06.11.2014 Views

Molecular Neurobiology - Universidad Autónoma de Madrid

Molecular Neurobiology - Universidad Autónoma de Madrid

Molecular Neurobiology - Universidad Autónoma de Madrid

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Home<br />

Table of contents<br />

Exit<br />

<strong>Molecular</strong> <strong>Neurobiology</strong><br />

D1<br />

D2<br />

D3<br />

D4<br />

D5<br />

D6<br />

D7<br />

Glycine neurotransporters: molecular structure,<br />

biogenesis and regulation<br />

Carmen Aragón Rueda<br />

Function of microtubular proteins in neurons<br />

Jesús Avila <strong>de</strong> Grado<br />

Neuronal repair and molecular therapy in neuro<strong>de</strong>generation.<br />

Spinocerebellar ataxias<br />

Javier Díaz Nido<br />

<strong>Molecular</strong> basis of neuronal plasticity<br />

F Javier Díez Guerra<br />

<strong>Molecular</strong> and cellular mechanisms for synaptic plasticity<br />

José Antonio Esteban García<br />

<strong>Molecular</strong> bases of the glutamatergic synapses:<br />

study of glutamate and glycine transporters<br />

Cecilio Giménez Martín<br />

Huntington’s disease and other CNS disor<strong>de</strong>rs<br />

José Lucas Lozano<br />

D8<br />

D9<br />

D10<br />

D11<br />

D12<br />

D13<br />

Biology of human neural stem cells. Potential for cell and<br />

gene therapy in neuro<strong>de</strong>generation<br />

Alberto Martínez Serrano<br />

Calcium signalling in mitochondria and insulin/leptin signalling<br />

during ageing<br />

Jorgina Satrústegui Gil-Delgado<br />

<strong>Molecular</strong> pathology of Alzheimer’s disease<br />

Fernando Valdivieso Amate<br />

<strong>Molecular</strong> mechanism of neuro<strong>de</strong>generation and regeneration<br />

Francisco Wandosell Jurado<br />

Role of lipids in neuronal physiology and pathology<br />

María Dolores Le<strong>de</strong>sma Muñoz<br />

<strong>Molecular</strong> pathways to Neuro<strong>de</strong>generation. Cellular and<br />

Animal Mo<strong>de</strong>ls: Role of post-translational modification<br />

of Tau in its <strong>de</strong>gradation by calpains<br />

Félix Hernán<strong>de</strong>z<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D1<br />

Glycine neurotransporters: molecular structure, biogenesis and regulation<br />

Research summary<br />

Our group is focused on the study of molecular mechanism, biogenesis, intracellular traffic, regulation and<br />

pharmacology of plasma membrane glycine transporters (GLYT1 and GLYT2) that play a major role in the final<br />

step of glycinergic transmission by removing specifically the neurotransmitter from the synapse. Our aim is to<br />

gain insight in the physiology and pathologies associated to alterations of glycinergic neurotransmission as<br />

neuropathic pain and muscle tone pathologies as hyperekplexia, myoclonus or epilepsia. In humans, mutations<br />

in SLC6A5 gene (GLYT2) are the cause of autosomal sporadic hyperekplexia.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

In collaboration with the CBMSO Bioinformatics group (A. Ramírez / A. Morreale) we have generated 3D<br />

mo<strong>de</strong>ls for GLYT1 and GLYT2. Using molecular dynamics simulations and electrostatic calculations of the<br />

transporters in the presence of Na + , we have i<strong>de</strong>ntified and experimentally confirmed, the residues involved<br />

in the additional Na + site (Na3) of GLYT2 (stoichiometry: 3Na + :1Cl - :1glycine). The replacement of Asp471<br />

located in TM6 of GLYT2, but not the equivalent position in GLYT1 (Asp295, coupled to two Na + ), reduced Na +<br />

affinity and cooperativity of glycine transport. An efficient allosteric communication between Asp471 and the<br />

Na1-2 sites was inferred from the differential Na + -induced responses to tiol reagents by target cysteines in 471<br />

(GLYT2) and 295 (GLYT1). Target cysteines show differential glycine-<strong>de</strong>pen<strong>de</strong>nt accessibility in both isoforms.<br />

Na + protected target cysteine from inhibition with reagent at a conformationally restricted temperature in GLYT2<br />

but not in GLYT1, indicating direct binding to position 471.<br />

We studied the traffic of GLYT2, which recycles between endosomes and plasma membrane through<br />

constitutive and regulated pathways. The activation of PKC by phorbol-esters inhibits GLYT2 transport through<br />

an increase of the internalization rate causing net accumulation of the protein in internal compartments and a<br />

redistribution of the transporter from rafts to non-raft domains in the plasma membrane of brainstem primary<br />

neurons and synaptosomes.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D1<br />

Glycine neurotransporters: molecular structure, biogenesis and regulation<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Figure 1. <strong>Molecular</strong> mo<strong>de</strong>ls for GLYT1 and GLYT2. Lateral view of the transporter mo<strong>de</strong>led structures showing the isosurfaces of favourable<br />

interaction with Na+ ion (-5 Kcal/mol, red). The proposed region involved in Na+ coordination in Na3 site of GLYT2 is magnified for comparison<br />

with the equivalent area of GLYT1.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D1<br />

Glycine neurotransporters: molecular structure, biogenesis and regulation<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Figure 2. Immunohistochemistry of rat spinal cord slices (ventral horn) Close apposition in the GLYT2 (red fluorescence) and purinergic receptors<br />

P2Y12 (green fluorescence) distribution.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D1<br />

Glycine neurotransporters: molecular structure, biogenesis and regulation<br />

Group Lea<strong>de</strong>r:<br />

Carmen Aragón Rueda<br />

Scientific Staff:<br />

Beatriz López-Corcuera<br />

Postdoctorals:<br />

Esperanza Jiménez Martínez<br />

Predoctoral Fellows:<br />

Pablo Alonso Torres<br />

Gonzalo Pérez Siles<br />

Jaime <strong>de</strong> Juan Sanz<br />

Research summary<br />

Staff<br />

Publications<br />

Stu<strong>de</strong>nts:<br />

Esther Arribas<br />

Jennifer Mayordomo<br />

Technical Assistance:<br />

Enrique Núñez Balbuena<br />

Other activities<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D1<br />

Glycine neurotransporters: molecular structure, biogenesis and regulation<br />

Publications<br />

Núñez, E., Alonso-Torres, P., Fornés, A., Aragón, C. and López-Corcuera, B. (2008). The neuronal glycine transporter GLYT2 associates<br />

with membrane rafts: functional modulation by lipid environment. J. Neurochem. 105, 2080-2090.<br />

Fornés, A., Núñez, E., Alonso-Torres, P., Aragón, C. and López-Corcuera, B. (2008).Trafficking properties and activity regulation of the<br />

neuronal glycine transporter GLYT2 by protein kinase C. Biochem. J. 412, 495-506.<br />

Giménez, C., Zafra, F., López-Corcuera, B. and Aragón, C. (2008). Bases moleculares <strong>de</strong> la hiperplexia hereditaria. Rev. Neurol. 47, 648-652.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D1<br />

Glycine neurotransporters: molecular structure, biogenesis and regulation<br />

Other activities<br />

Participaciones orales por Invitación:<br />

C. Aragón. “Dynamic Properties of Neuronal Glycine Transporter GLYT2”. ESF Conference in Biomedicine. Rare Diseases: Channels<br />

and Transporters. March 2008 (S. Feliú <strong>de</strong> Guisols, Gerona, Spain)<br />

B. López-Corcuera. “Functional and dynamic properties of glycine neurotransporters”. 6th FENS Forum of European Neuroscience. July<br />

2008 (Geneva, Switzerland).<br />

Pertenencia al Centro <strong>de</strong> Investigación Biomédica en Red <strong>de</strong> Enfermeda<strong>de</strong>s Raras (CIBERER, grupo U751) <strong>de</strong>l Instituto <strong>de</strong> Salud Carlos<br />

III <strong>de</strong>s<strong>de</strong> 2007.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D2<br />

Function of microtubular proteins in neurons<br />

Research summary<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Doctoral theses<br />

Our main objectives are: to un<strong>de</strong>rstand tau pathology in Alzheimer disease and to look for a therapeutical<br />

use of ensheating olfactory cells as reparators of axonal damage. Tau pathology in those neuro<strong>de</strong>generative<br />

disor<strong>de</strong>rs is mainly due to its hyperphosphorylation and its aberrant aggregation, and, in the last two years,<br />

we have done some experiments to know how those phosphorylation and aggregation processes take place.<br />

In this way, we have <strong>de</strong>termined a region in tau molecule that plays an important role in those features<br />

(phosphorylation and aggregation). In addition, we have suggested a novel mechanism; in which tau protein<br />

could be involved, to explain the assembly of a pathological protein aggregate found in the brain of Alzheimer<br />

disease patients, the Hirano body. On the other hand, we have continued our analyses on tau phosphorylation<br />

by protein kinase GSK3, we have found, during GSK3 analysis, an activation of this enzyme, after an increase<br />

of intracellular calcium. In a study carried out by F. Hernán<strong>de</strong>z, it has been shown that an increase in intracellular<br />

calcium results in the activation of calpain, a protein that cleaves GSK3 removing its aminoterminal region and,<br />

as result of that, the kinase is activated.<br />

Also, we have <strong>de</strong>scribed that tau protein, in extracellular form, may play a role in the tau pathology propagation,<br />

in Alzheimer disease. Our data suggest that upon neuron<strong>de</strong>generation, intracellular tau becomes extracellular<br />

tau, and this extracellular protein can bind to cellular receptors (muscarinic receptors M1 and M3). As a<br />

consequence of that an increase in intracellular calcium could occur. This calcium increase could be toxic for<br />

the cell.<br />

About our studies on ensheating olfactory glia cells as reparators of axonal damage, we have immortalized<br />

these cells and studied their functionally after immortalization and <strong>de</strong>sinmmortalization. These studies are<br />

related to the possible future therapeutical use of these cells.<br />

Awards<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D2<br />

Function of microtubular proteins in neurons<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Doctoral theses<br />

Awards<br />

Figure 1. Atrophy in the <strong>de</strong>ntate gyrus of the hippocampus in GSK-3β-overexpressing transgenic mice can be observed. Representative sagital<br />

section from 18-month-old mice DAPI stained is shown.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D2<br />

Function of microtubular proteins in neurons<br />

Group Lea<strong>de</strong>r:<br />

Jesús Avila <strong>de</strong> Grado<br />

Scientific Staff:<br />

Félix Hernán<strong>de</strong>z Pérez<br />

Filip Lim<br />

María Teresa Moreno-Flores<br />

Francisco José Moreno Muñoz<br />

Mar Pérez Martínez<br />

Laura Sayas Casanova<br />

Technical Assistance:<br />

María Jesús Martín Bermejo<br />

Raquel Cuadros Catalán<br />

Esther García García<br />

Ana Belén García Gómez<br />

Elena Langa Gabriel<br />

Nuria <strong>de</strong> la Torre Alonso<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Doctoral theses<br />

Postdoctoral Fellows:<br />

Vega García-Escu<strong>de</strong>ro<br />

Alberto Gómez Ramos<br />

Thorsten Koecheling<br />

Alicia Rubio Garrido<br />

Ismael Santa-María Pérez<br />

Graduate Stu<strong>de</strong>nts:<br />

Almu<strong>de</strong>na Fuster Matanzo<br />

Maite Gallego Hernán<strong>de</strong>z<br />

Elena Gómez <strong>de</strong> Barreda Santiago<br />

Paloma Goñi Oliver<br />

Diana Simón Sanz<br />

Elena Tortosa Binacua<br />

Zahady Velasquez<br />

Awards<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D2<br />

Function of microtubular proteins in neurons<br />

Publications<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Doctoral theses<br />

Awards<br />

Avila, J. (2007). Neuronal disor<strong>de</strong>rs: Introduction. Cell. Mol.<br />

Life Sci. 64, 2191-2193.<br />

Avila, J. and Hernan<strong>de</strong>z, F. (2007). GSK-3 inhibitors for<br />

Alzheimer’s disease. Expert. Rev. Neurother. 7, 1527-1533.<br />

Engel, T. et al., (2007). A mouse mo<strong>de</strong>l to study tau pathology<br />

related with tau phosphorylation and assembly. J. Neurol. Sci.<br />

257, 250-254.<br />

Gomez-Sintes, R. et al., (2007). Neuronal apoptosis and<br />

reversible motor <strong>de</strong>ficit in dominant-negative GSK-3<br />

conditional transgenic mice. Embo J. 26, 2743-2754.<br />

Goni-Oliver, P. et al., (2007). N-terminal cleavage of GSK-3 by<br />

calpain: a new form of GSK-3 regulation. J. Biol. Chem. 282,<br />

22406-22413.<br />

Hernan<strong>de</strong>z, F. and Avila, J. (2007). Tauopathies. Cell. Mol. Life.<br />

Sci. 64, 2219-2233.<br />

Hirotani, S., et al., (2007). Inhibition of glycogen synthase<br />

kinase 3beta during heart failure is protective. Circ. Res. 101,<br />

1164-1174.<br />

Hooper, C. et al., (2007). Glycogen synthase kinase-3<br />

inhibition is integral to long-term potentiation. Eur. J. Neurosci.<br />

25, 81-86.<br />

Kortazar, D. et al., (2007). Role of cofactors B (TBCB) and E<br />

(TBCE) in tubulin heterodimer dissociation. Exp. Cell. Res.<br />

313, 425-436.<br />

Pastrana, E. et al., (2007). BDNF production by olfactory<br />

ensheathing cells contributes to axonal regeneration of<br />

cultured adult CNS neurons. Neurochem. Int. 50, 491-498.<br />

Perez, M. et al., (2007). The role of the VQIVYK pepti<strong>de</strong> in tau<br />

protein phosphorylation. J. Neurochem. 103, 1447-1460.<br />

Rubio, A., Avila, J. and <strong>de</strong> Lecea, L. (2007). Cortistatin as a<br />

therapeutic target in inflammation. Expert Opin. Ther. Targets<br />

11, 1-9.<br />

Salcedo, M. et al., (2007). The marine sphingolipid-<strong>de</strong>rived<br />

compound ES 285 triggers an atypical cell <strong>de</strong>ath pathway.<br />

Apoptosis 12, 395-409.<br />

Santa-Maria, I., et al., (2007). Tramiprosate, a drug of potential<br />

interest for the treatment of Alzheimer’s disease, promotes an<br />

abnormal aggregation of tau. Mol. Neuro<strong>de</strong>gener. 2, 17.<br />

Santa-Maria, I. et al., (2007). Taurine, an inducer for tau<br />

polymerization and a weak inhibitor for amyloid-beta-pepti<strong>de</strong><br />

aggregation. Neurosci. Lett. 429, 91-94.<br />

Zhu, X. et al., (2007). Treating the lesions, not the disease. Am.<br />

J. Pathol. 170, 1457-1459.<br />

Avila, J. (2008). Tau kinases and phosphatases. J. Cell. Mol.<br />

Med. 12, 258-259.<br />

Avila, J., et al., (2008) Isolation of microtubules and microtubule<br />

proteins. In: Curr. Protoc. Cell. Biol. John Wiley & Sons. pp<br />

Unit 3 29<br />

Bjorkdahl, C., et al., (2008). Small heat shock proteins Hsp27 or<br />

alphaB-crystallin and the protein components of neurofibrillary<br />

tangles: tau and neurofilaments. J. Neurosci. Res. 86, 1343-<br />

1352.<br />

Engel, T. et al., J. (2008). Lithium, a potential protective drug in<br />

Alzheimer’s disease. Neuro<strong>de</strong>gener. Dis. 5, 247-249.<br />

Engel, T. et al., (2008). Hippocampal neuronal subpopulations<br />

are differentially affected in double transgenic mice<br />

overexpressing frontotemporal <strong>de</strong>mentia and<br />

parkinsonism linked to chromosome 17 tau and glycogen<br />

synthase kinase-3beta. Neuroscience 157, 772-780.<br />

Gomez-Ramos, A. et al., (2008). Extracellular tau promotes<br />

intracellular calcium increase through M1 and M3 muscarinic<br />

receptors in neuronal cells. Mol. Cell. Neurosci. 37, 673-681.<br />

Guerrero, R. et al., (2008). Park2-null/tau transgenic mice<br />

reveal a functional relationship between parkin and tau.<br />

J. Alzheimers Dis. 13, 161-172.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D2<br />

Function of microtubular proteins in neurons<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Doctoral theses<br />

Awards<br />

Publications<br />

Hernan<strong>de</strong>z, F. and Avila, J. (2008). Tau aggregates and tau<br />

pathology. J. Alzheimers Dis. 14, 449-452.<br />

Hernan<strong>de</strong>z, F. and Avila, J. (2008). The role of glycogen<br />

synthase kinase 3 in the early stages of Alzheimers’ disease.<br />

FEBS Lett. 582, 3848-3854.<br />

Hernan<strong>de</strong>z, F. et al., (2008). Role of polyglycine repeats in the<br />

regulation of glycogen synthase kinase activity. Protein Pept.<br />

Lett. 15, 586-589.<br />

Mondragon-Rodriguez, S. et al., (2008). Cleavage and<br />

conformationalchanges of tau protein follow phosphorylation<br />

during Alzheimer’s disease. Int. J. Exp. Pathol. 89, 81-90.<br />

Munoz-Fontela, C. et al., (2008). Induction of paclitaxel<br />

resistance by the Kaposi’s sarcoma-associated herpesvirus<br />

latent protein LANA2. J. Virol. 82, 1518-1525.<br />

Navarro, P. et al., (2008). Motor alterations are reduced in mice<br />

lacking the PARK2 gene in the presence of a human FTDP-17<br />

mutant form of four-repeat tau. J. Neurol. Sci. 275, 139-144.<br />

Navarro, P. et al., (2008). Memory and exploratory impairment in<br />

mice that lack the Park-2 gene and that over-express the human<br />

FTDP-17 mutant Tau. Behav. Brain. Res. 189, 350-356.<br />

Perez, M. et al., (2008). Phosphorylated tau in neuritic plaques<br />

of APP(sw)/Tau (vlw) transgenic mice and Alzheimer disease.<br />

Acta Neuropathol. 116, 409-418.<br />

Rubio, A. et al., (2008). Effect of cortistatin on tau phosphorylation<br />

at Ser262 site. J. Neurosci. Res. 86, 2462-2475.<br />

Santa-Maria, I. et al., (2008). Coenzyme q induces tau<br />

aggregation, tau filaments, and Hirano bodies. J. Neuropathol.<br />

Exp. Neurol. 67, 428-434.<br />

Santa-Maria, I. et al., (2008). Binding of tau protein to the<br />

ends of ex vivo paired helical filaments. J. Alzheimers Dis. 13,<br />

177-185.<br />

Utreras, E. et al. (2008). Microtubule-associated protein 1B<br />

interaction with tubulin tyrosine ligase contributes to the control<br />

of microtubule tyrosination. Dev. Neurosci. 30, 200-210.<br />

Villoslada, P. et al. (2008). Immunotherapy for neurological<br />

diseases. Clin. Immunol. 128, 294-305.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D2<br />

Function of microtubular proteins in neurons<br />

Other activities<br />

Colaboración en la organización <strong>de</strong>l “V Simposio: Avances en la enfermedad <strong>de</strong> Alzheimer”, Fundación Reina Sofía.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Doctoral theses<br />

Awards<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D2<br />

Function of microtubular proteins in neurons<br />

Doctoral theses<br />

Ismael Santa-Maria. (2008) “Estudio sobre la fosforilación y agregación <strong>de</strong> la proteína <strong>de</strong> tau y su posible relación con la enfermedad <strong>de</strong><br />

Alzheimer”. U.A.M. Directores: Francisco José Moreno Muñoz y Félix Hernán<strong>de</strong>z Pérez.<br />

Alicia Rubio Garrido (2008). “Implicaciones <strong>de</strong> la proteína tau y la cortistatina en la progresión <strong>de</strong> la enfermedad <strong>de</strong> Alzheimer”. U.A.M. Directores: Jesús<br />

Avila <strong>de</strong> Grado y Mar Pérez Martínez.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Doctoral theses<br />

Awards<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D2<br />

Function of microtubular proteins in neurons<br />

Awards<br />

Premio <strong>de</strong> la Real Aca<strong>de</strong>mia <strong>de</strong> Doctores <strong>de</strong> España a la mejor tesis en el área <strong>de</strong> Bioquímica (2008) a Ismael Santa-María.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Doctoral theses<br />

Awards<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D3<br />

Neuronal repair and molecular therapy in neuro<strong>de</strong>generation. Spinocerebellar ataxias<br />

Research summary<br />

Many neurogenetic diseases are characterized by a progressive neuro<strong>de</strong>generative process in which selective<br />

populations of neurons become dysfunctional and eventually die. Mo<strong>de</strong>l diseases in this respect are the<br />

spinocerebellar ataxias, which are characterized by neuro<strong>de</strong>generation affecting the cerebellum, brainstem<br />

and spinal cord. Our group studies neuronal dysfunction and <strong>de</strong>ath processes to find pathways to promote<br />

neuronal survival and repair with the prospects of <strong>de</strong>veloping new therapeutic tools.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

We have focused our attention on Friedreich´s ataxia, a hereditary neurological disor<strong>de</strong>r resulting from a<br />

<strong>de</strong>ficiency of frataxin, which is a mitochondrial protein enco<strong>de</strong>d for by the nuclear genome. Our aims are<br />

directed to a <strong>de</strong>eper un<strong>de</strong>rstanding of neuro<strong>de</strong>generation and the <strong>de</strong>velopment of experimental molecular<br />

therapy approaches. Thus we are also very interested in the optimization of the technologies for gene transfer<br />

to cells of the central nervous system. In this context, we use lentiviral and herpesviral vectors for neuronal<br />

gene transfer in or<strong>de</strong>r to validate possible therapeutic targets, perform functional genomic analyses and <strong>de</strong>sign<br />

novel gene therapy approaches.<br />

Thus, we use cell mo<strong>de</strong>ls to study the molecular changes triggered by frataxin gene <strong>de</strong>ficiency within mammalian<br />

neurons. These studies may facilitate the i<strong>de</strong>ntification of novel therapeutic targets not only for Friedreich´s<br />

ataxia but also for other neurological diseases characterized by a prominent mitochondrial dysfunction.<br />

Likewise, we also explore therapeutic approaches based on possible drugs (or biomolecules) able to either<br />

increase frataxin expression or compensate for frataxin <strong>de</strong>ficiency in mature mammalian neurons<br />

We have also used a Friedreich´s ataxia animal mo<strong>de</strong>l to assay a gene therapy strategy based on frataxin<br />

gene transfer using herpesviral vectors. This project aims to establish a proof-of-principle about the suitability<br />

of gene therapy for recessive spinocerebellar ataxias.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D3<br />

Neuronal repair and molecular therapy in neuro<strong>de</strong>generation. Spinocerebellar ataxias<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Figure 1. Mouse cerebellar Purkinje neuron in primary culture.<br />

Figure 2. Mitochondrial localization of frataxin in cerebellar granule<br />

neurons after viral vector-mediated gene transfer.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D3<br />

Neuronal repair and molecular therapy in neuro<strong>de</strong>generation. Spinocerebellar ataxias<br />

Group Lea<strong>de</strong>r:<br />

Javier Díaz Nido.<br />

Postdoctorals:<br />

Juan Carlos Corona Castillo<br />

Sara Pérez Luz<br />

Alfredo Giménez-Cassina (durante 2007)<br />

Predoctoral Fellows:<br />

Yurika María Katsu Jiménez<br />

Gloria Mª Palomo Carrasco<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D3<br />

Neuronal repair and molecular therapy in neuro<strong>de</strong>generation. Spinocerebellar ataxias<br />

Publications<br />

Gimenez-Cassina, A., Lim, F. and Diaz-Nido, J. (2007). Gene transfer into Purkinje cells using herpesviral amplicon vectors in cerebellar<br />

cultures. Neurochem Int. 50, 181-8.<br />

Pastrana, E., Moreno-Flores, M.T., Avila, J., Wandosell, F., Minichiello, L. and Diaz-Nido, J. (2007) BDNF production by olfactory ensheathing<br />

cells contributes to axonal regeneration of cultured adult CNS neurons. Neurochem Int. 50, 491-8.<br />

Gomez-Sebastian, S., Gimenez-Cassina, A., Diaz-Nido, J., Lim, F. and Wa<strong>de</strong>-Martins, R. (2007). Infectious <strong>de</strong>livery and expression of a<br />

135 kb human FRDA genomic DNA locus complements Friedreich’s ataxia <strong>de</strong>ficiency in human cells. Mol. Ther. 15, 248-54.<br />

Lim, F., Palomo, G.M., Mauritz, C., Giménez-Cassina, A,. Illana, B., Wandosell, F. and Díaz-Nido, J. (2007). Functional recovery in a<br />

Friedreich’s ataxia mouse mo<strong>de</strong>l by frataxin gene transfer using an HSV-1 amplicon vector. Mol. Ther. 15, 1072-8.<br />

Simón, D., Benitez, M.J., Gimenez-Cassina, A., Garrido, J.J., Bhat, R.V., Díaz-Nido, J. and Wandosell, F. (2008) Pharmacological inhibition of GSK-3 is not<br />

strictly correlated with a <strong>de</strong>crease in tyrosine phosphorylation of residues 216/279. J Neurosci Res. 86, 668-74.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D3<br />

Neuronal repair and molecular therapy in neuro<strong>de</strong>generation. Spinocerebellar ataxias<br />

Other activities<br />

El grupo <strong>de</strong> investigación constituye también la U748 <strong>de</strong>l área <strong>de</strong> Neurogenética <strong>de</strong>l Centro <strong>de</strong> Investigación Biomédica en Red <strong>de</strong><br />

Enfermeda<strong>de</strong>s Raras (CIBERER).<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D4<br />

<strong>Molecular</strong> basis of neuronal plasticity<br />

Research summary<br />

Research summary<br />

Staff<br />

Publications<br />

Synaptic plasticity (SP) is a basic property of the normal operation of the nervous system (NS) that allows<br />

synaptic contacts to regulate its efficiency <strong>de</strong>pending on the recent history of sustained activity. SP is a<br />

key element during <strong>de</strong>velopment and regeneration, and is also required for memory function and learning.<br />

SP shows up in diverse forms, some potentiate and others <strong>de</strong>press synaptic efficiency, some exercise<br />

more durable effects and other more transitory ones. However, all of them share a common messenger:<br />

calcium. Intracellular calcium oscillations initiate the signalling casca<strong>de</strong>s responsible for SP phenomena.<br />

These are mostly mediated by calmodulin (CaM), a small protein, very abundant in the NS, that acts<br />

discriminating signals and modulating the activity of their multiple effectors. Our research group is interested<br />

in CaM’s role in the synaptic environment and, in particular, in the study of CaM sequestering proteins,<br />

such as Neurogranin (Ng) and GAP-43, and their involvement in intracellular signalling pathways of special<br />

relevance to the SP mechanisms. Our working hypothesis foresees that cognitive <strong>de</strong>ficits observed in Ng or<br />

GAP-43-<strong>de</strong>ficient animals are due to alterations of CaM availability to their different effectors. Our group<br />

<strong>de</strong>velops and uses cellular mo<strong>de</strong>ls of SP to analyze the expression, subcelular localization, modifications and<br />

interactions of Ng and GAP-43. Our interest in the dynamics of the processes involved drives us to carry out “in<br />

vivo” studies and to use advance microscopy techniques. In summary, we work to disclose why Ng and GAP-<br />

43 are necessary to maintain the normal levels of cognitive performance and hope to contribute to <strong>de</strong>velop<br />

strategies aimed at its reestablishment in pathologic cases.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D4<br />

<strong>Molecular</strong> basis of neuronal plasticity<br />

Research summary<br />

Staff<br />

Publications<br />

Figure 1. Ca2+/CaM signalling in the post-synaptic element.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D4<br />

<strong>Molecular</strong> basis of neuronal plasticity<br />

Research summary<br />

Staff<br />

Publications<br />

Figure 2. Typical clustering of Neurogranin in the somato<strong>de</strong>ndritic compartment (CA1, Hippocampus).<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D4<br />

<strong>Molecular</strong> basis of neuronal plasticity<br />

Group Lea<strong>de</strong>r:<br />

F. Javier Díez Guerra<br />

Predoctoral Fellows:<br />

Irene Domínguez González<br />

Technical Assistance:<br />

Alberto Garrido García<br />

Research summary<br />

Stu<strong>de</strong>nts:<br />

Beatriz Andrés Pans<br />

Lara Durán Trío<br />

Jon Díaz Fauce<br />

Diego Sanz Fuentes<br />

Staff<br />

Publications<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D4<br />

<strong>Molecular</strong> basis of neuronal plasticity<br />

Publications<br />

Domínguez-González, I., Vázquez-Cuesta, S.N., Algaba, A. and Díez-Guerra, F.J. (2007). Neurogranin binds to phosphatidic acid<br />

and associates to cellular membranes. Biochemical Journal 404 (1), 31-43.<br />

Fernán<strong>de</strong>z-Sánchez, E., Díez-Guerra, F.J., Cubelos, B., Giménez, C. and Zafra, F. (2008). Mechanisms of endoplasmic reticulum export of<br />

the glycine transporter GLYT1. Biochemical Journal 409 (3), 669-81.<br />

Research summary<br />

Staff<br />

Publications<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D5<br />

<strong>Molecular</strong> and cellular mechanisms for synaptic plasticity<br />

Research summary<br />

Research summary<br />

Staff<br />

Doctoral theses<br />

My research group is particularly interested in the molecular bases for learning and memory. Specifically, we<br />

investigate how synaptic connections in the brain are modified in response to experience. This process, known<br />

as synaptic plasticity, is critical for the establishment of functional neuronal circuits during <strong>de</strong>velopment, and<br />

also for learning and memory in adulthood. During the last few years, we have discovered that neurons fine-tune<br />

their synapses by inserting or removing neurotransmitter receptors at the synaptic membrane. This work led<br />

us to i<strong>de</strong>ntify multiple components of the intracellular membrane trafficking machinery that control the transport<br />

of receptors at synapses. Thus, we have <strong>de</strong>termined that a complex network of endosomal compartments,<br />

driven by specific GTPases of the Rab family, control the exocytosis and endocitosis of receptors at the<br />

synaptic membrane (Gerges et al. J Biol Chem 279:43870-43878, 2004; Brown et al. Neuron 45:81-94, 2005;<br />

Brown et al. J Neurosci 27:13311-13315, 2007). This process is assisted by molecular chaperones (Gerges<br />

et al. J Neurosci 24:4758-4766, 2004) and motor proteins of the myosin family (Correia et al. Nat Neurosci 11,<br />

457-466, 2008). Finally, the insertion of receptors at the synaptic membrane is driven by a macromolecular<br />

complex known as the exocyst (Gerges et al. EMBOJ 25:1623-1634, 2006). We have recently summarized<br />

this work in a review paper (Greger and Esteban. Curr Opin Neurobiol 17:289-297, 2007).<br />

Upon our recent incorporation to the Centro <strong>de</strong> Biología <strong>Molecular</strong>, we have started to investigate the signaling<br />

casca<strong>de</strong>s that couple neuronal activity with the regulation of neurotransmitter receptor trafficking. These<br />

studies involve a combination of electrophysiological techniques, together with fluorescence microscopy and<br />

molecular biology, with the general goal of un<strong>de</strong>rstanding how individual molecules contribute to neuronal<br />

function in the brain.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D5<br />

<strong>Molecular</strong> and cellular mechanisms for synaptic plasticity<br />

Research summary<br />

Staff<br />

Doctoral theses<br />

Figure 1. A major experimental approach in the laboratory is the<br />

expression of recombinant receptors and regulatory proteins tagged<br />

with GFP in hippocampal slices, using electrophysiology and<br />

neuronal imaging as functional assays. The laboratory has a strong<br />

multidisciplinary scope, which we believe is essential for the general<br />

goal of un<strong>de</strong>rstanding how individual molecules contribute to neuronal<br />

function.<br />

Figure 2. Subcellular distribution of motor protein Myosin Va in<br />

neurons and partial colocalization with neurotransmitter receptors.<br />

Co-immunofluorescence labeling of AMPA receptor subunit GluR1<br />

(left panel) with motor protein Myosin Va (middle panel) in primary<br />

hippocampal neurons. Overlay in right panel. Higher magnification of<br />

<strong>de</strong>ndritic branches in lower panels.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D5<br />

<strong>Molecular</strong> and cellular mechanisms for synaptic plasticity<br />

Group Lea<strong>de</strong>r:<br />

José Antonio Esteban García<br />

Postdoctoral:<br />

Dina Shira Knafo<br />

Predoctoral fellows:<br />

María Royo Cantabrana<br />

Stu<strong>de</strong>nts:<br />

Argentina Lario Lago<br />

Sergio Camero Gigante<br />

Research summary<br />

Staff<br />

Doctoral theses<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D5<br />

<strong>Molecular</strong> and cellular mechanisms for synaptic plasticity<br />

Doctoral theses<br />

Tyler Brown (2007). Endosomal trafficking of AMPA receptors at hippocampal Synapses. University of Michigan Medical School.<br />

Director:José Antonio Esteban García.<br />

Kristin Arendt (2008). Role of PI(3,4,5)P3 in hippocampal synaptic plasticity. University of Michigan Medical School. Director:José<br />

Antonio Esteban García.<br />

Research summary<br />

Staff<br />

Doctoral theses<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D6<br />

<strong>Molecular</strong> bases of the glutamatergic synapses: study of glutamate and glycine transporters<br />

Research summary<br />

Extracellular levels of glutamate, the primary excitatory neurotransmitter in the cerebral cortex, are finely<br />

regulated by the activity of high-affinity transport mechanisms, especially GLT1/EAAT2. Increasing experimental<br />

evi<strong>de</strong>nces implicate brain glutamatergic abnormalities in the pathophysiology of schizophrenia, particularly at<br />

the NMDA glutamate receptor site. Glycine participates in glutamatergic neurotransmission as a necessary<br />

coagonist at the NMDA receptors. High-affinity glycine transporters in the CNS maintain the glycine at nonsaturating<br />

concentration in the surrounding of the NMDA receptors in the synaptic cleft. This is carried out by<br />

the high affinity glycine transporters present in the central nervous system.<br />

Research summary<br />

Staff<br />

Publications<br />

The activity of GLT1 is regulated by PKC. The activation of PKC promotes the clathrin-<strong>de</strong>pen<strong>de</strong>nt internalization<br />

of the transporter, followed by its lysosomal <strong>de</strong>gradation. Our group has <strong>de</strong>monstrated that the internalization<br />

process is <strong>de</strong>pen<strong>de</strong>nt of the ubiquitylation of GLT1 on lysine residues located in the carboxy terminal tail of<br />

the protein. Exposure to phorbol esters increases the ubiquitylation of GLT1, and this ubiquitylated protein<br />

accumulates in the intracellular compartment. Internalization of ubiquitylated GLT1 was blocked with a<br />

dominant negative dynamine 2 mutant, indicating that the addition of ubiquitin moieties to the transporter in the<br />

membrane prece<strong>de</strong>s its endocytosis. Moreover, we have also i<strong>de</strong>ntified the specific lysine residues involved<br />

in the process.<br />

Our group has also i<strong>de</strong>ntified the GLYT1 glycine transporter in neuronal elements through the brain,<br />

closely associated with glutamatergic pathways. There, it is present in the postsynaptic <strong>de</strong>nsities of<br />

asymmetric synapses, and it is associated to NMDA receptors through the scaffolding protein PSD95. Our<br />

immunohistochemical studies reveal that in these structures it is also present the glutamate transporter GLT1.<br />

Both GLT1 and GLYT1 seem to operate in concert to regulate the levels of the two NMDA receptor ligands,<br />

glutamate and glycine. Currently we are analyzing the trafficking mechanisms that allow a specific localization<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D6<br />

<strong>Molecular</strong> bases of the glutamatergic synapses: study of glutamate and glycine transporters<br />

Research summary<br />

Staff<br />

Publications<br />

Figure 1. Subcellular localization of the glutamate transporter GLT1 isoforms in neurons.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D6<br />

<strong>Molecular</strong> bases of the glutamatergic synapses: study of glutamate and glycine transporters<br />

Group lea<strong>de</strong>r:<br />

Cecilio Giménez Martín<br />

Scientific Staff:<br />

Francisco Zafra (jefe <strong>de</strong> línea asociado / associated group lea<strong>de</strong>r)<br />

Postdoctorals:<br />

Inmaculada González<br />

Predoctorals Fellows:<br />

Enrique Fernán<strong>de</strong>z Sánchez<br />

Noemí García<br />

Jaime Martínez <strong>de</strong> Villarreal<br />

Research summary<br />

Staff<br />

Publications<br />

Technical assistance:<br />

Enrique Núñez<br />

Stu<strong>de</strong>nts:<br />

Raquel Gordo<br />

Aroa Llorente<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D6<br />

<strong>Molecular</strong> bases of the glutamatergic synapses: study of glutamate and glycine transporters<br />

Publications<br />

Maalem, S., Mutin, M., González-González, I.M., Zafra, F. and Tappaz, M.L. (2008). Selective tonicity-induced expresión of the neuronal<br />

amino-acid transporter SNAT2 in oligo<strong>de</strong>ndrocytes in rat brain following systemic hypertonicity. Neuroscience 153, 95-107.<br />

González-González, I. M., García-Tardón, N., Cubelos, B., Giménez, C. and Zafra, F. (2008). The glutamate transporter GLT1b interacts<br />

with the scaffold protein PSD-95. Journal of Neurochemistry 105, 1834-1848.<br />

González-González, I. M., García-Tardón, N., Giménez, C. and Zafra, F. (2008). PKC-<strong>de</strong>pen<strong>de</strong>nt endocytosis of the GLT1 glutamate<br />

transporter <strong>de</strong>pends on ubiquitilation of lysines located in a C-terminal cluster. GLIA 56, 963-974.<br />

Zafra, F., Giménez, C. (2008). Glycine transporters and synaptic function. IUBMB Life. 60, 810-817.<br />

Giménez, C., Zafra, F., López-Corcuera, B. and Aragón, C. (2008). Bases moleculares <strong>de</strong> la hiperplexia hereditaria. Rev. Neurol. 47,<br />

648-652.<br />

Fernán<strong>de</strong>z - Sánchez, E., Díez - Guerra, J., Cubelos, B., Giménez, C. and Zafra, F. (2008). Mechanisms of endoplasmic reticulum export<br />

of the glicine transporter GLYT1. Biochemical Journal 409, 669-681.<br />

Research summary<br />

Staff<br />

Publications<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D7<br />

Huntington’s disease and other CNS disor<strong>de</strong>rs<br />

Research summary<br />

Huntington’s disease (HD) is an autosomal dominant neuro<strong>de</strong>generative disor<strong>de</strong>r caused by a CAG triplet<br />

repeat expansion coding for a poly-glutamine (polyQ) sequence in the N-terminal region of the huntingtin (htt)<br />

protein. However, the precise mechanism by which mutant-huntingtin elicits its toxicity remains unknown.<br />

We were pioneers in applying conditional transgenesis in mice to study neuro<strong>de</strong>generation. This technology<br />

allows exploring what aspects of neuropathology are susceptible to revert upon shut down of the pathogenic<br />

transgene. The conditional mouse mo<strong>de</strong>l of HD revealed that disease may be reversible (Cell 101: 57-66,<br />

2000) even in advanced stages after neuronal loss has taken place (J. Neurosci. 25, 9773-9781; 2005).<br />

Research summary<br />

Staff<br />

Publications<br />

Regarding the molecular mechanisms by which mutant huntingtin induces pathology, we have explored the<br />

ubiquitin proteasome system (UPS) hypothesis in brain samples (J. Neurosci. 23, 11653-61, 2003), in vitro<br />

with purified aggregates (J. Neurosci. 24, 9361-71, 2004; J. Neurochem. 98, 1585-1596; 2006) and in vivo<br />

by using UPS impairment reporter mice (Trends Neurosci. 27, 66-69, 2004). Concerning the mechanisms<br />

of synaptic dysfunction in HD, we have <strong>de</strong>tected changes in the physiology of the P2X7 ATP-gated calcium<br />

channel (J. Cell Sci. 121: 3717-28, 2008 and FASEB J. in press). Finally, we have also explored the potential<br />

role of the GSK-3 kinase as therapeutic target in HD and its role in the physiology of striatal neurons (EMBO<br />

J. 26: 2743-2754, 2007).<br />

Other activities<br />

Patents<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D7<br />

Huntington’s disease and other CNS disor<strong>de</strong>rs<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Patents<br />

Figure 1. Inducible mouse mo<strong>de</strong>l of Huntington’s disease (Tet/HD94)<br />

and a non-transgenic littermate (Control).<br />

Figure 2. Calcium imaging (left) and calcein/propidium iodine survival<br />

assay (right) in primary culture neurons transfected with exonIhuntingtin-Q72-GFP<br />

(Q72) and in wild type (Control) and Tet/HD94<br />

neurons after P2X7 agonist stimulation.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D7<br />

Huntington’s disease and other CNS disor<strong>de</strong>rs<br />

Group Lea<strong>de</strong>r:<br />

José Lucas<br />

Postdoctoral:<br />

Celia Cerrato Rivera<br />

Mª <strong>de</strong>l Rosario Fernán<strong>de</strong>z Fernán<strong>de</strong>z<br />

Owen Howard<br />

Cristina Tomás Zapico<br />

Predoctoral fellows:<br />

Raquel Gómez Sintes<br />

Zaira Ortega Llorente<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Technical Assistance:<br />

Desire Ruiz García<br />

Alicia Tomico García<br />

Stu<strong>de</strong>nts:<br />

Marta Fernán<strong>de</strong>z Nogales<br />

Enrique Gaban<strong>de</strong> Rodríguez<br />

Visiting scientist:<br />

Miguel Díaz Hernán<strong>de</strong>z<br />

Patents<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D7<br />

Huntington’s disease and other CNS disor<strong>de</strong>rs<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Patents<br />

Publications<br />

Gómez-Sintes, R., Hernán<strong>de</strong>z, F., Bortolozzi, A., Artigas, F., Avila,<br />

J., Zaratin, P., Gotteland, J.-P. and Lucas, J.J. (2007). Neuronal<br />

apoptosis and reversible motor <strong>de</strong>ficit in dominat-negative GSK-3<br />

conditional transgenic mice. EMBO J. 26: 2743-2754.<br />

Engel, T., Lucas, J.J., Hernán<strong>de</strong>z, F., and Avila, J. (2007).<br />

A mouse mo<strong>de</strong>l to study tau pathology related with tau<br />

phosphorylation and assembly. J. Neurol. Sci. 257: 250-254.<br />

Hooper, C., Markevich, V., Killick, R., Schofield, E., An<strong>de</strong>rton, B.,<br />

Rosenblum, K., Bliss, T., Engel, T., Hernan<strong>de</strong>z; F., Avila, J., Lucas,<br />

J.J., Stephenson, J. and Lovestone, S. (2007). Glycogen synthase<br />

kinase-3 inhibition is integral to Long Term Potentiation. Eur. J.<br />

Neurosci. 25(1):81-86.<br />

Valera, A.G., Díaz-Hernán<strong>de</strong>z, M., Hernán<strong>de</strong>z, F. and Lucas,<br />

J.J. (2007). Testing the possible inhibition of proteasome by<br />

direct interaction with ubiquitylated and aggregated huntingtin.<br />

Brain Res. Bull. 72: 121-123.<br />

García-Martínez, J.M., Pérez-Navarro, E., Xifró, X., Canals,<br />

J.M., Díaz-Hernán<strong>de</strong>z, M., Trioulier, Y., Brouillet, E., Lucas, J.J.<br />

and Alberch, J. (2007). BH3-only Proteins Bid and BimEL are<br />

Differentially Involved in Neuronal Dysfunction in Mouse Mo<strong>de</strong>ls<br />

of Huntington’s Disease. J. Neurosci. Res. 85: 2756-69.<br />

Goñi-Oliver, P., Lucas, J.J., Avila, J. and Hernán<strong>de</strong>z, F. (2007).<br />

N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3<br />

regulation. J. Biol. Chem. 282: 22406-13.<br />

Ortega, Z., Diaz-Hernan<strong>de</strong>z, M. and Lucas, J.J. (2007). Is the<br />

ubiquitin-proteasome system impaired in Huntington’s disease?<br />

Cell. Mol. Life Sci. 64: 2245-57.<br />

Engel, T., Goñi-Oliver, P., Gómez <strong>de</strong> Barreda, E., Lucas, J.J.,<br />

Hernán<strong>de</strong>z, F. and Avila, J. (2008). Lithium, a potential protective<br />

drug in Alzheimer’s disease. Neuro<strong>de</strong>gener Dis. 5: 247-9.<br />

Engel, T., Goñi-Oliver, P., Gómez-Ramos, P., Morán, M.A.,<br />

Lucas, J.J., Avila, J. and Hernan<strong>de</strong>z, F. (2008). Hippocampal<br />

neuronal subpopulations are differentially affected in double<br />

transgenic mice overexpressing FTDP-17 tau and GSK-3beta.<br />

Neuroscience 157: 772-80.<br />

Diaz-Hernan<strong>de</strong>z, M., Diaz-Hernan<strong>de</strong>z, J.I., Diez-Zaera, M., <strong>de</strong>l<br />

Puerto A., Lucas, J.J., Garrido, J.J. and Miras-Portugal, M.T.<br />

(2008). Inhibition of the ATP-gated P2X7 receptor promotes<br />

axonal growth and branching in cultured hippocampal neurons.<br />

J. Cell Sci. 121: 3717-28.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D7<br />

Huntington’s disease and other CNS disor<strong>de</strong>rs<br />

Other activities<br />

Grupo integrante <strong>de</strong>l Centro <strong>de</strong> Investigación Biomédica en Red sobre Enfermeda<strong>de</strong>s Neuro<strong>de</strong>generativas (CIBERNED).<br />

http://www.ciberned.es/grupojoselucas.aspx.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Patents<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D7<br />

Huntington’s disease and other CNS disor<strong>de</strong>rs<br />

Patents<br />

M. T. Miras-Portugal, M. Díaz-Hernan<strong>de</strong>z and J. J. Lucas (2007). Método <strong>de</strong> diagnóstico/pronóstico in vitro <strong>de</strong> la corea <strong>de</strong><br />

Huntington. UCM/CSIC. P200701351, PCT/ES2008/070092.<br />

R. Gomez-Sintes and J. J. Lucas (2008). Composición y tratamiento combinado <strong>de</strong> inhibidores <strong>de</strong> GSK-3 e inhibidores <strong>de</strong> la vía NFAT/<br />

Fas. CSIC/CiberNed. P200803049.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Patents<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D8<br />

Biology of human neural stem cells. Potential for cell and gene therapy in neuro<strong>de</strong>generation<br />

Research summary<br />

The inci<strong>de</strong>nce of neuro<strong>de</strong>generative diseases is steadily increasing, particularly in well <strong>de</strong>veloped countries,<br />

due to the increase in life-expectancy. For some of them, like Parkinson, Huntington or Alzheimer diseases,<br />

pharmaceutical drugs are useful at early stages of the disease, when neuronal atrophy/loss is mo<strong>de</strong>rate.<br />

However, none of them really cure the disease, since they do not halt the neuronal atrophy and <strong>de</strong>ath<br />

process.<br />

In this context, research on the basic biology of human neural stem cells (either endogenous or implanted)<br />

acquires special relevance. The prospect is that healthy stem cell <strong>de</strong>rivatives, after implantation, would either<br />

<strong>de</strong>lay disease progression (helping the sick neurons) or actually cure the disease (neuron replacement).<br />

Research summary<br />

Staff<br />

Publications<br />

Doctoral theses<br />

Our research group is interested in un<strong>de</strong>rstanding basic <strong>de</strong>velopmental events during maturation of human<br />

stem cell <strong>de</strong>rivatives, using: 1) Neural stem cells, obtained from fetal or adult human tissue, and already<br />

instructed as neural cells; 2) Embryonic stem cells <strong>de</strong>rived from the inner cell mass of the blastocist, (hES<br />

cells) from which neural stem cells can be easily <strong>de</strong>rived; and 3) Induced pluripotent stem cells (iPSCs),<br />

reprogrammed from somatic adult cells.<br />

Our main research focus is thus on basic <strong>de</strong>velopmental events involved in the generation of glia, but particularly<br />

of Dopaminergic, Gaba-ergic and Cholinergic neurons, to learn how to harness the potential that stem cells<br />

may have for therapy of these <strong>de</strong>vastating diseases (like Parkinson, Huntington, Alzheimer/<strong>de</strong>mentia).<br />

Another aspect in which we are interested on is the modification of the intrinsic properties of the neural stem<br />

cells through genetic modification, to turn them into “biological mini-pumps” (for instance for the secretion of<br />

neurotrophic factors) , or to instruct them or gui<strong>de</strong> their differentiation towards specific, on-<strong>de</strong>mand <strong>de</strong>sired<br />

phenotypes after implantation. Last, we are <strong>de</strong>veloping nanotools to label and track the cells in vivo, study their<br />

cell biology and to <strong>de</strong>velop early diagnostic tools for Alzheimer disease.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D8<br />

Biology of human neural stem cells. Potential for cell and gene therapy in neuro<strong>de</strong>generation<br />

Research summary<br />

Staff<br />

Publications<br />

Doctoral theses<br />

Figure 1. Human neural stem cells <strong>de</strong>rived from the ventral<br />

mesencephalon differentiated for the generation of dopaminergic<br />

neurons. Stain: Tyrosine Hydroxylase (TH, Cy5, green), MAP2 (Cy3,<br />

red) and nuclei (Hoescht, blue). Obj 63.<br />

Figure 2. Human embryonic stem cells (hES) un<strong>de</strong>r proliferation conditions,<br />

and after differentiation towards dopaminergic neuronas. The cells were<br />

staind for pluripotency markers like Oct4 and SSEA4, neuronal marker<br />

(β-III-tubulin) and dopaminergic markers (TH and Nurr1).<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D8<br />

Biology of human neural stem cells. Potential for cell and gene therapy in neuro<strong>de</strong>generation<br />

Group lea<strong>de</strong>r:<br />

Alberto Martínez Serrano<br />

Scientific Staff:<br />

Milagros Ramos Gómez<br />

Mª Isabel Liste Noya<br />

Postdoctorals:<br />

Claudia G. Castillo Martín<br />

<strong>de</strong>l Campo<br />

Carlos Bueno López<br />

Elise T. C. Courtois<br />

Research summary<br />

Staff<br />

Publications<br />

Doctoral theses<br />

Predoctoral Fellows:<br />

Elisa García García<br />

Emma Mª González Seiz<br />

Technical Assistance:<br />

Juliana Sánchez García<br />

Beatriz Moreno Moreno<br />

Marta Gonzalez Mella<br />

Ignacio Tardieu <strong>de</strong> Chorro<br />

Isabel Manso (<strong>de</strong>dicación compartida con línea J. Satrústegui)<br />

Barbara B. Sesé Cobos (adscrita a línea J. Satrústegui)<br />

Stu<strong>de</strong>nts:<br />

Laura López Medina<br />

Kattarina Gapp<br />

Miguel Barrado <strong>de</strong> Álvaro<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D8<br />

Biology of human neural stem cells. Potential for cell and gene therapy in neuro<strong>de</strong>generation<br />

Publications<br />

Cacci, E., Villa, A., Parmar, M., Mandhal, N., Lindvall, O., Martínez-Serrano, A. and Kokaia, Z. (2007). Generation of human<br />

cortical neurons from a new immortal fetal neural stem cell line. Exp. Cell Res., 313, 588-604.<br />

Liste, I., García-García, E., Bueno, C. and Martínez-Serrano, A. (2007). Bcl-XL modulates the differentiation of human neural stem cells.<br />

Cell Death Diff., 14, 1880-1892.<br />

Anwar, M.R., Andreasen, C.M., Lippert, S.K., Zimmer, J., Martinez-Serrano, A. and Meyer, M. (2008). Dopaminergic differentiation of<br />

human neural stem cells mediated by cocultured rat striatal brain slices. J. Neurochem., 105, 460-470<br />

Ekici, M., Hohl, M., Schuit, F., Martínez-Serrano, A. and Thiel, G. (2008). Transcription of genes encoding synaptic vesicle proteins in<br />

human neural stem cells: chromatin accessibility, histone methylation pattern, and the essential role of rest. J. Biol. Chem, 283,<br />

9257-9268.<br />

Shah, K., Hingtgen, S., Kasmieh, R., Figueredo, J.L., García-García, E., Martinez-Serrano, A., Breakefield, X. and Weissle<strong>de</strong>r, R.<br />

(2008). Bimodal viral vectors and in vivo imaging reveal the fate of human neural stem cells in experimental glioma mo<strong>de</strong>l. J. Neurosci.,<br />

28, 4406-4413.<br />

Research summary<br />

Staff<br />

Publications<br />

Doctoral theses<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D8<br />

Biology of human neural stem cells. Potential for cell and gene therapy in neuro<strong>de</strong>generation<br />

Doctoral theses<br />

Carlos Bueno Lopez. Terapia génica ex vivo al Sistema Nervioso Central mediante células troncales <strong>de</strong> origen humano utilizando<br />

vectores <strong>de</strong> recombinación homóloga. 23 <strong>de</strong> marzo <strong>de</strong> 2007. U.A.M. Director: Alberto Martínez Serrano.<br />

Elise Therese Carmen Courtois. Estudios <strong>de</strong> las propieda<strong>de</strong>s <strong>de</strong> células troncales neurales humanas <strong>de</strong>rivadas <strong>de</strong> mesencéfalo<br />

ventral y su modificación por Bcl-XL: Implicación para terapia celular en la enfermedad <strong>de</strong> Parkinson. 20 <strong>de</strong> Junio 2008. U.A.M. Director:<br />

Alberto Martínez Serrano.<br />

Research summary<br />

Staff<br />

Publications<br />

Doctoral theses<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D9<br />

Calcium signalling in mitochondria and insulin/leptin signalling during ageing<br />

Research summary<br />

Research summary<br />

Staff<br />

Publications<br />

Ca 2+ entry in mitochondria is important in cell Ca 2+ signaling, but its persistence in mitochondria is associated<br />

with mitochondrial dysfunction and cell <strong>de</strong>ath. We are interested in the study of systems for Ca 2+ signaling in<br />

mitochondria that do not require Ca 2+ entry in the organelle, the aspartate-glutamate carriers (AGC) aralar and<br />

citrin, and the ATP-Mg/Pi carriers, or Short CaMCs (SCaMCs). Both AGCs and SCaMCs have calcium binding<br />

domains facing the intermembrane space and which are activated by Ca 2+ without the need of calcium entry<br />

in mitochondria. Aralar and citrin, the brain and liver AGCs, are components of the malate-aspartate NADH<br />

shuttle. Using mice with selective disruption of aralar or citrin, we have shown that both AGC isoforms are<br />

regulated by Ca 2+ at concentrations lower than those required to activate the Ca 2+ uniporter and are required<br />

to transmit very small Ca signals to brain or beta-cell mitochondria. We are now interested in studying the role<br />

of these small Ca 2+ signals in brain metabolism and the role of aralar and SCaMCs in human pathology.<br />

Insulin resistance is associated with aging in ro<strong>de</strong>nts and humans. We have found hyperleptinemia and central<br />

leptin resistance in aged rats, and we have observed that they also show central insulin resistance. These<br />

alterations in the central action of leptin and insulin could play a key role in the <strong>de</strong>velopment of overall insulin<br />

resistance along ageing. We are currently studying the possible involvement of leptin and other adipokines in<br />

age-associated changes in insulin sensitivity and the alteration of insulin response in muscle together with the<br />

reversibility of these changes by means of caloric restriction.<br />

Other activities<br />

Doctoral theses<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D9<br />

Calcium signalling in mitochondria and insulin/leptin signalling during ageing<br />

Group Lea<strong>de</strong>r:<br />

Jorgina Satrústegui Gil-Delgado<br />

Scientific Staff:<br />

Elena Bogónez Peláez<br />

Jose M. Carrascosa Baeza<br />

Postdoctorals:<br />

Beatriz Pardo Merino<br />

Laura Contreras Balsa<br />

Santiago Cavero Martinez<br />

Technical Assistance:<br />

Bárbara Sesé Cobos<br />

Isabel Manso Gavilán<br />

Visitor Scientist:<br />

Araceli <strong>de</strong>l Arco Martínez<br />

(<strong>Universidad</strong> <strong>de</strong> Castilla-la-Mancha)<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Doctoral theses<br />

Predoctoral Fellows:<br />

Patricia Mármol Carrasco<br />

Javier Traba Domínguez<br />

Ignacio Amigo <strong>de</strong> la Huerga<br />

Irene Llorente Folch<br />

Alain Juan <strong>de</strong> Solis<br />

Stu<strong>de</strong>nts:<br />

Almu<strong>de</strong>na Urbieta Magro<br />

Paula Pérez Pardo<br />

Carlos Rueda Diez<br />

Alicia Ortiz Temprado<br />

Ana Quintas Gorozarri<br />

Berta Pérez Alarcón<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D9<br />

Calcium signalling in mitochondria and insulin/leptin signalling during ageing<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Doctoral theses<br />

Publications<br />

Satrústegui, J., Pardo, B. and <strong>de</strong>l Arco, A. (2007). Mitochondrial<br />

transporters as novel targets for intracellular Ca2+ Signalling.<br />

Physiological Reviews 87: 29-67.<br />

Contreras, L., Gómez-Puertas, P., IIjima, M., Kobayashi, K., Saheki,<br />

T., and Satrústegui, J. (2007). Ca2+ activation kinetics of the two<br />

aspartate-glutamate mitochondrial carriers aralar and citrin:<br />

role in heart malate-aspartate NADH shuttle. J. Biol. Chem<br />

282:7098-106.<br />

Satrustegui, J., Contreras, L., Ramos, M., Marmol, P., <strong>de</strong>l Arco, A.,<br />

Saheki, T. and Pardo, B. (2007). Role of aralar, the mitochondrial<br />

transporter of aspartate-glutamate, in brain N-acetylaspartate<br />

formation and Ca2+ signalling in neuronal mitochondria.<br />

J.Neurosci. Res. 85: 3359-3366.<br />

Traba, J., Froschauer, E., Wiesenberger,G., Satrústegui, J.<br />

and <strong>de</strong>l Arco, A. (2008). Yeast mitochondria import ATP through<br />

the calcium-<strong>de</strong>pen<strong>de</strong>nt ATP-Mg/Pi carrier Sal1p, and are ATP<br />

consumers during aerobic growth in glucose. Mol Microbiol<br />

69: 570-85.<br />

Escrivá, F., Gavete, M.L., Fermín, Y., Pérez, C., Gallardo, N.,<br />

Alvarez, C., Andrés, A., Ros, M. and Carrascosa, J.M. (2007).<br />

Effect of age and mo<strong>de</strong>rate food restriction on insulin sensitivity<br />

in Wistar rats: role of adiposity. Journal of Endocrinology 194,<br />

131-141.<br />

García-San Frutos, M., Fernán<strong>de</strong>z-Agulló, T., De Solís, A.J.,<br />

Andrés, A., Arribas, C., Carrascosa, J.M. and Ros, M. (2007).<br />

Impaired central insulin response in aged wistar rats: role of<br />

adiposity. Endocrinology 148: 5238- 5247.<br />

Gallardo, N, Bonzón-Kulichenko, E, Fernán<strong>de</strong>z-Agulló, T, Moltó,<br />

E, Gómez-Alonso, S, Blanco, P., Carrascosa, JM, Ros, M, Andrés,<br />

A (2007). Tissue-specific effects of central leptin on liver and white<br />

adipose tissue lipid metabolism. Endocrinology 148,<br />

5604 – 5610.<br />

Pérez, C., Fernán<strong>de</strong>z-Agulló, T., De Solís, A.J., Ros, M.,<br />

Andrés, A. and Carrascosa, J.M. (2008). Effects of chronic<br />

acarbose treatment on adipocyte insulin responsiveness,<br />

serum levels of leptin and adiponectin and hypothalamic<br />

NPY expression in obese diabetic Wistar rats. Clinical and<br />

Experimental Pharmacology and Physiology 35: 256 – 261.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D9<br />

Calcium signalling in mitochondria and insulin/leptin signalling during ageing<br />

Other activities<br />

Curso Teórico-Práctico sobre Bioenergética Mitocondrial y Apoptosis. Fecha: 15-19 Septiembre 2008. Desarrollado en CBMSO,<br />

IIB-CSIC, UCM, CNIC. Organizado por Consorcio “MITOLAB-CM” <strong>de</strong>l Programa <strong>de</strong> Activida<strong>de</strong>s <strong>de</strong> I+D entre Grupos <strong>de</strong> Investigación<br />

en Biociencias <strong>de</strong> la Comunidad <strong>de</strong> <strong>Madrid</strong> en colaboración con Centro <strong>de</strong> Investigación Biomédica en Red <strong>de</strong> Enfermeda<strong>de</strong>s Raras<br />

“CIBERER”.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Doctoral theses<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D9<br />

Calcium signalling in mitochondria and insulin/leptin signalling during ageing<br />

Doctoral theses<br />

Laura Contreras Balsa. Marzo 2007. Caracterización <strong>de</strong> la activación por calcio <strong>de</strong> aralar y citrina, los transportadores mitocondriales<br />

<strong>de</strong> aspartato-glutamato. U.A.M. Director: Jorgina Satrústegui.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Doctoral theses<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D10<br />

<strong>Molecular</strong> pathology of Alzheimer’s disease<br />

Research summary<br />

Research summary<br />

Staff<br />

Our group is involved in the search of novel therapeutic targets for familial (FAD) and sporadic (SAD) Alzheimer’s<br />

disease, based on the hypothesis that mutations in FAD, or the presence of virus like herpes simplex 1<br />

(HSV‐1) in SAD, could act in concert with the oxidative stress (EO) associated with normal aging to induce<br />

neuro<strong>de</strong>generation. Regarding FAD, we have prepared cell mo<strong>de</strong>ls –human neuroblastoma stably expressing<br />

wild type or mutant APP or PSEN1‐ and we have found that mutant cells are more sensitive to EO. Our SAD<br />

mo<strong>de</strong>l is based upon the interaction between HSV‐1 infection and EO in human neuroblastoma cells. We have<br />

found that HSV1 regulates autophagy ‐inducing the first steps and inhibiting the execution‐; furthermore, HSV‐1<br />

induces in the cells the most characteristic markers of Alzheimer’s disease: i) an increase in phosphorylated<br />

tau, mainly localized in the viral replication centres and ii) an activation of the APP amyloidogenic processing,<br />

which results in the accumulation of Ab in autophagic vesicles. These data, together with the association of<br />

two genes relevant to HSV‐1 infection (TAP2 y EIF2AK3) with AD risk, support the involvement of HSV‐1<br />

on AD pathogenesis. We have also proved that EO specifically modulates cholesterol metabolism in the<br />

neuroblastoma cells, that the silencing of HMGCR, a key enzyme of cholesterol biosynthesis, inhibits the EO<br />

induced apoptosis, and that HMGCR shows genetic association with SAD. In summary, these data reveal a<br />

connection among EO, cholesterol and apoptosis in the pathogenesis of Alzheimer’s disease.<br />

Publications<br />

Other activities<br />

Patents<br />

Doctoral theses<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D10<br />

<strong>Molecular</strong> pathology of Alzheimer’s disease<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Patents<br />

Doctoral theses<br />

Figure 1. HSV 1 induces authophagy and intracellular Ab accumulation. SKNMC human neuroblastoma cells stably overexpressing APP were<br />

infected with HSV 1, and visualized by electron microscopy (upper panels) or by fluorescence microscopy with antibodies specific for LC3 (central<br />

panels) or Ab pepti<strong>de</strong> (lower panels).<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D10<br />

<strong>Molecular</strong> pathology of Alzheimer’s disease<br />

Group Lea<strong>de</strong>r:<br />

Fernando Valdivieso Amate<br />

Scientific Staff:<br />

Maria Jesús Bullido<br />

Postdoctorals:<br />

Jesús Aldudo Soto<br />

María Recuero Vicente<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Predoctoral Fellows:<br />

Fernando Guzmán Sánchez<br />

Teresa Muñoz <strong>de</strong> Gal<strong>de</strong>ano<br />

Diego Muñoz Santos<br />

Soraya Santana Martínez<br />

Esther Serrano Saiz<br />

Raquel Tenorio Vela<br />

María <strong>de</strong>l Carmen Vicente Cenzano<br />

Technical Assistance:<br />

Sandra Herranz Gómez<br />

Ana Martínez García<br />

Susana Molina Arranz<br />

Isabel Sastre Merlín<br />

Patents<br />

Doctoral theses<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D10<br />

<strong>Molecular</strong> pathology of Alzheimer’s disease<br />

Research summary<br />

Staff<br />

Publications<br />

Bullido, M. J., Martínez-García, A., Artiga, M. J., Aldudo, J., Sastre, I., Gil, P., Coria, F., Muñoz, D. G., Hachinski, V., Frank A. and Valdivieso,<br />

F. (2007) A TAP2 genotype associated with Alzheimer’s disease in APOE4 carriers. <strong>Neurobiology</strong> of Aging 28, 519-523 .<br />

Burgos, J. S., Ramírez, C., Brachet, A., Alfaro, J. M., Sastre, I. and Valdivieso, F. (2007). Changes in immunoglobulin levels related to<br />

herpes simplex virus type 1 brain infection in pregnant mice. Journal of Neurovirology 13, 233-241.<br />

Burgos, J. S. and Valdivieso, F. (2007). Un<strong>de</strong>rstanding the relationship between ApoE and HSV-1 and its possible significance in<br />

Alzheimer´s disease. Future Virology 2, 239-242.<br />

Moreira, P. N., Pozueta, J., Pérez-Crespo, M., Valdivieso, F., Gutiérrez-Adán, A. and Montoliu, Ll. (2007). Improving the generation of<br />

genomic-type transgenic mice by ICSI. Transgenic Research 16, 163-168.<br />

Burgos, J. S., Ramírez, C., Brachet, A., Alfaro, J. M., Sastre, I. and Valdivieso, F. (2007). Apoliprotein E genotype influences vertical<br />

transmission of herpes simplex virus type 1 in a gen<strong>de</strong>r specific manner. Aging Cell 6, 841-2.<br />

Bullido, M. J., Martínez-García, A., Tenorio, R., Sastre, I., Muñoz, D. G., Frank, A. and Valdivieso, F. (2008). Double stran<strong>de</strong>d RNA<br />

activated EIF2 a kinase (EIF2AK2; PKR) is associated with Alzheimer´s disease. <strong>Neurobiology</strong> of Aging 29, 1160-1166.<br />

Martínez-García, A., Aldudo, J., Recuero, M., Sastre, I., Vilella-cuadrada, E., Rosich-Estrago, M., Frank, A., Valdivieso, F. and Bullido, M.<br />

J. (2008). Presenilin-1 polymorphism modulates the risk of Alzheimer’s disease conferred by ApoE4. Dementia and Geriatric Cognitive<br />

Disor<strong>de</strong>rs 26, 440-444.<br />

Publications<br />

Other activities<br />

Patents<br />

Doctoral theses<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D10<br />

<strong>Molecular</strong> pathology of Alzheimer’s disease<br />

Other activities<br />

F. Valdivieso. Organización <strong>de</strong>: “Fisiopatología y farmacología <strong>de</strong> la enfermedad <strong>de</strong> Alzheimer”.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Patents<br />

Doctoral theses<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D10<br />

<strong>Molecular</strong> pathology of Alzheimer’s disease<br />

Patents<br />

F. Valdivieso, M. J. Bullido, A. Martínez García (2007). Método para la i<strong>de</strong>ntificación <strong>de</strong> compuestos para el tratamiento <strong>de</strong> enfermeda<strong>de</strong>s<br />

neuro<strong>de</strong>generativas. Nº Solicitud: P200702997. País <strong>de</strong> Prioridad: España. Entidad titular: U.A.M./C.S.I.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Patents<br />

Doctoral theses<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D10<br />

<strong>Molecular</strong> pathology of Alzheimer’s disease<br />

Doctoral theses<br />

Mª Carmen Vicente Cenzano. 2007. Convergencia <strong>de</strong> estrés <strong>de</strong> retículo endoplásmico y estrés oxidativo como mo<strong>de</strong>lo celular <strong>de</strong> neurogeneración.<br />

<strong>Universidad</strong> Autónoma <strong>de</strong> <strong>Madrid</strong>. Directores: María Recuero y Fernando Valdivieso.<br />

Esther Serrano Saiz. 2007. Efecto <strong>de</strong> la proteína presentadora <strong>de</strong> antígenos TAP en la infección in vivo <strong>de</strong>l virus herpes simplex tipo<br />

1 y generación <strong>de</strong> mo<strong>de</strong>los transgénicos para su estudio. <strong>Universidad</strong> Autónoma <strong>de</strong> <strong>Madrid</strong>. Directores: Javier S. Burgos y Fernando<br />

Valdivieso.<br />

Raquel Tenorio Vela. 2007. La homocisteína como factor <strong>de</strong> riesgo par la enfermedad <strong>de</strong> Alzheimer. <strong>Universidad</strong> Autónoma <strong>de</strong> <strong>Madrid</strong>.<br />

Directores: María J. Bullido y Fernando Valdivieso.<br />

Ana Martínez García. 2008. Análisis <strong>de</strong> asociación genética para el estudio <strong>de</strong> la patogénesis <strong>de</strong> la enfermedad <strong>de</strong> Alzheimer. <strong>Universidad</strong><br />

Autónoma <strong>de</strong> <strong>Madrid</strong>. Directores: María J. Bullido y Fernando Valdivieso.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Patents<br />

Doctoral theses<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D11<br />

<strong>Molecular</strong> mechanism of neuro<strong>de</strong>generation and regeneration<br />

Research summary<br />

Our group is <strong>de</strong>voted to the analysis of molecular mechanism triggered by neuro<strong>de</strong>generative processes. We<br />

try to un<strong>de</strong>rstand key signals that regulate cellular morphogenesis, and how these putative pathways may<br />

be <strong>de</strong>fective in some pathological situations. As a second challenge we would like to propose regeneration<br />

alternatives.<br />

Analyzing some cellular mo<strong>de</strong>ls of neuro<strong>de</strong>generation, we have <strong>de</strong>fined that the increases the activity of<br />

glycogen synthase kinase 3 (GSK-3), correlate with neuronal <strong>de</strong>generation, and in some cases with neuronal<br />

<strong>de</strong>ath. The pharmacological inhibition or the over-expression of a dominant-negative mutant of GSK-3 in<br />

neuron cells efficiently prevents prion-induced cell <strong>de</strong>ath. Second, we have <strong>de</strong>fined that an increase of GSK3<br />

activity does not necessarily correlate with neuro<strong>de</strong>generation<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

In some neuro<strong>de</strong>generation mouse mo<strong>de</strong>ls we have <strong>de</strong>fined that the pathway PI3K-Akt-GSK3 is <strong>de</strong>regulated<br />

being responsible, at least in part, of the final neuro<strong>de</strong>generation process. On the other hand, we <strong>de</strong>termined<br />

that some hormones, such as estradiol modulated neuroprotection through the inhibition of GSK3. Our work<br />

is trying to i<strong>de</strong>ntify elements implicated in this neuroprotective effect (Supervisor F. Wandosell).<br />

We try to un<strong>de</strong>rstand key signals that regulate neuronal morphogenesis (acquisition of neuronal polarity).<br />

Using a mo<strong>de</strong>l of cultured hippocampal neurons, we have <strong>de</strong>fined that GSK3 and the NF-kB inhbitor (IkBa)<br />

are essential to form an axon and later they play an important role to maintain the axonal properties, such<br />

as the axon initial segment function. Thus, we are trying to <strong>de</strong>fine more <strong>de</strong>eply the mechanisms involved in<br />

axon and axon initial segment formation and maintenance, which are critical for the final function of neurons<br />

(Supervisor J.J. Garrido).<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D11<br />

<strong>Molecular</strong> mechanism of neuro<strong>de</strong>generation and regeneration<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D11<br />

<strong>Molecular</strong> mechanism of neuro<strong>de</strong>generation and regeneration<br />

Group Lea<strong>de</strong>r:<br />

Francisco Wandosell Jurado<br />

Scientific Staff:<br />

Juan José Garrido Jurado<br />

Mª José Benítez Moreno<br />

María José Pérez Alvarez<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Predoctoral Fellows:<br />

Olga Varea Abbad<br />

Héctor Diez Nuño<br />

Mónica Tapia Pacheco<br />

Ana <strong>de</strong>l Puerto <strong>de</strong>l Pino<br />

Irene Martínez Carrasco<br />

Diana Sánchez Ponce<br />

Stu<strong>de</strong>nts:<br />

Maria Isabel Escoll<br />

Jonay Poveda<br />

Technical Assistance:<br />

Lara Ro<strong>de</strong>stein<br />

Lara Ordóñez Gutiérrez<br />

Nuria Peralta Cañadas<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D11<br />

<strong>Molecular</strong> mechanism of neuro<strong>de</strong>generation and regeneration<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

Publications<br />

Pastrana, E., Moreno-Flores, M.T., Avila, J., Wandosell, F. ,<br />

Minichiello, L. and Diaz-Nido, J. (2007). BDNF production by<br />

olfactory ensheathing cells contributes to axonal regeneration<br />

of cultured adult CNS neurons. Neurochemistry Int. 50,<br />

491-498.<br />

Salcedo, M., Cuevas, C., Alonso, J.L., Otero, G., Faircloth, G.,<br />

Fernan<strong>de</strong>z-Sousa, J.M., Avila, J. and Wandosell, F. (2007).<br />

The marine sphingolipid-<strong>de</strong>rivated compound ES 285 triggers<br />

an atypical cell <strong>de</strong>ath pathway. Apoptosis 12, 395-409.<br />

Simon, D., Varea, O., Garrido, J.J. and Wandosell, F. (2006).<br />

Role of GSK3/Shaggy in neuronal cell biology. In “Glycogen<br />

Synthase Kinase 3(GSK-3) and Its Inhibitors”. Wiley-Intescience,<br />

John Wiley and Sons, Inc. Ed. A. Martinez, A. Castro and M<br />

Medina. Chapter 3, pgs : 45-82<br />

Lim. F., Palomo, G. M., Mauritz, C., Giménez-Cassina, A..,<br />

Illana, B., Wandosell, F. and Díaz-Nido, J. (2007). Functional<br />

recovery in a Friedreich´s ataxia mouse mo<strong>de</strong>l by frataxin gene<br />

transfer using a HSV-1 amplicon vector. <strong>Molecular</strong> Therapy 15,<br />

1072-1078.<br />

Garrido, J.J., Simon, D., Varea, O. and Wandosell, F. (2007).<br />

GSK3alpha and GSk3beta are necessary for axon formation.<br />

FEBS Lett. 581, 1579-1586.<br />

Anton, I. M., Jones, G. E., Wandosell, F., Geha, R. and Ramesh,<br />

N. (2007). WASP-interacting protein (WIP): working<br />

in polymerisation and much more. Trends in Cell Biol 17,<br />

555-562.<br />

Simón, D., Benitez, M.J., Gimenez-Cassina, A., Garrido, J.J., Bhat,<br />

R.V., Díaz-Nido, J. and Wandosell, F. (2008). The pharmacological<br />

inhibition of GSK-3 is not strictly correlated with a <strong>de</strong>crease<br />

in tyrosine phosphorylation of residues 216/279. J. Neurosci.<br />

Res. 86, 668-674.<br />

Sanchez-Ponce, D., Tapia, M., Muñoz, A. and Garrido, J.J. (2008).<br />

New role of IKK alpha/beta phosphorylated IkappaB alpha in<br />

axon outgrowth and axon initial segment <strong>de</strong>velopment. Mol. Cell.<br />

Neurosci., 37, 832-844.<br />

Diaz-Hernan<strong>de</strong>z, M., Del Puerto, A., Diaz-Hernan<strong>de</strong>z, J. I., Diez-<br />

Zaera, M., Lucas, J. J., Garrido, J. J. and Miras-Portugal, M. T.<br />

(2008) Inhibition of the ATP-gated P2X7 receptor promotes axonal<br />

growth and branching in cultured hippocampal neurons. J Cell Sci.<br />

22, 3717-3728.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D11<br />

<strong>Molecular</strong> mechanism of neuro<strong>de</strong>generation and regeneration<br />

Other activities<br />

Acuerdo <strong>de</strong> Colaboración con FAES FARMA.<br />

Acuerdo <strong>de</strong> Colaboración con NOSCIRA.<br />

Acuerdo <strong>de</strong> Colaboración con PHARMAMAR hasta 2005.<br />

Este grupo también forma parte <strong>de</strong>l Centro <strong>de</strong> Investigación Biomédica en Red <strong>de</strong> Enfermeda<strong>de</strong>s Neuro<strong>de</strong>generativas (CiberNed):<br />

http://www.ciberned.es/grupofranciscowandosell.aspx.<br />

Research summary<br />

Staff<br />

Publications<br />

Other activities<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D12<br />

Role of lipids in neuronal physiology and pathology<br />

Research summary<br />

Our final goal is to un<strong>de</strong>rstand the role of lipids in neuronal physiology and pathology. To this aim we will<br />

analyze transgenic mice in which the metabolisms of cholesterol or sphingomyelin are altered. These mice<br />

mimic the mental retardation syndromes <strong>de</strong>smosterolosis and Niemann Pick disease type A (NPA). Our<br />

research lines focus on the analysis of neuronal lipid and protein polarized transport and synapse functionality.<br />

Recently, we have <strong>de</strong>monstrated that NPA affected neurons show accumulation of sphingomyelin at their<br />

plama membrane. This leads to the impaired endocytosis of molecules and to their lack of axonal polarization.<br />

We have also shown that sphingomyelin accumulation affects the membrane of the synapse. This results in<br />

altered presynaptic plasticity. We believe our research will contribute to create knowledge on lipid physiology<br />

in the brain and on the causes and possible treatments of mental retardation associated to lipidosis.<br />

Research summary<br />

Staff<br />

Publications<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D12<br />

Role of lipids in neuronal physiology and pathology<br />

Research summary<br />

Staff<br />

Publications<br />

Figure 1. Double immunofluorescence of an hippocapal primary<br />

neuron in culture stained with antibodies against the cytoskeletal<br />

proteins MAP2 (red) and Tau (green). The image is representative of<br />

the extreme molecular polarization.<br />

Figure 2. Electronic microscope image of a synapse of the mouse<br />

hippocampus. The image shows in <strong>de</strong>tail the pre and postsynaptic<br />

regions, the active zone and the vesicles.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D12<br />

Role of lipids in neuronal physiology and pathology<br />

Scientific Staff:<br />

María Dolores Le<strong>de</strong>sma Muñoz<br />

Postdoctoral :<br />

Paola G. Camoletto<br />

GRUPO EMERGENTE<br />

(incorporación al CBMSO en abril 2008)<br />

Research summary<br />

Staff<br />

Publications<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D12<br />

Role of lipids in neuronal physiology and pathology<br />

Publications<br />

Bulloj, A., Leal, M.C., Surace, E.L., Zhang, X., Xu, H., Le<strong>de</strong>sma, M.D., Castano, E.M. and Morelli, L. (2008). Detergent resistant<br />

membrane-associated IDE in cultured cells and brain tissue: Relevance to Abeta and insulin <strong>de</strong>gradation. Mol Neuro<strong>de</strong>gener. 3 (3), 22.<br />

Research summary<br />

Staff<br />

Publications<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D13<br />

<strong>Molecular</strong> pathways to Neuro<strong>de</strong>generation. Cellular and Animal Mo<strong>de</strong>ls: Role of post-translational<br />

modification of Tau in its <strong>de</strong>gradation by calpains.<br />

Felix Hernán<strong>de</strong>z. Research summary<br />

Línea <strong>de</strong> investigación<br />

Calpain is one of the main proteases activated by calcium and has been implicated in Alzheimer disease.<br />

Thus, elevated cleavage and activation of calpain has been previously reported in early-stage AD suggesting<br />

that abnormalities in calcium homeostasis might be involved in the pathophysiology of the disease. In relation<br />

with tau protein, it has been <strong>de</strong>monstrated that hyperphosphorylated tau is resistance to calpain-<strong>de</strong>pen<strong>de</strong>nt<br />

proteolysis. To study the interaction between tau, phosphorylation and calpain, we will be use transgenic mice<br />

which overexpres the enzyme GSK-3β and tau protein. We will also cross both transgenic lines and the resulting<br />

double transgenic mice will allow us to test the synergistic contribution of both proteins in Alzheimer’s<br />

disease and to study their relationship with the calpain system. In addition, we have recently <strong>de</strong>scribed that<br />

calpain activation produces a truncation of GSK-3 which remove the inhibitory domain. We are going to study<br />

that cleavage in our transgenic mo<strong>de</strong>ls to validate GSK-3 inhibitors as pharmacological tools in Alzheimer<br />

disease.<br />

CBM 2007-2008


<strong>Molecular</strong> <strong>Neurobiology</strong><br />

previous next<br />

Table of contents Section contents Home Exit<br />

D13<br />

<strong>Molecular</strong> pathways to Neuro<strong>de</strong>generation. Cellular and Animal Mo<strong>de</strong>ls: Role of post-translational<br />

modification of Tau in its <strong>de</strong>gradation by calpains.<br />

Línea <strong>de</strong> investigación<br />

Figure 1. Diagram showing how altered calcium homeostasis following NMDA receptor activation may contribute to the physiology and eventually<br />

to neuropathological activation of the calpain/GSK3/CDK5 pathway.<br />

CBM 2007-2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!