10.11.2014 Views

Computational engineering for wind-exposed thin-walled structures

Computational engineering for wind-exposed thin-walled structures

Computational engineering for wind-exposed thin-walled structures

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

6 Ansgar Halfmann et al.<br />

immediately a constant inowvelocity<br />

ofU1 = 10 m/s being equivalent<br />

to a Reynolds number of Re L =50.<br />

As a consequence the structural oscillations<br />

are induced by the saltus<br />

of the uid velocity and reach a<br />

stationary de<strong>for</strong>mation state after a<br />

certain time. Fig. 10 shows again the<br />

displacement of the upper boundary<br />

of the plate <strong>for</strong> various timestep<br />

sizes. The interface discretizations<br />

comply to the grids pictured in<br />

Fig. 5. Only minor distinctions could<br />

be identied <strong>for</strong> the dierent time<br />

discretizations. Furthermore, the in-<br />

uence of the spatial interface discretization<br />

was investigated using<br />

the grids shown in Fig.11 and per<strong>for</strong>ming<br />

an uni<strong>for</strong>m renement of<br />

two levels <strong>for</strong> the CSD grid whereas<br />

the mesh <strong>for</strong> the uid domain remains<br />

unchanged. It is again obvious<br />

displacement upper boundary [mm]<br />

U<br />

8<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

y<br />

1111111111111111111111111111111111111111111111111111111111111<br />

0000000000000000000000000000000000000000000000000000000000000<br />

1111111111111111111111111111111111111111111111111111111111111<br />

0000000000000000000000000000000000000000000000000000000000000<br />

A<br />

Fig. 9. System conguration<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

time [s]<br />

B<br />

L<br />

t 1 = 0:025 s<br />

t 2 = 0:0125 s<br />

t 3 = 0:00625 s<br />

t 4 = 0:003125 s<br />

t 5 = 0:0015625 s<br />

Fig. 10. Displacement <strong>for</strong> dierent t<br />

that the bending oscillations of the plate cannot be represented suciently<br />

accurate by a CSD mesh with only two elements in y-direction, see Fig. 12.<br />

x<br />

CFD<br />

18 nodes,<br />

10 elements<br />

CSD<br />

9nodes,<br />

4 elements<br />

Fig. 11. Initial interface discretization<br />

displacement upper boundary [mm]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

CFD10=CSD 4<br />

CFD10=CSD 6<br />

CFD10=CSD 8<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

time [s]<br />

Fig. 12. Displacement <strong>for</strong> dierent CSD<br />

interface discretizations<br />

4.3 Tent roof<br />

Fig. 13 shows a screenshot of the CAD-environment representing the geometric<br />

model of a real-life structure as a starting point <strong>for</strong> the simulation.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!