thus it can be seen that the use <strong>of</strong> the above regression<br />

analysis can be used <strong>for</strong> many simple relationships, provided<br />

they can be l.vri tten in the <strong>for</strong>m <strong>of</strong> equation C -1.<br />

A computer progra~ <strong>for</strong> solving equation 0-3 and C-L~<br />

described by Eisen (59), Has used as the basic prograrn. <strong>for</strong><br />

calculating the parameters <strong>of</strong> the pOHer law equation and<br />

the temperature dependent <strong>for</strong>ms <strong>of</strong> the p01.ver lay.J as described<br />

in Appendix A.<br />

The computer progrom is given in Appendix<br />

A.


268<br />

I-'Iultiple Variabl,es Regression Analysis.<br />

Physical behavior<br />

is <strong>of</strong>ten a function <strong>of</strong> l'l1ore tha....n. one independent<br />

variable and may be exnressed as<br />

(c-7<br />

Using the method <strong>of</strong> least squares a set <strong>of</strong> simultaneous<br />

equations can be Hritten (105, 198)<br />

I z.


269<br />

(0-9<br />

where y ""<br />

log NNu<br />

xl = log NRe<br />

x2 = log N pr<br />

etc .. and 0,0


270<br />

COIU'UTER EROGRAMS<br />

t ... I -. t «<br />

---<br />

FOR<br />

JeIDLTIPLE VARI'ABLE REGRESSION Al."i'ALYSIS<br />

."' - " oi'mt d d··· -, r<br />

1.. Ba.sic Erogram. ('fll.e :first part <strong>of</strong>' this pror;ram. wa:g<br />

altered to evaluate the G0l'lSta.:ntS <strong>of</strong>' the variQus<br />

correlatioRs. The modifications Which f01lew were<br />

used to evaluate the paddle aP.J.d turbine data whick<br />

included ~peller width in£ermation.<br />

These programs<br />

were further modified <strong>for</strong> the propeller and anchor<br />

data li>y skiJlpb.g tB.e WalDa and Dt/Da and WalDa terms.,<br />

respectively. )<br />

2. Modificatioms '<strong>for</strong> evaluating constants <strong>for</strong> 'theoretical<br />

eorrelati0Vls.<br />

3. Meditieati€>ns <strong>for</strong> evaluatiE.l!: constants <strong>for</strong> semi-emperieal<br />

c0rrelatioJas.<br />

4. Modif'ieation <strong>for</strong> evaluating paddle ~0sition etf'eet.<br />

5. N0menelature.


-------------- -.Basi.c "Progr.a.rr:L __________________ _<br />

c ~ I t".J G l_ ~ 1-":.. ,. ~\ . ; U L r I ~ J L ~_ L r : "-, L f\~'; t~ {- G h? : _ ~.} s r G ~ i\ i"'. /\ L Y ~ I ~ .) e<br />

-- ------------___ C - --------.---------------. ---------______________________ . _____ . _______________ J<br />

______ ~I tv'it;'~I'j /" ( 1':-;. 1;; ) • C.J..J v ) , •. ,,,Jf','X ( ;,). :-",,) 1..>",1 X ( J )<br />

. __ q _,'LU-.JLl:1LLL , .J ) -----------------------_._-------<br />

C<br />

_--------""C~-----------'»C...Qj'-':PUTAI I Of'! OF I,li P':-'I-


[)O ~ L= 1 • ,(<br />

~-4z/<br />

------------------------------~~<br />

~J~Q __ ::L..,j '="L_-"-!::,.. ____ ~ ______________________________ ~ _________ __'<br />

k=A(L,J)/(:J.(L.Ll*M(.),J) )*li-,',,~J<br />

5 __ 2UNCi::i __ L .. tu_L,,-..J_~~ _________________ _<br />

C<br />

C<br />

_________ ~ __ ~ _____ .C<br />

K 1 =1


-----------~---------- -~----------<br />

PU:'\JCH 113.F<br />

C<br />

CO~~UTATION OF T~L ST~NU~~U E~~Ck GF<br />

TH'- PARTIAL REGRt -ssru:" COU-~=-IClu'"T::'~<br />

--------~----<br />

C<br />

_____ ~p~0~J~~;~C~H~~1~1~4~ ___<br />

PU"-ICH 1 1 5<br />

__ ~S~t~-~!~G~O~ ______________________________________<br />

DO<br />

16 L=l.K<br />

-----__________ -.-l)D~~_LL _________________________ _<br />

16 SU=~0+A(L.~)*~~MX(L)*~~MX(~)<br />

__ ~J d ::: ,:;,~x: -JtJ.~1,)j[:- N ) * * 0 0 ;-) ____________________________ _<br />

~='-.,<br />

PUNCH _lC'2_._:d.~::o_t:L ________ _ ---------------- -- - -- ----- .--<br />

D017')=1.K<br />

S ::J = S Y X * ~; I Ohl (r) -~. 20 "ElLLL) ____<br />

114 FORi,1AT (26H STl'd'\l!~P[) Eh'c":CR UF PI',~)Tlf--\L,24H 1


--------- ]\iio.d.i:fic.ations foT' eva 1 l1R+,j ng<br />

---------------COJlSt.;:;mts <strong>for</strong> cOT'r"'J ai";l on A<br />

C<br />

c<br />

_ c ____ _<br />

C P~OGRA;'l I NIT! i'l.L I L~, T ! O~; $<br />

C<br />

f-.(EI\[).EK,~N.-.JX<br />

K=Ei<<br />

N==Er\l<br />

_?UI'::J_c:.:t1 ___ U' 2._~ _________________________________<br />

PUI'K.H 1 CJ3 • N<br />

_____ ~~2'1::== C,--! ~~ ________________________________________________ _<br />

S:"ilYS==(JeO<br />

00 2 L == 1 .-'-K~ _______________________________ _<br />

SU~.rlX (L) :=': .. C'<br />

::""1X YLLL==-,'~C______ _______<br />

00 L -.J=L. 1<<br />

c<br />

___ 2 _'':i CL ,,-Jl -_'='--'L""________________________________________________________<br />

C V-X UATA R~AU IN.<br />

C<br />

DO 3 L~ == 1<br />

f-.(i=-AD. 1'11. XN<br />

DO ~ _L:::: 1.J'i ______________________________<br />

REAO.RUN.XNN0.X~RE,XNP~.VCFl.VCF2.VCF~,UA.HI<br />

t'-J-->-L::J .. '01 (1 "C+XN)<br />

FAl =Xi'-JRE*"cEXl<br />

F- ::::XNRE:.*XGlPf--;fU::::/\ 1 *F A 1'-'-______________________ _<br />

i\2u<br />

r C -A3=XNNU/FA 1<br />

Y = " cU4_~-ltL_OG ( F--~~='_"--"'3'-'----) _______________________________<br />

W(I )=L.4343*LO(,(FA2)<br />

__--'"-'L~~) := C _. 4


--~--------------<br />

------ ~~ -------<br />

c<br />

c<br />

_________ c _____ _<br />

l) I ! ~ c:: N::O I 0 f'\. A ( 1 ," 1 i ). C ( 1 ,~ ) • ,j,) 1'.1 ~ ( 1 C ) , '- t·; X '( C 1 C ) " (1 ~ )<br />

c<br />

C Pf.;_X Y (L) = 0_ (2_____ ~ __<br />

00 ;:: .J=L.K<br />

2 _ I~ ( L • ,))=L,_,,_'-'_____________.________________________<br />

c<br />

__________ C ___ -'f ~ X U t\ T-,-p-,-, -'-CRc::l-'C'-'-,c,::;:U_",-1 C-f\.),-" 0,--<br />

C<br />

[) 03 _IL: =_ L_. L>


~QllSIants<br />

<strong>for</strong> correlation C<br />

c<br />

C<br />

C<br />

C<br />

A ( 1 ~~ Ii 1 'J ) , \.- ( 1 '-, ) -(j ,-) ~j i:: X ( 1 \ J ) ~ _ ! 1\ j ;.,... 'y<br />

--------------------<br />

1 " ) • ' ( 1 ::<br />

C<br />

~LkU. cK, Ei'l, UX<br />

K=E::K<br />

---------~------------'---<br />

N=LN<br />

PUi'JCHLC)~,~__ __ ___ _<br />

PU:"CH<br />

1('3,,~<br />

S U tv1 y ::: :) • ()<br />

~- ~ ---,- --------<br />

DO ;:' L = 1 • K<br />

::,U1'IXCL)::::()0\)<br />

c<br />

C<br />

----------~-----------<br />

c<br />

S~!JXY (L) :::\~<br />

--- - - - - ----,._--<br />

UO ;:' U=L,K<br />

2 .LICL,U):::'_'sCJ<br />

v-X UATA R~AU<br />

IN.<br />

R r-=- AD, ,'''1 • X N<br />

_DO __ :::l ___ l_:-=<br />

r':;:i=.A[). !:?UN. XNNU, XN~-


Modi fi cati onB-foT' ev:alnatj ng---------------~7-7_-<br />

- ________________ --Con stan ts faT' carre J at j on D ____________ _<br />

C<br />

C<br />

C<br />

iJ I i'~~N::o 18"" ,.J. (1 U, 1;;). C (1 L), ~'u:\)A ( I, \) ,_".'}, Y ( 1,- ). (1,)<br />

-----------<br />

C<br />

P0>-;CH<br />

1 ~)2. K<br />

£0 >"CtL L:-;: -,.'_,,_'-' ______________________ . _______________________________ -, __ _<br />

::., U ,\1 Y ::: () @ (;<br />

SJ"lY ~ __ ~D __,_Q~_~_"'._________<br />

DO L L::: 1 ,K<br />

::; ,,', x y e L ) ::: v • ,,;<br />

uO _f,-".2_:::L.Lt::.-_<br />

2 ;:l,(L,,)=OoO<br />

C<br />

~---------~-------<br />

~)().:J 1=1,><<br />

READ .1< U N ,_xr'~f'J .)_.>


con s tAn t s f' 0 T' C 0 T'T'e.l.a.:t...J.i-,o-,-n.L-I--_E.L;L. ___ ~ ___ _<br />

C<br />

c<br />

A ( 1 O. 1 ~: ) • C ( 1 u ) • ---,,~ IV1 X ( 1 -. ) , ,c i-, A Y ( 1 ,- ) •<br />

r<br />

--- -------------->


constants <strong>for</strong>co~~~latjQn<br />

F<br />

------------_..<br />

'--------<br />

___ C ___ S_Li:::i.c,U:' AN;) i·'ULTI~


'-<br />

-------~--~-~ ------<br />

'----____________ --.---M-O-d.ification <strong>for</strong> eva] ll.c8utJ..J.L· .LD4g'S-------- ______ 2.E-J.O..L----<br />

.'----------<br />

_____ ..c..onstants foT' corT'eJ ation G<br />

C<br />

'---________ CL-___________________________________________ _<br />

LJ r '<br />

c<br />

C ?~OGR!,', I~ITI,c\LjL.-\TI()"': ..<br />

..-.__.. _____ C ...____ _<br />

1<br />

_______<br />

RLAlJ.EK,cN.-JX<br />

K '" F ,<<br />

~~=( .. N<br />

_PLLl::KH LC2. ......1<<br />

PU~~CH 1 C' 3. i'-..i<br />

1 " ) • _ d' A '( ( 1 -, ) , . ( 1 ~<br />

___.. _.__ S...ui-j"{_=-(L) -"- .. -""c~,_______________________________<br />

~ _________ ~D00~.~L~)~L~-~1~.uK~ __________________________________ _<br />

SU[\:,X (L) =(. e (.<br />

S:-1X Y.tL.J .==.". ".C<br />

UO 2. .j=L.K<br />

C<br />

-~------<br />

--------<br />

C<br />

. _L:2-Q_3 ___ 12 :::: .. L..J.L<br />

R E /\ 0 • ;\1 • X N<br />

D 0 3 ____...L=__ L._ ~"1<br />

------------------------------------------------------<br />

READ.RUN,XNN.j.XNRE,XNP~.VCFl ,VCF2.VCF5,LJA,HI<br />

FAl=XNRE**(1.30/eXN+l.CI)<br />

FA2=XNPR-li-*C: .,2l-)<br />

E)


.------~.~~--<br />

------------------------<br />

C ;:..d1""0LL_,c\,.c,.6L-:'Lv.LULL-t:. ~lJ"li i-\ii h(!- '"1t~:'. ,) j ()~~,.::,_L-",________<br />

C<br />

- __ ~ ____ ------.S ___ ~ ____ . __________________ _<br />

PROGRA<br />

--,- ------~-- -------------<br />

I~ITIALIZ~T!O~$<br />

Rt..AD.EK.cN,JX<br />

K::.:::t:K<br />

N=t:N<br />

PUNCH l02.'l1


282<br />

. .<br />

INl'UT NOMENCLATURE FOR<br />

.<br />

ANALYSIS PROGRAMS;<br />

MULTIPLE VARIABLE,REGRESSION<br />

The program solves s~ultaneous<br />

equations <strong>for</strong> the<br />

.\<br />

eonstamts (J(O), J(l), J(2), S(3), etc.) ror a correlation<br />

<strong>of</strong> the t:ype ..<br />

y II1II<br />

J(O) 1- J(l) \-l{l) + J(2) W(2) + J(3) W(3) eo.-t-<br />

ORR<br />

DA<br />

• Paddle position ratio<br />

l1li<br />

DIAR ::<br />

EK -<br />

EN<br />

II:<br />

HI 8i<br />

RITE -<br />

RITR •<br />

JX<br />

Impeller diameter<br />

_ CENTER HEIGHT OF IMPELLER<br />

- LiQufD HEIGnT<br />

Diameter ratio = Vessel diameter/impeller diameter<br />

Number <strong>of</strong> independent variables<br />

Total number or data points<br />

Impeller width<br />

Center Height o~<br />

paddle<br />

Impeller geometry ratio :: Impeller l.vidth/im.pedler<br />

diameter<br />

= Number or different values <strong>of</strong> flow behavior index<br />

(or impeller height) to be read in<br />

M • Number at data points having srune flow behavior index<br />

(or impeller height)<br />

RUN II: Run number (ror identi~ication on data card)<br />

VCF2 = Viscosity ratio, K/Kw<br />

XN II: Flow behavior index<br />

X}mu II:<br />

XNPR m<br />

Nusselt number<br />

Pr~dtl number<br />

XNRE = Reynolds number


28.J<br />

ENGLISH ALPHABET<br />

. - ¢,'"'~-=--<br />

a<br />

= Constant in eq. C-l<br />

b = Constant in eq6 C-l<br />

b o<br />

' b l , b 2 , bJ' etc. = Constants called regression coef'f'icients<br />

in eq. c-l~_<br />

C = Constant in eq. c-6<br />

K<br />

= Fluid consistency index <strong>of</strong> power law<br />

K Q Total number <strong>of</strong> independent variables in eq. c-4<br />

n<br />

x<br />

I: Flovl behavior index <strong>of</strong> pm-rer law<br />

= Independent variables<br />

Xi = Individual X data values<br />

Xl' x 2 ' x J<br />

= Independent variables in eq. c-4<br />

-X = Average value <strong>of</strong>' x<br />

L'XI x2 • Z(xl - Xl) (x2 - x2)<br />

2:' Xl Y = l:;{x l<br />

Xl) (y - y)<br />

Y<br />

= Dependent variables<br />

1\<br />

y - A predicted value <strong>for</strong> y<br />

Yi<br />

y<br />

= Individual data values<br />

= Average value <strong>of</strong> y


284<br />

0


References<br />

2.8S<br />

1.<br />

')<br />

L.<br />

3.<br />

Lt- •<br />

5.<br />

6.<br />

7.<br />

Q<br />

~ .<br />

9.<br />

10.<br />

11.<br />

12.<br />

13.<br />

1S.<br />

16.<br />

17.<br />

18.<br />

19.<br />

20.<br />

21.<br />

2?<br />

23.<br />

27.<br />

28.<br />

29.<br />

30.<br />

Ackley, E. J., Chern. En~.y 67,133 (1960).<br />

Acrivos, A., A.I.Ch.E'~Jour'na1, 6, S81)--90 (1960).<br />

A c I' i v 0 s, A., !'!i • J. :::;h all., an c~ E. E. Pet e r sen, A • I . C 11 • E •<br />

Journal, 6, 312-17 (1960).<br />

Aiba, S.,-A.I.Ch.E. Journal:> 4, L~f'5-9 (1958).<br />

Ale~cnderJ Col!oid Chemistry<br />

Allis-Chalmers Hanufacturin r • Co., E~~II. 16lj.1..<br />

-= /. Ive "" '" G • -'OJ'.<br />

f


286<br />

31.<br />

32.<br />

34.<br />

35.<br />

36.<br />

37.<br />

39.<br />

L!o.<br />

l~l.<br />

I-\-2.<br />

47.<br />

!~B .<br />

50.<br />

51.<br />

52.<br />

53.<br />

.-- !~4.<br />

B<br />

I'~Ol;m, G ..,.... .ti. • .. j c_"".lu Rnrl D· • -'"' ~ It<br />

the l{eH York A. I. Ch.E.<br />

Br01m, R. \'L, 2. Scott,<br />

Pe~niaV9S<br />

J.. v0~~L ... '-"'-<br />

FQ~e~<br />

- 1.:.-".. ••, ....<br />

~resented<br />

-<br />

at<br />

,<br />

atinG, Dece~ber, 1954.<br />

and C. Toyne, ~1.s. In_s_.J.._v_o_C_h_e_m_"<br />

Engrs., 25, 181 (1947).<br />

--,--.- 11-' T;1 n<br />

BUC_{lng _Bra, ]2,., .t'ro<br />

C<br />

• -'"'-' "m Qoc 'T'eq+~>10' H8-t;erinls, 21,<br />

Co u • ~ ~ v~~ 0 _ '_<br />

1191 (1921).<br />

Calderbank, P. Ii., and<br />

Chern. Engrs. (LondonL'<br />

'Ca1:3:well J D. Ii., and H.<br />

Enp;., 37, 237 (19Ll·l).<br />

H. B. f·10o-YounC, Trans. Inst.<br />

37, 26 (1959).<br />

E. Babbitt, TrDIls~ Am. Inst. Chem.<br />

-.~ -H ~ !I(,'<br />

Cal)ato, • J.. ulng_e 1 ano.<br />

"~.K It" 1 L' 1" Rer-Y'eosl"on<br />

':'-lU lp e .lne8.- J. C)~ '"<br />

Anr!J_ysis ProGram. 11 113]\1 1620 General Progr81T1 Library 6.0<br />

IIJ.S (1961J.).<br />

. , Hi. 17 "<br />

Carroll, C. V., Ilf[. S. Thesis in Chemical .c...Jnglneerlng,<br />

Newark Colle~e <strong>of</strong> Engineering, 1952.<br />

CharlTl, S. E.: Ind. and En~. Chern. ProcesS Desi8n and<br />

Devalo'pliant, 2-;t;2 (1963l~-<br />

Chilton, T. n-:-,. T. B. DreH, and R. H. Jeoens, Ind. Gnd<br />

EnG- Chern., 36, 510-516 (191.!L~).<br />

Chu, J. C., IC G. I3urrid::e, 2nd F. Bro1m, Chemical Engineering<br />

,science, 3, 229 (1(:54)·<br />

Chu,-;r: C-:-, Ke G. Burridc;e, ::md F. BrONn, Ind. and En(~.<br />

Chern., Lf·6,<br />

1016 (195L~).<br />

'~'--:;I"'" v l.L ~. nJ..··-~n,.,Gn '" i.J..L ,_c ,:'" _ , F. -'--'. P LJ., 0nu' '--- .. ~ u..L:J Q "'. C"""'O.l·('1",: .!. ~ J~'.' .!.. .!:i 1\ • I '~.. (;h H' -'-" • JouPl"lql<br />

~ . H~ ,<br />

8, 1511.-160 (1962).<br />

ChI'i:3ti::.nsan, E. B., and G. E. Jensen, rlEnerp;y Transfer<br />

to Non-rJe1-Jtonl8I1 Fluids in Laminar Flo'·I. fI in Prop;ress in<br />

International Research on Thermodvnamics t-:i-:lcl Transport<br />

Pro"arties, J. l1asi D.nd D. Tsai, ~ds. Academic Press, lfei-J<br />

York, 1962. p. 738.<br />

Christi8.....Ylsen, E. B., H. \'1. Ryan, D...Yld 1J'L E. Stevens, A.I.Ch.E.<br />

Journal, 1, 54L~-8 (1955).<br />

Clapp, R.I'![., lITurbu10nt Heat TrensfeI' in PseudoplD.stic Iifon­<br />

Ne"J'tonian Pluids fI<br />

in Internotlonal DeveloclmC'nts in Heat<br />

Trensfer, F art. 3. 1\.:"1. Soc. Hoch. Ene;. , 1961. p. 652.<br />

Collins, Morton, and W. R. Scho~21tar_ A.I.Sh.E. Journal,<br />

9, e.oh (1963).<br />

Crm·J, 'E. L., F. A. D8vls, and H. :1. I"I8.,:o;:fleld, Statistics<br />

I·fpll.ual. Dovsr Fublicc:t:t')n,s, Inc., EO'.-J York, 1960.<br />

Crm;ley, F. 3 .• ::1...11.d A. s. Kit7,es, Ind. ~:nc' 3nSo Chem., LL9<br />

ses (1957). . -"-'-,<br />

CWB"linr-;s, =ro E. :::nc 1 A. S.:iest, Ind. snd Enr> Chem., [1.2,<br />

2 J ,03-1J, (lQ~O) . -'--<br />

-"" ....... _ \ -l- ,// >10<br />

:J:31i~1;-:;, :1[1 t::e;:,'J, ~:u~(.1 ~):tlli ''':'118, Ex:~ri21en t_fll Phr~ic?-l<br />

C~:ls:.;2J-_S try. 1·1curw.~-=~lll Book Co., Ii e~J York, 19 ~L!.. n.-Ld?L.<br />

Dauc;hcrty, R. L., I'Fl'J.id Pro:8rtic3!1 in Eandbo;l( 01' Fiulc1<br />

__ :J'rnr2nic::-~. ld.-. ___ -_____ V. L. Strc:etcr. .,. eel. NcG-r8~J-lTill


287<br />

56.<br />

57.<br />

58.<br />

C:;o<br />

./ / .<br />

60.<br />

61.<br />

62.<br />

63.<br />

6Ll-_<br />

65.<br />

66.<br />

70.<br />

71. Gaskin::;, }'. II., and ";1. Pldlipp<strong>of</strong>:C, Ind. and Ene;. Chem., 51,<br />

871-73 (195')) ..<br />

72. Gee, R. E., o.nd J. B. Lyon, Ind. ~~d En"'; • Chern.,<br />

\~ ----<br />

(1957) .<br />

73. Glnsstone, S., K. J. Laidler, ond H. J..J '''''Trin''' ..... _ ....... ~,_-_"'=-_--./ 'r'beoP'- 0"" .L<br />

Rate Processes. I1cGraH-Eill Book Com-,arry, }TeH York, 19u1.<br />

Glycerine Prod~cerls Association, nphysic0_1 Properties <strong>of</strong><br />

Glycerine 1963.<br />

Ha.1-m, ~3. J., T. Rea, and H. Eyrlnc;, Ind. £U1d Enr::::. Chern.<br />

51, 856-C57 (1959). . --~-'~(.----'


85.<br />

86.<br />

87.<br />

88.<br />

89.<br />

90.<br />

91.<br />

92.<br />

93·<br />

94·<br />

99.<br />

100.<br />

101.<br />

102.<br />

103.<br />

lOll··<br />

105.<br />

106.<br />

107·<br />

108.<br />

109.<br />

110.<br />

111.<br />

112.<br />

113.<br />

llL: __<br />

115.<br />

116.<br />

117.<br />

11[ .<br />

-r d"Y":'l.........."..,· ... t.. i~,.I.Gh.E. J"ournal J<br />

Eanlcs, R. t,.., en ~. b. lJ.c:rlS"Gla..nsen, =._-_~~-- -<br />

7, 519-23 (1961).<br />

-}-la.'1ks, R· J d....... B CJ • t· A. I .011.. E_.-..


289<br />

119.<br />

120.<br />

121.<br />

122.<br />

123.<br />

12L~ •<br />

125.<br />

126.<br />

127.<br />

128.<br />

129.<br />

130.<br />

131.<br />

132.<br />

133.<br />

13Lt..<br />

135.<br />

136.<br />

137.<br />

138.<br />

139.<br />

lL/2.<br />

1113.<br />

lLl·4.<br />

Fietzner, A. B., Ind. 8ndEnr;. Ch~rn. j 12, lL.;29-32 . (1957).<br />

I~etzner, .A. B., !IFlo1'1·Be};o.:ior <strong>of</strong> 'l'her:no',lastics ir in<br />

P"'ocess"lncz <strong>of</strong> ~hermo;'lastiGr·iaterio.ls. ed. by 2. C. Bernh~rdt.<br />

- R~'ini'lOld I-'ublishine; Gorp :-,~-}TeH York, 1 S59.<br />

Het~ner-, A. B., "E'loH <strong>of</strong> Eon-NeHtonian Fluids'! in Handbook<br />

<strong>of</strong> u.id DyrH1Iilics. ed. hy V. L. S trcr::tcr. lic~}raH-<br />

HIll-Book COynpall.y, Nelif York, 1961.<br />

I1etzner, A. B., Feehs, ot. 0.1., A.I.Ch.~ournpl, 7,<br />

3-9 (1961).<br />

.I'-1etzner, A. B., and P. s. Friend, Ind. al1cl Eng. Chem. ,<br />

51, 879 (1959).<br />

Netzner, A. B.,<br />

185-90 (1960).<br />

IVletzner, A. B.,<br />

l1etzner, A. B.,<br />

aIld D. F. Gluck, Chem. Eng. Sci. , 12,<br />

and Otto., A.I.Ch.E. Journal, 3, 3-10 (1957).<br />

&nd J. C. Rer::d, A.LoCh.E. Journal, 1,<br />

h3L\-~O (1955).<br />

Metzner', A. B., and J. S. rraylor, A.I.Ch.E. Jo~rnal, 6,<br />

109-1~. (1960).<br />

rietzner, A. B., R. D. Vaugh.,.'1., and G. L. Houghton, A.I.Ch.E.<br />

Journal, 3, 92-100 (1957).<br />

lIetzner, A" B., ano H. 1l!hitlock, Tr[ill~_. 30c. Rheol,,' ~,<br />

239-54 (1958).<br />

IUller, C. S., 1'l1d N. N. Dalton, Glycerol ~CS Monog Y'8,ph 117.<br />

Reinhold Publi.'3hing Com'I)Dny, NeN' York, 19:r;-3. p. ;::88.<br />

Miller, A. P., Jr., Ph. D. thesis in Chemical EngineerinG,<br />

~-.<br />

unlVC;rSJ, . t y 01. -'" i[,Qsn , 'i' n[';0011, ;jeae<br />

,,~ +-1 .... e, loc3 J"/.<br />

1'1ohr, il,j. D., !1Nixinc c.nd DisDers:j.ns" in Processing. <strong>of</strong><br />

'l'her::nonla::,tic 1"'1.0. terials. cd. by E. C. Bernhardt. Reinhold<br />

Publi sJlinc COrl)Oro.tion, Ne',,! YOI'lc, 1959.<br />

l'iohr, :J. D., R. L. Saxton, :2.ncl C. II. Je>J,~on, Ind. and Ene;.<br />

C11e:--1., 1+9, 1855 (1957). -,<br />

I![ooney, T-I., Journal <strong>of</strong> J.hooloCl.:'z:., 2, 210 (1931).<br />

Hooney, H., ::md S. A. Black, J. Colloid Sci., 7, 20~. (1952).<br />

NOrHO')d, [i.nd A. B. Hetzner, A.I.Ch.E. Journal, -6, ~-32-7<br />

(1960). -<br />

Oldshue, J. Y., and A. T. Gretton, Chem •._En;--;. PI'O(jPo, 50,<br />

615-21 (195~.).<br />

Oliver, D. R., and V. G. Jenson, Chern. Eng. Sci., 19,<br />

115-129 (1964). '-<br />

Olson, ',;j. T., and R. BI'eihrieser, itNACA Research on Slurry<br />

Fuels Throu£"p 195411. NACA Rept. m1 E55 Bl~., (1955).<br />

Coyama, Y., And S. Ito" Chem. Eng. (J2T'an), lL~, 96 (1950).<br />

Orr, c., Jr., ond J. }\'J. Dalle \/81le, ChenI, E'il:C. Pror;r.<br />

Sy:.r:1posium Series Fo. 9, 50, 29 (1C)51~).<br />

Parker, E. H., Chem. Eng:: 71, 165-2i7 (19b4).<br />

Per:.:oy, J'. II., Chem:L utl Eng:LD.G ers Kandbook. 3rd eeli tion.<br />

NcGraH-Hill Book Corn~.,my, NOH York, 1950. pp. 1197-1201.<br />

Phllip:,<strong>of</strong>f, 'fl., IIElast:LcJty in ,3te8.dy F'l01


11.;-6.<br />

11+7.<br />

lSI.<br />

152,<br />

153.<br />

1511··<br />

155.<br />

156.<br />

157.<br />

15S.<br />

159.<br />

160.<br />

161.<br />

163.<br />

165.<br />

166.<br />

167.<br />

160.<br />

169.<br />

170.<br />

171.<br />

172.<br />

173.


176.<br />

177.<br />

178.<br />

179.<br />

1(30.<br />

181.<br />

182.<br />

183.<br />

18L~.<br />

185.<br />

186.<br />

187.<br />

1GB.<br />

189.<br />

190.<br />

191.<br />

192.<br />

193.<br />

19L~_.<br />

195.<br />

196.<br />

IS7.<br />

19B.<br />

200.<br />

201.<br />

202.<br />

203.<br />

Serner, H. E.,<br />

Shaver, R. G.,<br />

181-8 (1959).<br />

Sheely, H. L., Ind. c.ndEnc;. Chem.) 2h, 1060-6L:_ (1932).<br />

Sieder, E. N., and G. E. Tate, Jnd~and Eng. Chem., 28,<br />

lL~29 (1936).<br />

Skell:::nd, and D2.brOHSki, Birrninr;hD1l1 En~~ine er, 82-06 (1962).<br />

Snencer, ::t. S., J. Polyrnersci.; 5 .. 591 (19)0).<br />

Snencer, R. S., ProceedinGs <strong>of</strong> the 2nd I~ternation8_1 Consress<br />

on Ptheology. V. T.- 1/1. I-larr:Cs-on, eee 19)11~. p. 21.<br />

Spencer, ;~. S., ['lid R • .6. Dillon, J. An-ol. pr:ys., 17 J 398<br />

(19L~6) •<br />

Stevens, ',L E., Ph. D. t}le:':;:LS, University <strong>of</strong> Utili, 1953.<br />

Thomns, D. G., !1,Sic;n:Lficant As;'ects <strong>of</strong> Non-HeHtoni[Ln<br />

Tecln101oc;y tl in Procre s s in InteI'natio~al Ptesearch on<br />

Thermodynamic and TranSport Properties. J. F. }la:::li end<br />

D I' ·-Ffi;;-;;-::;--l-'" c" "" J':---c P-r e '" " iYe-),f Yo Y> k 1 9 Of " -n 0/ /0 9<br />

Ie:; t" • ...c-l. U \::;.1'). _ ...J0, _\ ~~ __ ..J.. ........ j ...L c:~ "... -.<br />

Thomas, D. G., llTro.ns~)ort C}lQraeteristics <strong>of</strong> Sus·'ensions:<br />

A:"Ynlic;:.t~ on <strong>of</strong> Difi'AI'ent Hhcol0 ~~i c[>_l I10dels to Floc culo. ted<br />

Sus·Z'ension Datal! in :t='roc;ress in InteI'nntlonctl R.esearch on<br />

J1llermodynclmic'Jncl Tl~-nn::;';o:~t rro~erties. J. F'. Ho.si and<br />

~ YT rl~~-·---1-n- Ii ",.-' ~~ r.,~ ..... l~- ..<br />

D --y_-;-v "'\--.1_ 1 0 (2 1<br />

j. 11. l.:.l'll, cad, "'iC"uC::rl..LC r .. ·C.~0, _,e,1 -,-OJ.·y_, :-0_0 p. 70.1_.<br />

';.'b.onas, D. G., A.I.Ch.E. JOlu'ne_l, 9, 310 (1963).<br />

Thonas, D. G., ll~d. [;_11(\ E~;:;~ Chen.-; 55, 10-29 (1963).<br />

Tine, A. F., Dnd l{. Luebber:J, A.T.Gll..E. Jonrne.1, 3, 111-16<br />

(<br />

~ C) c'7 \ -<br />

.l/.:J j.<br />

1.'ocr, H. L., Ind. C-lld Ene. Chef:}" L!J3, 922 (1C;~6).<br />

iroor , H. L., Trnns. Soc. I7j::ceol., 1-,-177 (195T~.<br />

Uhl, V. lV., Chem. Enc;r. Prosr. S,rmr:.osh':L'l1 Ser. No. 17, _51,<br />

93-10[: (1955). _--". . -------- -<br />

Uhl, V. 1;.,-:;nc 1 IL P. Voznick, Chr;~. En~·. Pro


292.<br />

207·<br />

208.<br />

209.<br />

210.<br />

211.<br />

212.<br />

213.<br />

:~re:J tovcr ,<br />

Dern.l1.c.rd,<br />

1959.<br />

i

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!