16.11.2014 Views

Manitoba and the Emerging Bioeconomy

Manitoba and the Emerging Bioeconomy

Manitoba and the Emerging Bioeconomy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PAGE 1<br />

<strong>Manitoba</strong> <strong>and</strong><br />

<strong>the</strong> <strong>Emerging</strong><br />

<strong>Bioeconomy</strong>


Big global drivers for 21 st century change<br />

Population growth<br />

l<strong>and</strong> & water availability<br />

energy dem<strong>and</strong><br />

Climate change<br />

reduce emissions<br />

reduced water availability<br />

l<strong>and</strong> use displacement<br />

Non-renewable resource (oil, gas, coal, minerals) availability<br />

global supply & dem<strong>and</strong><br />

geo-political volatility<br />

implications for energy <strong>and</strong> materials supply<br />

These drivers are all interwoven, adding complexity to<br />

national resolution around<br />

Security of crude oil supply for transport fuel <strong>and</strong> industrial<br />

feedstocks<br />

Kyoto obligations<br />

Sustainable economic prosperity<br />

Balance of trade<br />

PAGE 2<br />

Source: C. Begley


Biomass as a subset of available resources<br />

Coal Oil Gas Minerals<br />

Human<br />

Resources<br />

Non-renewable<br />

Resources<br />

ECONOMY<br />

Renewable<br />

Resources<br />

Infrastructure<br />

Resources<br />

<strong>Bioeconomy</strong><br />

is an emerging<br />

term for <strong>the</strong><br />

sustainable<br />

production <strong>and</strong><br />

conversion of<br />

biomass to a<br />

range of food,<br />

health, fibre,<br />

industrial<br />

products <strong>and</strong><br />

energy<br />

Solar<br />

Wind<br />

Water<br />

Biomass<br />

Geo<strong>the</strong>rmal<br />

PAGE 3


<strong>Bioeconomy</strong> as a platform to a sustainable future….<br />

Low GHG, sustainable processes through<br />

agribusiness & rural re-invigoration to<br />

create secure food, industrial products <strong>and</strong> low emission energy<br />

production <strong>and</strong><br />

value added manufacturing driven by<br />

eco-innovation<br />

PAGE 4


Biobased products<br />

The Bio-economy (Industrial) Framework<br />

Pharmaceuticals<br />

Cosmaceuticals<br />

Neutraceuticals<br />

Bio actives<br />

Bio materials<br />

Bio chemicals<br />

High value<br />

manufacturin<br />

g<br />

BIO-ECONOMY<br />

I<br />

n<br />

c<br />

r<br />

e<br />

a<br />

s<br />

i<br />

n<br />

g<br />

Bio-fuels<br />

Transport<br />

fuels<br />

Low emission<br />

Secure fuel<br />

supply<br />

H 2<br />

Butanol<br />

Ethanol<br />

Biodiesel<br />

Functional<br />

Organic<br />

GM<br />

Food<br />

Feed<br />

v<br />

a<br />

l<br />

u<br />

e<br />

Biorefineries<br />

Fuel feed stocks<br />

Stationary<br />

fuels<br />

Syngas<br />

CH 4<br />

Bio-crude<br />

Coke<br />

lignin<br />

Biogenous raw materials<br />

bagasse<br />

Sustainability<br />

Sustainable<br />

rural<br />

Industry <strong>and</strong><br />

agriculture<br />

Modified from: Biorefineries – Industrial Processes <strong>and</strong> Products Status Quo <strong>and</strong> Future Directions, 2 Volumes, Brigit Kamm<br />

PAGE (Editor), 5 Patrick R. Gruber (Editor), Michael Kamm (Editor), ISBN: 3-527-31027-4, p3 & 13


Sustainable<br />

Employment<br />

The Bio-economy (Policy) Framework<br />

BIO-ECONOMY<br />

Secure supply of<br />

low carbon energy<br />

Emissions Trading<br />

Infrastructure<br />

Regulatory & Policy Frameworks<br />

Innovation<br />

PAGE 6


Biorefinery - definitions<br />

Full utilisation of biomass<br />

up to 90 %, which is a significant competitive advantage in future<br />

markets, where dem<strong>and</strong> for renewable energy <strong>and</strong> biomass raw<br />

material is much intensified.<br />

Maximising <strong>the</strong> economic value of trees / crops<br />

Heat / Energy<br />

Biochemicals<br />

(bulk <strong>and</strong> fine, functional equivalence vs identical)<br />

Biomaterials<br />

“converting <strong>the</strong> current agri- products industry to being a significant<br />

source of green power, renewable transportation fuels, <strong>and</strong>/or bio-derived<br />

industrial chemicals whilst continuing to innovate in <strong>the</strong> current products”<br />

Necessitates new business models<br />

Corporate transition & partnerships<br />

PAGE 7


PAGE 8<br />

Industry transition


MB Biomass: Opportunities & Issues<br />

Challenge: Move <strong>the</strong> industry from commodity to value-add<br />

Processing<br />

Increase profitability with existing capital<br />

Staged approach – c.f. Chambost & Stuart*<br />

Multiple product lines possible<br />

Main, co- <strong>and</strong> by-products<br />

Pre- <strong>and</strong> post-digester opportunities<br />

Hemicelluloses, black liquor gasification / lignin precipitation<br />

Biggest opportunities in biofuels <strong>and</strong> bulk & fine chemicals<br />

Feedstock optimisation<br />

Traditional breeding<br />

Biotech solutions<br />

Issues<br />

ETS<br />

Revenue streams <strong>and</strong> markets<br />

Organisational changes - partnerships<br />

Resource competition – e.g. pulp vs energy sectors<br />

Price sensitivities, public policy<br />

PAGE 9


Implementing <strong>the</strong> Biorefinery (Chambost & Stuart)<br />

Phase 1 – Lower operating costs<br />

Replacement of fossil fuels at mill<br />

Minimum risk technology<br />

Technology partnership – building blocks<br />

Phase 2 – Increase revenues<br />

Manufacture of derivatives, new products<br />

Higher complexity <strong>and</strong> technology risks<br />

Commercial partnership<br />

Phase 3 – Improve margins<br />

Knowledge-based manufacturing<br />

Process flexibility<br />

Company culture transformed<br />

Value chain partnership<br />

PAGE 10


Heat / Energy: Biomass Energy<br />

Pathways<br />

Simple heat <strong>and</strong> power generation can be made using<br />

biomass from assorted waste streams, however, more<br />

valuable industrial chemicals <strong>and</strong> liquid fuels can also be<br />

generated from biomass.<br />

Pyrolysis <strong>and</strong> Gasification of biomass produces syn<strong>the</strong>sis<br />

gas („syngas‟) a mixture of CO <strong>and</strong> hydrogen which allows a<br />

suite of catalytic <strong>and</strong> reformation reactions<br />

Fischer - Tropsch reaction which can make diesel, jet fuel<br />

<strong>and</strong> petrol.<br />

Syngas can also be used for producing industrial chemicals<br />

methanol, ethanol <strong>and</strong> dimethyl e<strong>the</strong>r.<br />

PAGE 11


Biomass to Liquid Fuel (BLF)<br />

PAGE 12<br />

http://www.biomassmagazine.com/


Lignocellulose<br />

(e.g. Forest Residues, Waste<br />

Paper, Crop Residues, Green<br />

Waste)<br />

The Furafuel Concept<br />

Furafuel Process<br />

Simple, small scale,<br />

Stable, neutral,<br />

“Bio-Crude” oil<br />

rich in furans<br />

operated close to raw materials<br />

ETHYL LEVULINATE (biodiesel)<br />

Polymers<br />

Solvents & o<strong>the</strong>r chemicals<br />

Biorefinery<br />

large, high pressure,<br />

centrally located,<br />

using known processes<br />

OCH 2 CH 3<br />

Esterification<br />

with ethanol<br />

Levulinic Acid<br />

PAGE 13<br />

Source – CSIRO/ensis


Market volume (kg/yr)<br />

Market size <strong>and</strong> price for biomass derived products<br />

Biomass derived commodities Biomass derived specialty chemicals Biomass derived Pharmaceuticals<br />

Biochemicals / Biomaterials<br />

1.00E+11<br />

cellulose-based fibres<br />

1.00E+10<br />

fatty acids<br />

1.00E+09<br />

1.00E+08<br />

speciality celluloses<br />

1.00E+07<br />

Gallic acid<br />

1.00E+06<br />

Aldehydes<br />

sterols<br />

1.00E+05<br />

1.00E+04<br />

1.00E+03<br />

1.00E+02<br />

1.00E+01<br />

essential oils<br />

chitsans <strong>and</strong> derivatives<br />

vitamins<br />

Maltol<br />

Proanthocyanidins<br />

bioactive polyphenols<br />

chiral drugs<br />

cis-3-Hexanol<br />

trans-2-Hexenal<br />

Taxans<br />

PAGE 14<br />

1.00E+00<br />

Source – Industry Canada<br />

1 10 100 1000 10000 100000<br />

Market price (US$/kg)


Project Scope: Biofibres in<br />

Transportation Applications<br />

Urethane<br />

Soy<br />

Systems<br />

MCI<br />

SWM Intl<br />

Test<br />

Facilities<br />

Mat<br />

Producers<br />

FFI<br />

Industry Partners: SWM Intl,<br />

MCI, Motive Industries<br />

Motive<br />

SWM Intl<br />

PAGE 15<br />

PROJECT HIGHLIGHTS


Biomaterials: Green Building Uses<br />

• Renewable building<br />

materials to build a<br />

demonstrator garage<br />

Material<br />

Distributors<br />

SWM Intl.<br />

Test<br />

Facilities<br />

Mat<br />

Producers<br />

Industry Partners - TBD<br />

Building<br />

Fabricators<br />

Emerson<br />

Hemp DC<br />

PAGE 16<br />

PROJECT HIGHLIGHTS


Feedstocks - Biomonomers ==> Biopolymers<br />

Biomass Biorefinery Biopolymer<br />

Proteins<br />

Lignin<br />

Starch<br />

Hemicellulose<br />

Cellulose<br />

Oils<br />

Amino acids, peptides<br />

Aromatic diacids, dihydroxy’s, hydroxyacids<br />

Di- <strong>and</strong> polyhydroxy’s<br />

Di- <strong>and</strong> polyhydroxy’s, diacids, hydroxyacids<br />

Polyamides<br />

Polyesters<br />

Polyols<br />

Polyurethanes<br />

Polyesters<br />

Polyols<br />

Polyamides<br />

Polyurethanes<br />

Polyesters<br />

Polyols<br />

Polyurethanes<br />

Polyamides<br />

PAGE 17


Lignin - issues<br />

Most abundant aromatic polymer<br />

98-99% of kraft / sulfite lignins used as fuel for process chemical<br />

recovery<br />

1-2% used for specialty chemicals:<br />

Dispersants, emulsifiers, binders<br />

Conversion to high-value products hindered by<br />

Complexity<br />

heterogeneity<br />

Polydispersity<br />

High levels of impurities<br />

PAGE 18


Products from Lignin<br />

Combustion<br />

Energy<br />

Complete degradation (pyrolysis)<br />

Methane, CO, Syngas<br />

Partial degradation<br />

Phenolics – syn<strong>the</strong>sis of polymers <strong>and</strong> resins<br />

Hybrid adhesive systems (phenolics + oils + tannin adhesives) for fibre composite<br />

systems<br />

Papermaking additive replacement (e.g. binder systems for coated papers)<br />

Sulfur-free lignins:<br />

Produced during bioethanol production, solvent or soda pulping<br />

Superior properties<br />

Substitute for phenolic powder resins<br />

Brake pads, OSB binders<br />

Polyurethane foams<br />

Epoxy resins<br />

PAGE 19


Cellulose nanocrystals<br />

Cellulose nanofibres<br />

diameters of 5–50 nm <strong>and</strong> lengths of several millimetres conformed by<br />

nanocrystalline domains <strong>and</strong> amorphous regions.<br />

nanocellulose crystals make up to 20% by mass of wood<br />

applications as reinforcements in composite materials<br />

Liquid crystal properties (nematic <strong>and</strong> chiral nematic).<br />

The mechanical properties of nanocellulose crystals<br />

tensile strength twice that of steel wire but with a comparable modulus<br />

tensile strength 25% <strong>and</strong> a modulus 25-50% of carbon nanotubes but a<br />

small fraction of <strong>the</strong> cost<br />

reinforcing agents in polymeric materials with <strong>the</strong> potential to create a<br />

green bio-steel material<br />

accessible anisotropic surface chemistry of <strong>the</strong> crystals allows for ready<br />

chemical modification<br />

crystals are biologically compatible <strong>and</strong> could be used in areas nontraditional<br />

to <strong>the</strong> forest industry such as scaffolding for medical<br />

applications <strong>and</strong> reinforcement for shape memory polymers<br />

PAGE 20


Wood Extractives<br />

Non-cell wall components<br />

Can be removed using solvents,<br />

e.g. pet. e<strong>the</strong>r, acetone, ethanol,<br />

water<br />

- Relatively small molecules (<<br />

C40)<br />

Usually comprise 1-5% of <strong>the</strong><br />

wood<br />

Under genetic control & vary by<br />

species<br />

Wood Extractives<br />

Fern<strong>and</strong>ez et al. Journal of Chromatography A<br />

922(1,2), 225-233 (2001)<br />

PAGE 21


Some extractives & <strong>the</strong>ir utilities<br />

Fatty acids<br />

Linoleic acid (dietary), Suberin (polyester)<br />

b-sitosterol<br />

Terpenoids<br />

Monoterpenes<br />

Pinene, limonene (fragrances & flavours)<br />

Diterpenes<br />

Abeitic acid, pimaric acid (resins, sizing agents)<br />

Triterpenes<br />

Betulin (medicinal)<br />

Phenolics<br />

Stilbenes (pinosylvin), flavonoids, lignans<br />

Bioactive polyphenolics can be applied to health protection (e.g.<br />

anti-oxidant properties) <strong>and</strong> disease treatment (viral <strong>and</strong> cancer<br />

treatments with podophyllotoxin/nor-dihydroguaiaretic acid<br />

derivatives).<br />

PAGE 22


Example: Betulin<br />

Has been shown to help wounds heal faster <strong>and</strong> cut inflammation.<br />

Many cosmetic companies, touting it as a skin toner <strong>and</strong> restorer, add<br />

birch bark extract to various products.<br />

Betulin can be easily converted to betulinic acid, which possesses a wide<br />

spectrum of biological <strong>and</strong> pharmacological activities.<br />

antimalarial <strong>and</strong> anti-inflammatory activities<br />

anti-HIV activity <strong>and</strong> cytotoxicity against a variety of tumor cell lines<br />

comparable to some clinically used drugs.<br />

Betulinic acid is specifically cytotoxic to several tumor cell lines<br />

(melanoma) by inducing apoptosis in cells.<br />

Fields of application:<br />

1. Raw material for pharmaceutical production;<br />

2. As a main active ingredient in parfumery-cosmetic products;<br />

PAGE 23


Poyry analysis 1<br />

•It is expected that second-generation biofuels can compete when crude<br />

oil prices are EUR 46-77 per barrel (VIEWLS 2005).<br />

production costs will be influenced by future fuel specifications,<br />

end-use issues <strong>and</strong> o<strong>the</strong>r aspects such as by-product markets.<br />

If <strong>the</strong> development <strong>and</strong> scale-up of second-generation biofuels<br />

is successful <strong>and</strong> biomass becomes <strong>and</strong> remains cheaply<br />

available, second-generation biofuels can compete at about<br />

EUR 31 per barrel.<br />

All second-generation biofuels are still in <strong>the</strong> R&D/pilot phase <strong>and</strong> are<br />

not yet available on <strong>the</strong> market because of technical limitations.<br />

Compared to first-generation biofuels, cellulosic bioethanol, FT biodiesel<br />

<strong>and</strong> HTU diesel are expected to yield far higher reductions in<br />

greenhouse gas emissions.<br />

The main environmental drawback of second-generation biofuels<br />

concerns <strong>the</strong> sources of <strong>the</strong> biomass required<br />

waste streams vs. cultivated<br />

PAGE 24<br />

Source PIRA, 2007


PAGE 25<br />

Poyry analysis 2<br />

Process flexibility<br />

a mill should be able to achieve targeted returns for <strong>the</strong><br />

integrated processes under a range of volatile market <strong>and</strong><br />

economic circumstances.<br />

optimisation <strong>and</strong> adjustment of carbon consumption to produce<br />

fibres, bioenergy, green chemicals or structural material<br />

products.<br />

what are <strong>the</strong> most attractive process variations that a mill<br />

should consider?<br />

•Energy generation<br />

how can energy systems best be integrated <strong>and</strong> optimised<br />

between <strong>the</strong> BTL plant <strong>and</strong> <strong>the</strong> existing mill?<br />

Preliminary calculations indicate that <strong>the</strong> wood-paying capability of paper<br />

production is still significantly higher than that of biofuel production<br />

taxation <strong>and</strong> subsidies will determine <strong>the</strong> competitiveness of<br />

liquid biofuels<br />

However, some assessments of economic performance indicate<br />

that <strong>the</strong> profit from co-production of FT (Fischer-Tropsch)<br />

liquids could be of similar to that from paper production. (VTT,<br />

Lahti, Nov. 2006)


Role of <strong>the</strong> market<br />

Public Policy & Market Forces<br />

Efficient allocation of resources<br />

for maximum returns<br />

Role of public policy<br />

Focus on essential societal<br />

values NOT priced – market<br />

failures<br />

Environmental impacts<br />

Zero-waste initiatives<br />

Biofuels part of a combined<br />

solution (solar, C capture)<br />

Technology development<br />

Technology clusters – e.g.<br />

gasification<br />

Public good, pre-competitive<br />

Policy integration<br />

Biomass, energy, chemicals,<br />

R&D<br />

PAGE 26


<strong>Manitoba</strong>: Biomass<br />

Agricultural biomass<br />

19 m acres of farml<strong>and</strong><br />

0.4 m acres of flax<br />

0.4 m tonnes flax straw p.a.<br />

Forest biomass<br />

65 m acres<br />

Mixture of softwood <strong>and</strong> hardwood species<br />

1.5 m m3 softwood <strong>and</strong> 0.7 m m3 hardwood p.a.<br />

1.0 m tonnes of harvest residues p.a.<br />

Waste streams – industrial <strong>and</strong> municipal<br />

Hogs, potatoes, oat hulls<br />

250,000 tonnes municipal waste biomass<br />

PAGE 27<br />

Source – <strong>Manitoba</strong> Government (Growing Green)


<strong>Manitoba</strong>: Industry<br />

MB bioproducts companies number > 30<br />

Biofuels sector<br />

Speedway International<br />

Biofibres <strong>and</strong> biomaterials<br />

Forestry – Tolko<br />

Ag-fibre – SWM International<br />

Waste streams – Solanyl Biopolymers Inc.<br />

Connecting to larger industry / OEM<br />

Composites Innovation Centre Inc.<br />

Richardson Centre for Functional Foods <strong>and</strong> Nutraceuticals<br />

PAGE 28


<strong>Manitoba</strong>: Priorities<br />

Growing Green<br />

Key principals for a successful bioeconomy sector<br />

Integration<br />

Remove “silos” between resources – multiple feedstock management<br />

(& multi-purpose crops), systems approach<br />

Whole-of-value-chain focus<br />

Alliances, collaborative <strong>and</strong> cost-sharing partnerships<br />

Innovation<br />

Bioproducts <strong>Manitoba</strong> – Innovation champion<br />

Growing <strong>and</strong> supporting bioproducts companies<br />

Clustering<br />

New technologies transferred<br />

Commitment<br />

A sustainable environment <strong>and</strong> communities<br />

Kyoto<br />

PAGE 29


Fundamental challenges<br />

Interpreting major trends in o<strong>the</strong>r jurisdictions<br />

Global big-picture view<br />

Inspirational “thought-leadership”<br />

Government policy <strong>and</strong> industry, “early-adopter” contacts, SME<br />

relationships<br />

Connectedness & information deficit<br />

Collaborations, international<br />

Critical mass – supply chain<br />

Capability cross-talk<br />

Talent retention & attraction<br />

Skills development – training<br />

Global talent shortage – international competition<br />

Yes! Winnipeg<br />

Cutting edge technology development & adaptation<br />

Appropriate resourcing & prioritisation<br />

PAGE 30


CONTACT INFORMATION<br />

Simon Potter<br />

Sector Manager – Product Innovation<br />

Adjunct Professor – University of <strong>Manitoba</strong><br />

CIC Contact Information:<br />

Website: www.compositesinnovation.ca<br />

Email: spotter@compositesinnovation.ca<br />

Tel No.: 204-262-3400 Ext 209<br />

PAGE 31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!