21.11.2014 Views

Rezumatul tezei de doctorat - USAMV Cluj-Napoca

Rezumatul tezei de doctorat - USAMV Cluj-Napoca

Rezumatul tezei de doctorat - USAMV Cluj-Napoca

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UNIVERSITATEA DE ŞTIINłE AGRICOLE<br />

ŞI MEDICINĂ VETERINARĂ CLUJ-NAPOCA<br />

ŞCOALA DOCTORALĂ<br />

FACULTATEA DE ZOOTEHNIE ŞI BIOTEHNOLOGII<br />

Med.Vet. Oroian Rareş Gelu<br />

Genotipizarea speciilor <strong>de</strong> Saprolegnia şi<br />

<strong>de</strong>terminarea patogenităŃii acestora asupra<br />

diferitelor specii <strong>de</strong> ciprini<strong>de</strong> în crescătorii din<br />

centrul şi nord-vestul României<br />

-REZUMAT AL TEZEI DE DOCTORAT-<br />

CONDUCĂTOR ŞTIINłIFIC<br />

Prof.univ.dr.ing. AUGUSTIN VLAIC<br />

<strong>Cluj</strong>-<strong>Napoca</strong><br />

2010<br />

1


CUPRINS<br />

INTRODUCERE.................................................................................................................................. 4<br />

CAPITOLUL I ..................................................................................................................................... 4<br />

IPOTEZA EXPERIMENTALĂ, OBIECTIVELE CERCETĂRII, DISPOZITIVUL<br />

EXPERIMENTAL, MATERIAL ŞI METODĂ DE LUCRU............................................................. 4<br />

I.1. IPOTEZA EXPERIMENTALĂ ŞI OBIECTIVELE CERCETĂRII ........................................ 4<br />

I.2. DISPOZITIVUL EXPERIMENTAL......................................................................................... 6<br />

I.3. MATERIAL ŞI METODĂ DE LUCRU ................................................................................... 7<br />

I.3.1. Prelevarea probelor ............................................................................................................. 7<br />

I.3.2. IniŃierea culturii <strong>de</strong> Saprolegnia în condiŃii <strong>de</strong> laborator.................................................... 8<br />

I.3.3. Mediile <strong>de</strong> cultură utilizate ................................................................................................. 9<br />

I.3.3.1. Mediile <strong>de</strong> cultură soli<strong>de</strong> utilizate în experiment....................................................... 10<br />

I.3.3.2. Mediile <strong>de</strong> cultură lichi<strong>de</strong> utilizate în experiment ..................................................... 10<br />

I.3.3.3. Antibioticele utilizate în experiment .......................................................................... 11<br />

I.3.4. Caracterizarea morfologică a tulpinilor <strong>de</strong> Saprolegnia................................................... 11<br />

I.3.5. ExtracŃia şi <strong>de</strong>tectarea ADN-ului din fungi ...................................................................... 12<br />

I.3.5.1. ExtracŃia ADN-ului din fungi utilizând kituri <strong>de</strong> extracŃie (QIAGEN) ...................... 12<br />

I.3.5.2. ExtracŃia ADN-ului din fungi utilizând soluŃii........................................................... 13<br />

I.3.6. Cuantificarea ADN prin metoda directă <strong>de</strong> <strong>de</strong>terminare a purităŃii şi concentraŃiei<br />

ADN cu spectofotometrul Nanodrop ND-1000 ......................................................................... 13<br />

I.3.7. Regiunea ITS <strong>de</strong> la fungi şi primerii utilizaŃi.................................................................... 13<br />

I.3.8. Tehnici moleculare utilizate în experiment....................................................................... 15<br />

I.3.8.1. Amplificarea PCR a probelor <strong>de</strong> Saprolegnia........................................................... 15<br />

I.3.8.2. Tehnica PCR-RFLP - Restriction Fragment Length Polymorphism ......................... 16<br />

I.3.9. Meto<strong>de</strong> utilizate în stabilirea diversităŃii şi....................................................................... 16<br />

înrudirii filogenetice a speciilor <strong>de</strong> fungi din familia Saprolegniaceae..................................... 16<br />

I.3.9.1. SecvenŃierea automată............................................................................................... 16<br />

CAPITOLUL II.................................................................................................................................. 17<br />

REZULTATELE CERCETĂRILOR PROPRII ................................................................................ 17<br />

II.1. REZULTATELE CULTURII DE SAPROLEGNIA ÎN<br />

CONDIłII DE LABORATOR ...................................................................................................... 17<br />

II.2. REZULTATE PRIVIND CREŞTERA ŞI DEVZOLTAREA<br />

SAPROLEGNIEI PE MEDIILE DE CULTURĂ.......................................................................... 18<br />

II.2.1. Rezultate comparative privind creşterea coloniilor<br />

<strong>de</strong> Saprolegnia pe mediile <strong>de</strong> cultură soli<strong>de</strong> .............................................................................. 18<br />

II.2.2. Rezultate comparative privind <strong>de</strong>zvoltarea coloniilor<br />

<strong>de</strong> Saprolegnia pe mediile <strong>de</strong> cultură lichi<strong>de</strong>............................................................................. 20<br />

II.3. CARACTERIZAREA MORFOLOGICĂ A TULPINILOR DE SAPROLEGNIA................ 20<br />

II.4. REZULTATE PRIVIND EXTRACłIA ŞI CUANTIFICAREA<br />

ADN-ULUI LA SAPROLEGNIA................................................................................................... 21<br />

II.4.1. ExtracŃia ADN ................................................................................................................. 21<br />

II.5. REZULTATELE AMPLIFICĂRII ADN-ULUI LA SPECII<br />

DE FUNGI DIN FAMILIA SAPROLEGNIACEAE ...................................................................... 22<br />

II.5.1. Amplificarea ADN prin PCR .......................................................................................... 22<br />

2


II.6. REZULTATELE RESTRICłIEI ENZIMATICE A ADN-ULUI DE LA SPECII DE<br />

FUNGI DIN FAMILIA SAPROLEGNIACEAE PRIN METODA PCR-RFLP............................. 23<br />

II.7. REZULTATE PRIVIND STUDIUL ÎNRUDIRII GENETICE A<br />

FUNGILOR DIN FAMILIA SAPROLEGNIACEAE..................................................................... 27<br />

II.8. REZULTATELE SECVENłIERII SPECIILOR DE FUNGI DIN FAMILIA<br />

SAPROLEGNIACEAE ÎN LOCAłIILE STUDIATE.................................................................... 29<br />

II.9. INCIDENłA SAPROLEGNIOZEI ÎN AREALUL STUDIAT<br />

DIN CENTRUL ŞI NORD-VESTUL ROMÂNIEI....................................................................... 29<br />

CAPITOLUL III................................................................................................................................. 33<br />

CONCLUZII ŞI RECOMANDĂRI................................................................................................... 33<br />

BIBLIOGRAFIE SELECTIVĂ ......................................................................................................... 37<br />

3


INTRODUCERE<br />

Saprolegnioza constituie una din cele mai importante cauze ale pier<strong>de</strong>rilor economice<br />

din acvacultură, infecŃiile cu fungi secondând doar bolile bacteriene ca importanŃă<br />

economică. InfecŃiile fungice sunt în general cronice, provocând pier<strong>de</strong>ri constante.<br />

Saprolegnia afectează un număr mare <strong>de</strong> peşti teleostei, cum sunt: somnul, ştiuca, bibanul,<br />

babuşca, crapul, salmoni<strong>de</strong>le, sturionii, barramundi, tilapia; fiind implicată în infestaŃii şi la<br />

specii <strong>de</strong> peşti tropicali: gurami, guppy, platy.<br />

În Japonia rata anuală <strong>de</strong> mortalitate la somonul Coho (Oncorhynchus kisuth) cauzată<br />

<strong>de</strong> Saprolegnia parasitica Coker este <strong>de</strong> 50%. Acelaşi procent se înregistrează şi la anghilă<br />

(Anguilla anguilla), tot în Japonia. În ScoŃia, saprolegnioza provoacă pier<strong>de</strong>ri economice<br />

importante în<strong>de</strong>osebi în crescătoriile <strong>de</strong> somoni. În sudul Statelor Unite ale Americii<br />

pier<strong>de</strong>rile înregistrate la somn au fost <strong>de</strong> 50%, iar pier<strong>de</strong>rea economică <strong>de</strong> 40 milioane <strong>de</strong><br />

dolari.<br />

În România nu există până la ora actuală o evaluare ştiinŃifică a pier<strong>de</strong>rilor din<br />

crescătoriile piscicole generate <strong>de</strong> saprolegnioză.<br />

CAPITOLUL I<br />

IPOTEZA EXPERIMENTALĂ, OBIECTIVELE CERCETĂRII,<br />

DISPOZITIVUL EXPERIMENTAL, MATERIAL ŞI METODĂ DE LUCRU<br />

I.1. IPOTEZA EXPERIMENTALĂ ŞI OBIECTIVELE CERCETĂRII<br />

Studiul bibliografic asupra saproleniozei la peşti în general, şi ciprini<strong>de</strong>lor în special,<br />

indică faptul că în lume datorită diferenŃelor generate <strong>de</strong> diversele tipuri <strong>de</strong> apă, ca şi <strong>de</strong><br />

solul pe care îl străbat sau în care sunt localizate, <strong>de</strong> temperaturile medii anuale, <strong>de</strong> gradul <strong>de</strong><br />

populare şi speciile piscicole existente, boala este generată <strong>de</strong> numeroase specii <strong>de</strong><br />

Saprolegnia, care au specificitate şi patogenitate diferite, în funcŃie <strong>de</strong> factorii mai sus<br />

enumeraŃi.<br />

Literatura <strong>de</strong> specialitate prezintă preocupări actuale privind i<strong>de</strong>ntificarea şi<br />

clasificarea diverselor specii şi subspecii <strong>de</strong> Saprolegnia, saprofite şi condiŃionat patogene la<br />

4


diverse specii piscicole. De aici se <strong>de</strong>sprin<strong>de</strong> faptul că nu este suficientă i<strong>de</strong>ntificarea strict<br />

morfologică a tulpinilor izolate, ci este necesară şi o caracterizare complementară<br />

moleculară privind structura ADN-ului, care să permită i<strong>de</strong>ntificarea corectă şi stabilirea<br />

distanŃelor genetice dintre populaŃiile şi subpopulaŃiile <strong>de</strong> Saprolegnia. Acest lucru este<br />

necesar întrucât pier<strong>de</strong>rile tehnologice în piscicultură raportate atât la nivel mondial, cât şi<br />

naŃional, datorită saprolegniozei, care afectează <strong>de</strong>zvoltarea peştilor <strong>de</strong> la faza <strong>de</strong> icră, larvă,<br />

alevin, tineret, adult ating până la 50% din producŃie, ceea ce se repercutează negativ asupra<br />

situaŃiei economico-financiare a crescătoriilor.<br />

Pornind <strong>de</strong> la aceste consi<strong>de</strong>rente, prin ipoteza cercetării ne-am propus i<strong>de</strong>ntificarea şi<br />

caracterizarea morfologică şi moleculară, prin analize <strong>de</strong> ADN, a speciilor şi subspeciilor <strong>de</strong><br />

Saprolegnia, care afectează populaŃiile <strong>de</strong> ciprini<strong>de</strong> din crescătoriile din centrul şi nordvestul<br />

României. În România nu s-au mai efectuat studii genetice asupra speciilor şi<br />

subspeciilor <strong>de</strong> Saprolegnia, care afectează speciile <strong>de</strong> ciprini<strong>de</strong>, şi care într-un viitor mai<br />

mult sau mai puŃin în<strong>de</strong>părtat ar putea constitui baza <strong>de</strong> plecare pentru crearea <strong>de</strong> vaccinuri<br />

<strong>de</strong> ADN, care să fie utilizate la efectivele <strong>de</strong> reproducŃie. Studiul izolatelor locale <strong>de</strong><br />

Saprolegnia vor contribui în mod evi<strong>de</strong>nt la <strong>de</strong>zvoltarea strategiilor <strong>de</strong> control a bolii.<br />

Obiective urmărite în cercetare:<br />

1. Stabilirea planului şi protocolului experimental;<br />

2. Optimizarea meto<strong>de</strong>lor <strong>de</strong> cultură a Saprolegniei;<br />

3. Optimizarea meto<strong>de</strong>lor <strong>de</strong> extracŃie şi amplificare a ADN-ului la Saprolegnia;<br />

4. Testarea diferitelor enzime <strong>de</strong> restricŃie prin tehnica PCR-RFLP;<br />

5. Stabilirea distanŃelor genetice dintre speciile familiei Saprolegniaceae i<strong>de</strong>ntificate;<br />

6. Monitorizarea inci<strong>de</strong>nŃei saprolegniozei la ciprini<strong>de</strong> din centrul si nord-vestul<br />

României.<br />

5


I.2. DISPOZITIVUL EXPERIMENTAL<br />

Dispozitivul experimental a fost localizat în zona <strong>de</strong> centru şi nord-vest a României,<br />

fiind cuprinse în control bazine piscicole localizate după cum urmează:<br />

Complexul Piscicol Ariniş, ju<strong>de</strong>Ńul Maramureş, cu 9 bazine;<br />

C.P.Motiş, ju<strong>de</strong>Ńul Sălaj, cu 7 bazine;<br />

C.P.Adrian, ju<strong>de</strong>Ńul Satu Mare, cu 10 bazine;<br />

Ferma Piscicolă łaga, ju<strong>de</strong>Ńul <strong>Cluj</strong>, cu 5 bazine;<br />

Ferma Piscicolă Ciurila, ju<strong>de</strong>Ńul <strong>Cluj</strong>, cu 6 bazine;<br />

Ferma Piscicolă Chiochiş, ju<strong>de</strong>Ńul BistriŃa-Năsăud, cu 5 bazine;<br />

Ferma Piscicolă Daia, ju<strong>de</strong>Ńul Alba, cu 5 bazine;<br />

Ferma Piscicolă Iernut, ju<strong>de</strong>Ńul Mureş, cu 5 bazine;<br />

Complexul Piscicol Cefa, ju<strong>de</strong>Ńul Bihor, cu 10 bazine;<br />

Ferma Piscicolă Ineu, ju<strong>de</strong>Ńul Arad, cu 7 bazine;<br />

În acest dispozitiv experimental, reprezentativ ca distribuŃie zonală, cuprinzând toată<br />

diversitatea <strong>de</strong> tipuri <strong>de</strong> apă şi sol existente, s-au organizat mai multe experimente.<br />

Prezentăm în continuare spre vizualizare repartizarea locaŃiilor marcate prin puncte<br />

albe pe harta Romaniei (fig.1).<br />

6


Fig.1. LocaŃiile în care s-au efectuat cercetările<br />

I.3. MATERIAL ŞI METODĂ DE LUCRU<br />

I.3.1. Prelevarea probelor<br />

Prelevarea probelor <strong>de</strong> apă s-a făcut prin organizarea unui plan experimental complet<br />

randomizat, pentru ca probele să fie reprezentative pentru crescătoriile piscicole din zona<br />

analizată.<br />

Au fost nominalizate bazinele din fiecare fermă, fiind monitorizate: suprafaŃa <strong>de</strong> luciu<br />

<strong>de</strong> apă, cu adâncimea şi caracteristicile biologice ale apei, precum şi structura fito- şi<br />

zooplanctonului şi speciile <strong>de</strong> peşti care le populează. Pentru acurateŃea rezultatelor, în<br />

i<strong>de</strong>ntificarea speciilor din familia Saprolegniaceae, pe lîngă observaŃiile curente efectuate pe<br />

7


perioada experimentală, s-a procedat la prelevarea <strong>de</strong> probe <strong>de</strong> apă din fiecare bazin luat în<br />

studiu, în trei luni diferite ale anului (<strong>de</strong>cembrie, martie, iunie), indiferent <strong>de</strong> suprafaŃa<br />

bazinului, care a fost cuprinsă între 0,5 şi 30 Ha. Mo<strong>de</strong>lul experimental utilizat a prevăzut<br />

prelevarea a 5 probe <strong>de</strong> apă din fiecare bazin, din cele patru laturi şi centru, <strong>de</strong> la adâncimi<br />

medii <strong>de</strong> 50 cm. Din cele 5 probe s-a făcut o singură probă <strong>de</strong> apă, care a fost ulterior<br />

analizată în condiŃii <strong>de</strong> laborator.<br />

Pentru i<strong>de</strong>ntificarea diferitelor specii din familia Saprolegniaceae s-au prelevat şi<br />

analizat probe <strong>de</strong> apă, specii <strong>de</strong> ciprini<strong>de</strong> şi icre afectate <strong>de</strong> boală din bazinele piscicole din<br />

Transilvania, luate în studiu. Probele <strong>de</strong> apă s-au prelevat în peturi <strong>de</strong> 2 litri, din cele 5<br />

puncte ale fiecărui bazin, după care cele 5 probe s-au amestecat într-un vas <strong>de</strong> 15 litri,<br />

prelevându-se pentru analiză o singură probă <strong>de</strong> amestec din fiecare bazin, într-o sticlă <strong>de</strong> 2<br />

litri. Transportul s-a efectuat în primele 12 până la 24 ore <strong>de</strong> la recoltare, procesele <strong>de</strong><br />

analiză şi experimentele fiind <strong>de</strong>rulate în ziua următoare.<br />

I.3.2. IniŃierea culturii <strong>de</strong> Saprolegnia în condiŃii <strong>de</strong> laborator<br />

Pentru ca eventualele diferenŃe, care se pot constata între speciile <strong>de</strong> fungi din familia<br />

Saprolegniaceae existente în ape, să poată fi atribuite strict diferenŃelor date <strong>de</strong> natura apei şi<br />

<strong>de</strong> speciile care o populează, s-a procedat în felul următor: din fiecare probă <strong>de</strong> apă, în<br />

cantitate <strong>de</strong> 2 litri, s-au constituit câte 3 probe a 100 ml <strong>de</strong> apă în recipiente <strong>de</strong> plastic sterile.<br />

În fiecare recipient au fost introduse 10-15 icre provenite <strong>de</strong> la aceeaşi femelă <strong>de</strong> crap.<br />

Pentru că literatura <strong>de</strong> specialitate oferă date contradictorii privind temperatura <strong>de</strong> <strong>de</strong>zvoltare<br />

a Saprolegniei în diferite zone ale lumii, noi ne-am propus testarea modului <strong>de</strong> creştere şi<br />

<strong>de</strong>zvoltare a fungului la 3 nivele <strong>de</strong> temperatură: 10°C, 15°C şi 22°C.<br />

Probele <strong>de</strong> apă în care au fost introduse spre infestare artificială cele 10-15 bucăŃi <strong>de</strong><br />

icre au fost introduse în incubator la temperaturile mai sus menŃionate, între 3-7 zile. În<br />

această perioadă s-au făcut observaŃii zilnice asupra fiecărei probe pentru a se constata<br />

momentul <strong>de</strong> <strong>de</strong>but al atacului fungului asupra icrelor şi a intensităŃii <strong>de</strong>zvoltării la<br />

temperatura respectivă.<br />

8


A fost constituit un număr <strong>de</strong> 207 probe pentru fiecare lună <strong>de</strong> recoltare, câte 3 probe<br />

pe fiecare bazin, care au fost urmărite la cele 3 temperaturi vizate, facându-se o apreciere a<br />

gradului <strong>de</strong> infestare a icrelor cu puncte <strong>de</strong> la 0 la 4, la 48, 96 şi 144 ore. Interpretarea<br />

datelor s-a făcut prin estimarea punctajului mediu a tuturor probelor <strong>de</strong> la acelaşi gradient<br />

termic, diferenŃele s-au exprimat procentual. Punctajele utilizate au următoarele semnificaŃii:<br />

0 - neevi<strong>de</strong>nŃiat<br />

1 - foarte slab infestat<br />

2 - slab infestat<br />

3 - mediu infestat<br />

4 - bine infestat<br />

I.3.3. Mediile <strong>de</strong> cultură utilizate<br />

Literatura <strong>de</strong> specialitate evi<strong>de</strong>nŃiază faptul că în general în <strong>de</strong>zvoltarea culturilor <strong>de</strong><br />

fungi pot fi utilizate atât medii soli<strong>de</strong>, cât şi lichi<strong>de</strong>. Mediile lichi<strong>de</strong> permit <strong>de</strong>zvoltarea<br />

miceliului fungic în cantitate mare, încât să poată fi utilizat prin tehnici ulterioare la extracŃia<br />

<strong>de</strong> ADN (Dieguez-Uribeondo şi col., 2007; Fernan<strong>de</strong>z-Benitez şi col., 2008).<br />

În această cercetare am utilizat comparativ două medii soli<strong>de</strong>: Potato Dextrose Agar<br />

(PDA-agar cu cartof-<strong>de</strong>xtroză) şi Sabouraud 2% Glucose Agar (SGA-agar Sabouraud cu<br />

glucoză) şi două medii lichi<strong>de</strong>: Potato Dextrose Broth (PDB-bulion cu cartof-<strong>de</strong>xtroză) şi<br />

Sabouraud Dextrose Broth (SDB-bulion Sabouraud cu <strong>de</strong>xtroză).<br />

Icrele infestate au fost prelevate steril în plăci Petri şi spălate cu apă distilată<br />

conŃinând 100 mg L -1 Penicilină G cu sare <strong>de</strong> potasiu. Apoi au fost însămânŃate pe două<br />

medii soli<strong>de</strong>: Potato Dextrose Agar (PDA-agar cu cartof-<strong>de</strong>xtroză) şi Sabouraud 2% Glucose<br />

Agar (SGA-agar Sabouraud cu glucoză), iar pentru a preîntâmpina creşterea bacteriană s-a<br />

adăugat acelaşi antibiotic, în concentraŃia recomandată. Coloniile au fost menŃinute apoi pe<br />

mediile PDA şi SGA timp <strong>de</strong> 3 zile la incubator, la temperaturile menŃionate (10, 15 şi<br />

22°C). În această perioadă s-a urmărit viteza <strong>de</strong> creştere şi diametrul coloniilor <strong>de</strong><br />

Saprolegnia (adaptat după Fernan<strong>de</strong>z-Benitez şi col., 2008). ContribuŃia originală a constat<br />

9


în faptul că s-au utilizat două medii <strong>de</strong> cultură soli<strong>de</strong> comparative şi trei gradiente <strong>de</strong><br />

temperatură pentru fiecare mediu.<br />

I.3.3.1. Mediile <strong>de</strong> cultură soli<strong>de</strong> utilizate în experiment<br />

Cele două medii <strong>de</strong> cultură soli<strong>de</strong> utilizate în experiment au fost următoarele<br />

(conform http://www.sigmaaldrich.com):<br />

Potato Dextrose Agar (PDA-agar cu cartof-<strong>de</strong>xtroză) (Fluka)<br />

Sabouraud 2% Glucose Agar (SGA-agar Sabouraud cu glucoză) (Fluka)<br />

Din fiecare bazin s-a făcut însămânŃare în cele două medii <strong>de</strong> cultură soli<strong>de</strong> utilizate<br />

(PDA, SGA), din cea mai bine <strong>de</strong>zvoltată probă, pentru a putea fi făcute observaŃii<br />

comparative privind modul <strong>de</strong> <strong>de</strong>zvoltare al speciilor <strong>de</strong> fungi din familia Saprolegniaceae.<br />

Pentru testarea ratei <strong>de</strong> creştere pe mediul solid cu agar, în plăcile Petri conŃinând<br />

cele două medii <strong>de</strong> cultură soli<strong>de</strong> (PDA, SGA) şi incubate la 22°C ± 2°C timp <strong>de</strong> 72 ore s-a<br />

urmărit rata <strong>de</strong> creştere a hifelor <strong>de</strong> Saprolegnia. Creşterea radială în diametru a fost<br />

măsurată tot la 24 ore. S-a consi<strong>de</strong>rat că hifele şi-au epuizat creşterea radială atunci când<br />

acestea au atins marginea plăcilor Petri (>40 mm) (prelucrare după Stueland şi col., 2005).<br />

La 72 ore <strong>de</strong> <strong>de</strong>zvoltare pe mediile soli<strong>de</strong>, coloniile fungice au fost pasate pe cele<br />

lichi<strong>de</strong>, în următorul mod: coloniile <strong>de</strong> pe mediul solid Potato Dextrose Agar (PDA-agar cu<br />

cartof-<strong>de</strong>xtroză) au fost transferate pe mediul lichid Potato Dextrose Broth (PDB-bulion cu<br />

cartof-<strong>de</strong>xtroză), iar coloniile <strong>de</strong> pe mediul solid Sabouraud 2% Glucose Agar (SGA-agar<br />

Sabouraud cu glucoză) pe mediul lichid Sabouraud Dextrose Broth (SDB-bulion Sabouraud<br />

cu <strong>de</strong>xtroză). Acest experiment s-a efectuat pentru a putea observa şi recomanda cea mai<br />

bună combinaŃie <strong>de</strong> transfer <strong>de</strong> la mediul solid la mediul lichid.<br />

I.3.3.2. Mediile <strong>de</strong> cultură lichi<strong>de</strong> utilizate în experiment<br />

Mediile lichi<strong>de</strong> utilizate în experiment au fost următoarele (conform<br />

http://www.sigmaaldrich.com):<br />

Potato Dextrose Broth (PDB-bulion cu cartof-<strong>de</strong>xtroză) (Fluka):<br />

10


Sabouraud Dextrose Broth (SDB-bulion Sabouraud cu <strong>de</strong>xtroză) (Fluka)<br />

Toate coloniile <strong>de</strong> fungi saprolegnieni <strong>de</strong> pe mediile soli<strong>de</strong> au fost pasate în pahare<br />

Erlenmeyer cu 100 ml mediu lichid cu adaos <strong>de</strong> antibiotic şi menŃinute într-un incubator cu<br />

agitator, la temperatura <strong>de</strong> 22°C ± 2°C, timp <strong>de</strong> 5-7 zile, în funcŃie <strong>de</strong> gradul <strong>de</strong> <strong>de</strong>zvoltare.<br />

Peletele miceliale au fost apoi filtrate, spălate cu apă distilată şi menŃinute la temperatura <strong>de</strong><br />

-20°C până la extracŃia ADN (metodă adaptată după Leclerc şi col., 2000).<br />

MenŃionez faptul că la această procedură au fost supuse probele <strong>de</strong> fungi obŃinuŃi din<br />

apa recoltată în cursul lunii iunie 2009, un număr total <strong>de</strong> 138 probe, din care 69 probe pe<br />

combinaŃia <strong>de</strong> mediu solid-lichid Potato Dextrose Agar (PDA-agar cu cartof-<strong>de</strong>xtroză)-<br />

Potato Dextrose Broth (PDB-bulion cu cartof-<strong>de</strong>xtroză) şi 69 probe combinaŃia <strong>de</strong> mediu<br />

solid-lichid Sabouraud 2% Glucose Agar (SGA-agar Sabouraud cu glucoză) - Sabouraud<br />

Dextrose Broth (SDB-bulion Sabouraud cu <strong>de</strong>xtroză).<br />

I.3.3.3. Antibioticele utilizate în experiment<br />

Pentru a preîntâmpina <strong>de</strong>zvoltarea şi contaminarea bacteriană, în mediile <strong>de</strong> cultură<br />

pentru fungi se utilizează mai multe tipuri <strong>de</strong> antibiotice (Lategan şi col., 2003, 2004). În<br />

experienŃa noastră, am optat pentru: Penicillin G potassium salt (sare <strong>de</strong> potasiu cu<br />

penicilină G) (Sigma). ConcentraŃia <strong>de</strong> lucru utilizată <strong>de</strong> noi pe mediile soli<strong>de</strong>, cât şi lichi<strong>de</strong><br />

a fost <strong>de</strong> 100 mg L -1 Penicilină G cu sare <strong>de</strong> potasiu.<br />

I.3.4. Caracterizarea morfologică a tulpinilor <strong>de</strong> Saprolegnia<br />

Pentru caracterizarea mofologică a tulpinilor <strong>de</strong> Saprolegnia <strong>de</strong>zvoltate pe mediile <strong>de</strong><br />

cultură, s-a urmărit pe cele 69 probe următoarele aspecte: tipurile <strong>de</strong> hife caracteristice<br />

genului Saprolegnia, reproducerea asexuată (prezenŃa flagelilor pe zoosporii primari) şi<br />

formarea structurilor sexuale (anteridiile şi oogoanele).<br />

Tulpinile fungice din fiecare bazin, la 72 ore <strong>de</strong> creştere pe mediul solid PDA, au fost<br />

reînsămânŃate în plăci Petri <strong>de</strong> plastic cu diamentrul <strong>de</strong> 9 cm, pe acelaşi mediu PDA, la<br />

temperatura <strong>de</strong> 22ºC, pH 5,5. Creşterea Saprolegniei a fost examinată periodic la microscop<br />

11


timp <strong>de</strong> 2-3 săptămâni, pentru a verifica <strong>de</strong>zvoltarea structurilor sexuale. Toate tulpinile au<br />

fost caracterizate şi i<strong>de</strong>ntificate conform cheilor <strong>de</strong> i<strong>de</strong>ntificare comunicate <strong>de</strong> Johnson Jr. şi<br />

col., 2002 (Dieguez-Uribeondo şi col., 2007).<br />

ObservaŃiile microscopice s-au efectuat pentru fiecare probă din fiecare bazin,<br />

procedându-se în felul următor: s-a prelevat cu o ansă microbiologică o porŃiune din colonia<br />

<strong>de</strong>zvoltată pe mediul PDA, s-a pus pe o lamă histologică, s-a mărunŃit cu o lamă <strong>de</strong> bisturiu,<br />

s-a adăugat o picătură <strong>de</strong> soluŃie Lugol pentru colorare, s-a omogenizat, iar la final<br />

preparatul a fost acoperit cu o lamelă histologică. ObservaŃiile s-au efectuat cu microscopul<br />

cu contrast <strong>de</strong> fază, imaginile preluându-se cu o camera digitală adaptată la microscop.<br />

I.3.5. ExtracŃia şi <strong>de</strong>tectarea ADN-ului din fungi<br />

ExtracŃia ADN s-a făcut după protocolul liu Colao Maria Chiara (1999). ExtracŃia<br />

ADN a fost efectuată din miceliumul fungic <strong>de</strong>zvoltat în cultură pură pe mediul lichid PDB<br />

(Potato <strong>de</strong>xtrose broth). S-au utilizat kitul <strong>de</strong> extracŃie <strong>de</strong> la Qiagen, Dneasy Plant Minikit<br />

(conform http://www.qiagen.com) şi extracŃia rapidă a ADN prin soluŃie PBS (tampon fosfat<br />

salin). ExtracŃia <strong>de</strong> ADN s-a efectuat pe 69 <strong>de</strong> probe, obŃinute pe combinaŃia <strong>de</strong> mediu solidlichid<br />

Potato Dextrose Agar (PDA-agar cu cartof-<strong>de</strong>xtroză)- Potato Dextrose Broth (PDBbulion<br />

cu cartof-<strong>de</strong>xtroză). Fiecare probă realizată pe fiecare bazin a fost divizată în două<br />

părŃi egale, fiind realizate în total 138 probe, pentru a se putea efectua extracŃia comparativă<br />

prin cele două meto<strong>de</strong> utilizate.<br />

I.3.5.1. ExtracŃia ADN-ului din fungi utilizând kituri <strong>de</strong> extracŃie (QIAGEN)<br />

DNeasy Plant minikit este o procedură bazată pe coloane “spin”, care încorporează:<br />

liza probelor, în<strong>de</strong>părtarea ARN-ului, în<strong>de</strong>părtarea proteinelor şi a polizahari<strong>de</strong>lor,<br />

precipitarea ADN-ului, şi legarea acestuia <strong>de</strong> membranele coloanelor “spin”. Sunt efectuate<br />

multiple spălări pentru a în<strong>de</strong>părta contaminanŃii, apoi ADN-ul este în<strong>de</strong>părtat <strong>de</strong> pe<br />

membrană.<br />

12


Echipament, materiale şi reactivi utilizate în experiment:<br />

- Colonii fungice în fază staŃionară (aproximativ 1 x 10 9 ), în număr <strong>de</strong> 69 pe probe, pe<br />

bazine <strong>de</strong> provenienŃă; Kitul <strong>de</strong> la Qiagen.<br />

I.3.5.2. ExtracŃia ADN-ului din fungi utilizând soluŃii<br />

La extracŃia rapidă a ADN utilizând soluŃie <strong>de</strong> PBS (fosfat tampon salin),<br />

efectuată pe un număr <strong>de</strong> 69 probe, s-a procedat în felul următor: într-un tub Eppendorf se<br />

cântăresc 120 mg Ńesut fungic, peste care se adaugă 200 µl soluŃie PBS. Probele se<br />

centrifughează la 3000 rpm timp <strong>de</strong> 20 minute, apoi se elimină supernatantul. OperaŃiunea a<br />

fost repetată <strong>de</strong> 5 ori, până la curăŃarea peletei <strong>de</strong> ADN fungic. Apoi probele s-au pus în baie<br />

<strong>de</strong> apă, la 95°C pentru spargerea peretelui celular, timp <strong>de</strong> 15 minute. Se uscă probele la<br />

etuvă 30 minute, după care se adaugă soluŃie TE (Tris-EDTA) <strong>de</strong> rehidratare a ADN-ului.<br />

Pentru metoda rapidă <strong>de</strong> extracŃie a ADN cu soluŃie NE se folosesc anumite<br />

materiale chimice, soluŃiile trebuind preparate în laborator. Materialele şi consumabilele au<br />

fost următoarele: pipete Eppendorf, cu volume reglabile; tuburi (Eppendorf); vârfuri <strong>de</strong><br />

pipete <strong>de</strong> dimensiuni diferite (dimensiuni mari, medii şi mici); apă sterilă.<br />

I.3.6. Cuantificarea ADN prin metoda directă <strong>de</strong> <strong>de</strong>terminare a purităŃii şi<br />

concentraŃiei ADN cu spectofotometrul Nanodrop ND-1000<br />

Pentru <strong>de</strong>terminarea purităŃii şi concentraŃiei ADN s-a utilizat spectofotometrul<br />

Nanodrop ND – 1000. Pentru a se putea afla concentraŃia ADN extras din probele <strong>de</strong> fungi s-<br />

a utilizat metoda directă <strong>de</strong> <strong>de</strong>terminare, care presupune măsurarea <strong>de</strong>nsităŃii optice a probei<br />

<strong>de</strong> ADN, la lungimea <strong>de</strong> undă 260/280 nm, pe un spectrofotometru, în domeniul UV/VIS.<br />

I.3.7. Regiunea ITS <strong>de</strong> la fungi şi primerii utilizaŃi<br />

La fungi şi alte eucariote, există două locaŃii pentru ADNr: genomul nuclear şi<br />

genomul mitocondrial. Cel din urmă conŃine două gene care codifică genele mitocondriale<br />

mici şi mari ale ARNr. ADNr nuclear la fungi este organizat, în general, într-o unitate<br />

13


nucleară care se repetă în tan<strong>de</strong>m. O unitate ADNr, ilustrată în fig.2, inclu<strong>de</strong> 3 gene ARNr:<br />

gena nucleară mică-small nuclear (18S) ARNr, 5,8S ARNr şi gena nucleară mare-large<br />

nuclear (28S) ARNr. Într-o unitate, genele sunt separate <strong>de</strong> două spaŃii transcrise interninternal<br />

transcribed spacers (ITS1 şi ITS2), şi două unităŃi ADNr separate <strong>de</strong> spaŃiul<br />

intergenic-intergenic spacer (IGS). Ultima genă ARNr (5S) poate fi sau nu în interiorul<br />

unităŃii repetate (Kamoun, 2003).<br />

Fig.2. Diagrama unităŃilor repetitive ale ADN ribozomal nuclear<br />

(Frisvad şi col., 1998)<br />

Cu excepŃia unor domenii variabile ale genelor ARNr, regiunile codificatoare sunt<br />

înalt conservate în cazul organismelor, acest lucru permiŃând comparaŃii între fungi înrudiŃi<br />

în<strong>de</strong>părtat. În contrast, <strong>de</strong>oarece aceştia evoluează repe<strong>de</strong>, regiunile necodificatoare au o<br />

variabilitate mai mare faŃă <strong>de</strong> regiunile codificatoare. SpaŃierile transcrise intern (ITS1 şi<br />

ITS2) necodificatoare pot fi utilizate în diferenŃierea speciilor înrudite strâns din interiorul<br />

unui gen fungic. Regiunea ITS, incluzând aici ITS1, gena 5,8S ARNr şi ITS2, este <strong>de</strong><br />

aproximativ 600 până la 1000 perechi <strong>de</strong> baze şi poate fi amplificată atât total, cât şi parŃial<br />

folosind primerii “universali” <strong>de</strong>scrişi <strong>de</strong> White şi col., în 1990.<br />

Regiunea ITS este acum poate cea mai secvenŃiată regiune a ADN la fungi. Aceasta<br />

este folosită în elaborarea studiilor <strong>de</strong> sistematică moleculară între specii şi chiar în interiorul<br />

speciilor (<strong>de</strong> exemplu, pentru a i<strong>de</strong>ntifica geografic rasele). Din cauza gradului mare <strong>de</strong><br />

variaŃie faŃă <strong>de</strong> alte regiuni genice ale ADNr (SSU şi LSU), variaŃia în interiorul unităŃilor<br />

repetitive individuale ale ADNr uneori poate fi observată atât în interiorul regiunii ITS, cât şi<br />

IGS. Pe lângă primerii standard utilizaŃi <strong>de</strong> majoritatea laboratoarelor (ITS1 şi ITS4), mai<br />

pot fi folosiŃi alŃi câŃiva primeri în amplificarea selectivă a secvenŃelor ITS a fungilor.<br />

14


Primerii folosiŃi <strong>de</strong> către noi în reacŃia PCR au fost următorii (standardizaŃi <strong>de</strong> White<br />

şi col., 1990):<br />

- ITS1, cu secvenŃa 5’-3’: TCCGTAGGTGAACCTGCGG;<br />

- ITS4, cu secvenŃa 5’-3’: TCCTCCGCTTATTGATATGC;<br />

- ITS5, cu secvenŃa 5’-3’: GGAAGTAAAAGTCGTAACAAGG;<br />

Am folosit comparativ un amestec <strong>de</strong> perechi <strong>de</strong> primeri, în următoarea combinaŃie:<br />

ITS1 cu ITS4 şi ITS4 cu ITS5. Primerul ITS1 se ataşează la capătul 3’al genei 18S ADNr şi<br />

primerul ITS4 la capătul 5’ al genei 28S ADNr (după Paul B. şi col., 2004). Ultima<br />

combinaŃie <strong>de</strong> primeri se utilizează în amplificarea regiunii unităŃii repetitive a ADNr, care<br />

inclu<strong>de</strong> două regiuni necodificatoare, <strong>de</strong>numite ITS1 şi ITS2, şi gena 5,8S ARNr (Llanos<br />

Frutos şi col., 2004).<br />

I.3.8. Tehnici moleculare utilizate în experiment<br />

I.3.8.1. Amplificarea PCR a probelor <strong>de</strong> Saprolegnia<br />

În experienŃa efectuată <strong>de</strong> noi am utilizat combinaŃiile <strong>de</strong> perechi <strong>de</strong> primeri ITS1 şi<br />

ITS4, ITS4 şi ITS5 (White şi col., 1990), care amplifică regiunea ITS1, gena 5,8S rRNA şi<br />

ITS2. ReacŃiile <strong>de</strong> amplificare au fost efectuate individual, într-un volum final <strong>de</strong> 25 µl, cu<br />

un termocycler Eppendorf.<br />

Parametrii ciclului <strong>de</strong> amplificare utilizat au fost următorii: <strong>de</strong>naturarea iniŃială la<br />

95°C timp <strong>de</strong> 3 minute, urmată <strong>de</strong> 35 cicluri <strong>de</strong> <strong>de</strong>naturare la 94°C timp <strong>de</strong> 1 minut,<br />

annealing la 55°C timp <strong>de</strong> 1 minut şi extensia la 72°C timp <strong>de</strong> 1 minut, şi extensia finală la<br />

72°C timp 7 minute. Produşii <strong>de</strong> amplificare au fost separaŃi prin electoforeză pe gel <strong>de</strong><br />

agaroză 1,5%, cu buffer TBE 1x, timp <strong>de</strong> 60 minute la 70V. ADN a fost apoi colorat cu Sybr<br />

Safe (Invitrogen) şi vizualizat la lumină UV. Se fotografiază gelul şi se salvează imaginea pe<br />

aparat (Biorad). Lungimile produşilor <strong>de</strong> amplificare au fost estimate în comparaŃie cu un<br />

Lad<strong>de</strong>r ADN Low Range (700 pb) sau <strong>de</strong> 50 pb (Fermentas) (adaptată după Ristaino şi col.,<br />

1998).<br />

15


Am mai testat o altă metodă <strong>de</strong> amplificare, care s-a efectuat într-un termocycler<br />

Eppendorf, după următorul protocol <strong>de</strong> lucru, cu etapele:<br />

- pre<strong>de</strong>naturare: 5 minute la 95°C<br />

- 35 cicluri: - <strong>de</strong>naturare 30 secun<strong>de</strong> la 95°C<br />

- annealing 30 secun<strong>de</strong> la 48°C<br />

- extensie 90 secun<strong>de</strong> la 68°C<br />

- extensie finală: 7 minute la 68°C (după Coalo Maria Chiara, 1999).<br />

Amplificarea s-a efectuat pe un număr <strong>de</strong> 69 probe, <strong>de</strong>zvoltate pe mediul Potato<br />

Dextrose Broth (PDB-bulion cu cartof-<strong>de</strong>xtroză), utilizând tehnica adaptată a lui Ristaino şi<br />

col., 1998.<br />

I.3.8.2. Tehnica PCR-RFLP - Restriction Fragment Length Polymorphism<br />

Fragmentele amlificate au fost digerate <strong>de</strong> noi cu 3 enzime <strong>de</strong> restricŃie <strong>de</strong> la<br />

Fermentas: RsaI, HindIII şi AluI. Protocolul <strong>de</strong> digestie a fost conform cu a<br />

manufacturierului (http://www.fermentas.com).<br />

Produşii PCR au fost incubaŃi peste noapte, la 37ºC, iar la final la 65ºC timp <strong>de</strong> 10<br />

minute. Produşii <strong>de</strong> digestie au fost apoi supuşi electroforezei, într-un gel <strong>de</strong> agaroză <strong>de</strong> 3%<br />

cu buffer TBE, la 60V, timp <strong>de</strong> 2 ore. ADN-ul a fost colorat cu Sybr Safe (Invitrogen),<br />

pentru a vizualiza polimorfismele fragmentelor amplificate, la lumină ultravioletă (Biorad).<br />

S-a utilizat un lad<strong>de</strong>r ADN <strong>de</strong> 700 pb pentru compararea fragmentelor (Fermentas).<br />

I.3.9. Meto<strong>de</strong> utilizate în stabilirea diversităŃii şi<br />

înrudirii filogenetice a speciilor <strong>de</strong> fungi din familia Saprolegniaceae<br />

I.3.9.1. SecvenŃierea automată<br />

Catena <strong>de</strong> ADN a fost secvenŃiată cu primerii universali ITS1 (sens) şi ITS4<br />

(antisens) la Mycrosinth (ElveŃia). Rezultatele secvenŃierilor au fost interpretate utilizânduse<br />

un software specific <strong>de</strong>numit Chromas Lite.<br />

Pentru stabilirea diversităŃii genetice au mai fost utilizate softuri genetice specifice.<br />

16


CAPITOLUL II<br />

REZULTATELE CERCETĂRILOR PROPRII<br />

II.1. REZULTATELE CULTURII DE SAPROLEGNIA ÎN<br />

CONDIłII DE LABORATOR<br />

S-a procedat la exprimarea procentuală din total probe analizate, a fiecărui scor cu<br />

care s-a apreciat gradul <strong>de</strong> infestare, pe fiecare nivel <strong>de</strong> temperatură, neŃinându-se cont <strong>de</strong><br />

bazine şi ferme (tabelul 1).<br />

Gradul <strong>de</strong> infestare a icrelor cu Saprolegnia în funcŃie <strong>de</strong> temperatură<br />

exprimat procentual din numărul total <strong>de</strong> probe (207)<br />

Temperatura<br />

Scor <strong>de</strong> infestare<br />

Tabelul 1<br />

0 1 2 3 4<br />

10°C 4,34 38,64 54,58 2,41 0<br />

15°C 0,96 11,11 32,36 51,20 4,34<br />

22°C 0,96 0,96 12,56 45,41 40,09<br />

Legendă: 0 – infestaŃie neevi<strong>de</strong>nŃiată; 1 - foarte slab infestat; 2 - slab infestat; 3 – mediu<br />

infestat; 4 – bine infestat.<br />

Din datele tabelare se evi<strong>de</strong>nŃiază faptul că <strong>de</strong>zvoltarea saprolegniozei este diferită <strong>de</strong><br />

la o temperatură <strong>de</strong> incubaŃie la alta. La 10°C, 38,64% dintre probe au fost punctate cu<br />

scorul <strong>de</strong> 1, ceea ce <strong>de</strong>notă o infestare foarte slabă la 144 ore <strong>de</strong> la incubaŃie. 54,58%, <strong>de</strong>ci<br />

mai mult din jumătatea probelor analizate <strong>de</strong>zvoltă slab fungul, doar 2,41% fiind mediu<br />

infestate.<br />

La temperatura <strong>de</strong> 15°C doar 0,96% din probe nu manifestă semne <strong>de</strong> infestare,<br />

comparativ cu 4,34% procent <strong>de</strong> neinfestare la 10°C. Un prag <strong>de</strong> infestare slab <strong>de</strong> 32,36%<br />

din probe este atins la temperatura <strong>de</strong> 15°C, iar nivelul mediu <strong>de</strong> infestare la 51,20% din ele.<br />

Spre <strong>de</strong>osebire <strong>de</strong> gradientul <strong>de</strong> temperatură <strong>de</strong> 10ºC, la cel <strong>de</strong> 15°C apare un procent <strong>de</strong><br />

4,34% din probe bine infestate.<br />

17


La temperatura <strong>de</strong> incubaŃie <strong>de</strong> 22ºC, 40,09% din probe prezintă un nivel bun <strong>de</strong><br />

infestare, 45,41% nivel mediu, şi doar 0,96% sunt neinfestate sau cu nivel foarte slab <strong>de</strong><br />

infestare. Aceste date evi<strong>de</strong>nŃiază faptul că indiferent <strong>de</strong> bazinul <strong>de</strong> recoltare, <strong>de</strong> zonă şi <strong>de</strong><br />

momentul anului, saprolegnioza ca boală se manifestă cu intensitate ridicată şi cu o durată<br />

mai scurtă <strong>de</strong> manifestare în timp la temperaturi <strong>de</strong> 20°C. Acest lucru vine să confirme<br />

datele <strong>de</strong> pier<strong>de</strong>ri la icrele şi larvele <strong>de</strong> ciprini<strong>de</strong> comunicate <strong>de</strong> crescători, ca şi <strong>de</strong><br />

cercetătorii din domeniu, care au loc în lunile mai-iunie, perioadă <strong>de</strong> reproducŃie, când se<br />

constată un puseu <strong>de</strong> saprolegnioză. La temperaturi mai scăzute, fungul este prezent chiar<br />

dacă pentru a afecta populaŃiile <strong>de</strong> peşti este necesară o perioadă mai lungă <strong>de</strong> incubaŃie a<br />

acestuia. La populaŃii <strong>de</strong> ciprini<strong>de</strong>, care iernează sub gheaŃă şi care realizează mişcări mai<br />

reduse, inci<strong>de</strong>nŃa este mai redusă <strong>de</strong>cât la alte specii, afectaŃi fiind doar indivizi care au intrat<br />

slăbiŃi la iernare sau prezintă răniri generate <strong>de</strong> manipulare.<br />

II.2. REZULTATE PRIVIND CREŞTERA ŞI DEVZOLTAREA<br />

SAPROLEGNIEI PE MEDIILE DE CULTURĂ<br />

II.2.1. Rezultate comparative privind creşterea coloniilor<br />

<strong>de</strong> Saprolegnia pe mediile <strong>de</strong> cultură soli<strong>de</strong><br />

S-au utilizat cele două medii soli<strong>de</strong> pentru a putea fi urmărit comparativ modul <strong>de</strong><br />

creştere al coloniilor la 24, 48 şi 72 ore. Din fiecare bazin al fiecărei locaŃii s-au constituit 2<br />

probe, câte una pentru fiecare mediu. Întrucât cele două probe <strong>de</strong> pe cele două medii, din<br />

fiecare bazin provin din aceeaşi cultură, însămânŃată la 6 zile pe aceste medii, consi<strong>de</strong>răm că<br />

diferenŃele <strong>de</strong> <strong>de</strong>zvoltare la acelaşi gradient <strong>de</strong> temperatură <strong>de</strong> 22°C, se pot atribui<br />

diferenŃelor <strong>de</strong> specii şi cerinŃelor <strong>de</strong> mediu.<br />

Pentru a se putea interpreta corect statistic diferenŃele <strong>de</strong> creştere a coloniilor pe cele<br />

2 medii şi la cele 3 gradiente <strong>de</strong> temperatură, în tabelul 2, prezentăm valorile medii <strong>de</strong><br />

<strong>de</strong>zvoltare a coloniilor în mm.<br />

18


Mediile diametrului coloniilor <strong>de</strong> Saprolegnia la 24, 48 şi 72 ore<br />

<strong>de</strong> <strong>de</strong>zvoltare pe cele două medii <strong>de</strong> cultură soli<strong>de</strong> (în mm)<br />

Timp citire 24 48 72<br />

Tabelul 2<br />

n<br />

Medii <strong>de</strong> cultură<br />

PDA* SGA** PDA SGA PDA SGA<br />

LocaŃia<br />

Ariniş 14,33 9,44 29,00 19,44 56,22 38,11 9+9<br />

Motiş 12,57 7,57 26,57 16,00 51,85 31,57 7+7<br />

Adrian 13,50 10,10 28,10 20,70 53,90 39,50 10+10<br />

łaga 12,00 7,60 24,20 16,20 48,80 32,20 5+5<br />

Ciurila 14,66 9,16 30,33 19,16 57,00 36,50 6+6<br />

Chiochiş 13,60 9,60 28,20 19,20 53,80 36,60 5+5<br />

Daia 11,80 8,00 24,80 16,60 49,40 33,60 5+5<br />

Iernut 11,80 8,20 25,00 17,40 50,80 34,80 5+5<br />

Cefa 12,20 8,00 22,50 16,60 51,30 33,20 10+10<br />

Ineu 13,14 8,28 26,85 17,14 54,00 35,71 7+7<br />

*PDA - Potato Dextrose Agar (agar cu cartof-<strong>de</strong>xtroză)<br />

**SGA - Sabouraud 2% Glucose Agar (agar Sabouraud cu glucoză)<br />

Se constată analizând mediile diametrelor, că la 24 ore (tabelul 2), pe mediul PDA,<br />

coloniile prezintă valori între 11,80 mm (în locaŃiile Daia şi Iernut) şi 14,66 mm (în locaŃia<br />

Ciurila). După aceleaşi 24 ore, coloniile cultivate pe SGA au o medie cuprinsă între 7,57<br />

mm (Motiş) şi 10,10 mm (Adrian).<br />

La 48 ore, cititrea aceloraşi plăci <strong>de</strong> cultură indică aproape o dublare <strong>de</strong> la cititrea<br />

anterioară, pe mediul PDA. Diametrul minim, în medie <strong>de</strong> 22,50 mm, se obŃine pe coloniile<br />

provenite <strong>de</strong> la Cefa, şi maximul <strong>de</strong> 30,33 mm pe probele provenite <strong>de</strong> la Ciurila (tabelul 2).<br />

La acelaşi interval <strong>de</strong> timp, comparativ cu probele <strong>de</strong> pe mediul PDA, cele <strong>de</strong> pe mediul<br />

SGA prezintă valori mult mai reduse, cu un minim <strong>de</strong> 16,00 mm în diametru (Motiş) şi un<br />

maxim <strong>de</strong> 20,70 mm (Adrian). După Stueland şi col., 2005, valori a diametrului coloniilor<br />

mai mari <strong>de</strong> 40 mm indică ajungerea la limita <strong>de</strong> creştere.<br />

La 72 ore, diametrele medii indică valori mai mari <strong>de</strong> 40 mm pentru mediul <strong>de</strong> cultură<br />

cu PDA şi sub această valoare pentru cele cu SGA. Diametrul maxim al coloniilor, <strong>de</strong> 57,00<br />

mm se realizează pe cele 6 probe însămânŃate <strong>de</strong> la Ciurila şi valori medii <strong>de</strong> 48,80 mm pe<br />

19


cele recoltate <strong>de</strong> la łaga (tabelul 2). Pe mediul SGA, diametrul minim <strong>de</strong> creştere, <strong>de</strong> 31,57<br />

mm realizează coloniile însămânŃate din apele <strong>de</strong> la Motiş, iar diametrul maxim, <strong>de</strong> 38,11<br />

mm, probele provenite <strong>de</strong> la Ariniş.<br />

II.2.2. Rezultate comparative privind <strong>de</strong>zvoltarea coloniilor<br />

<strong>de</strong> Saprolegnia pe mediile <strong>de</strong> cultură lichi<strong>de</strong><br />

Utilizarea mediilor <strong>de</strong> cultură lichi<strong>de</strong> este necesară pentru a se obŃine cantităŃi mai<br />

mari <strong>de</strong> masă fungică utilizată pentru extracŃia <strong>de</strong> ADN.<br />

Acest experiment s-a efectuat pentru a putea observa şi recomanda cea mai bună<br />

combinaŃie <strong>de</strong> transfer <strong>de</strong> la mediul solid la mediul lichid, prin aprecierea cantităŃii <strong>de</strong> masă<br />

fungică exprimată în cm 3 .<br />

Au fost urmărite şi analizate 138 <strong>de</strong> probe, câte 69 probe pe fiecare combinaŃie <strong>de</strong><br />

mediu. ObservaŃiile zilnice efectuate <strong>de</strong> la ziua <strong>de</strong> transfer la ziua a şaptea au evi<strong>de</strong>nŃiat un<br />

ritm <strong>de</strong> <strong>de</strong>zvoltare aproape dublu în cazul mediului lichid Potato Dextrose Broth (PDBbulion<br />

cu cartof-<strong>de</strong>xtroză), comparativ cu probele din mediul lichid Sabouraud Dextrose<br />

Broth (SDB-bulion Sabouraud cu <strong>de</strong>xtroză). În ziua a şaptea, în toate paharele Erlenmeyer<br />

cu 100 ml, peletele <strong>de</strong> fungi din mediul lichid Potato Dextrose Broth (PDB-bulion cu cartof<strong>de</strong>xtroză),<br />

aveau între 2,5 şi 4 cm 3 , iar în cele cu mediul lichid Potato Dextrose Broth (PDBbulion<br />

cu cartof-<strong>de</strong>xtroză) valori <strong>de</strong> 1-2 cm 3 .<br />

II.3. CARACTERIZAREA MORFOLOGICĂ A TULPINILOR DE SAPROLEGNIA<br />

Analiza microscopică evi<strong>de</strong>nŃiază faptul că hifele au un aspect neseptat caracteristic<br />

fungilor inferiori. Nu au fost analizate lungimea şi grosimea acestor hife, doar aspectul<br />

general <strong>de</strong> morfologie, care a confirmat prezenŃa fungilor saprolegnieni în cultură, fără a fi<br />

efectuate diferenŃieri morfologice între genuri şi specii. ObservaŃiile microscopice pe o<br />

perioadă <strong>de</strong> 21 <strong>de</strong> zile au evi<strong>de</strong>nŃiat la nivelul fiecărei probe prezenŃa sau absenŃa organelor<br />

<strong>de</strong> reproducŃie sexuată, şi a celei asexuate. Putem afirma cu certitudine că în condiŃii <strong>de</strong><br />

20


laborator specifice metodologiei <strong>de</strong>scrise <strong>de</strong> noi, la toate izolatele fungice a fost i<strong>de</strong>ntificată<br />

prezenŃa flagelilor pe zoosporii primari.<br />

În ceea ce priveşte <strong>de</strong>zvoltarea organelor <strong>de</strong> reproducŃie sexuată (anteridiile şi<br />

oogoanele), se constată că există diferenŃe <strong>de</strong> la un bazin la altul şi <strong>de</strong> la o locaŃie la alta.<br />

Această prezenŃă sau absenŃă a reproducŃiei sexuate o putem atribui în acest moment al<br />

cercetării faptului că speciile existente în bazine sunt diferite, iar unele dintre ele nu<br />

realizează reproducŃia sexuată in vitro, fapt confirmat şi <strong>de</strong> alŃi autori (Fregeneda Gran<strong>de</strong>s,<br />

2000; Dieguez Uribeondo, 2007).<br />

O analiză sintetică privind <strong>de</strong>zvoltarea organelor <strong>de</strong> reproducŃie sexuată la speciile <strong>de</strong><br />

fungi din familia Saprolegniaceae analizate (69 probe), ne permite să afirmăm că la un<br />

număr <strong>de</strong> 41 <strong>de</strong> izolate ceea ce reprezintă procentual 59,42%, ele sunt prezente, putând fi<br />

vizualizate microscopic. La 28 <strong>de</strong> probe, <strong>de</strong>ci la 40,58%, prezenŃa lor nu a putut fi<br />

vizualizată (tabelul 3).<br />

Aspectul<br />

hifelor<br />

Sinteză privind <strong>de</strong>zvoltarea organelor <strong>de</strong> reproducŃie<br />

la speciile <strong>de</strong> fungi din familia Saprolegniaceae analizate (69 probe)<br />

ReproducŃia sexuată<br />

Prezentă<br />

Absentă<br />

ReproducŃia<br />

asexuată<br />

(prezenŃa flagelilor)<br />

Tabelul 3<br />

Nr. probe<br />

Procent<br />

(%)<br />

Nr. probe<br />

Procent<br />

(%)<br />

Nr. probe<br />

Procent<br />

(%)<br />

Neseptat 41 59,42 28 40,58% 69 100%<br />

II.4. REZULTATE PRIVIND EXTRACłIA ŞI CUANTIFICAREA<br />

ADN-ULUI LA SAPROLEGNIA<br />

II.4.1. ExtracŃia ADN<br />

Fiecare probă <strong>de</strong> material biologic a fost divizată, cele două probe fiind supuse la câte<br />

o metodă <strong>de</strong> extracŃie, pentru a se putea aprecia pertinent care din cele două este mai<br />

eficientă pentru acest tip <strong>de</strong> fungi sub aspectul cantităŃii <strong>de</strong> ADN şi a purităŃii lui.<br />

21


Rezultatele prelucrării celor 69 probe extrase prin fiecare metodă arată că purităŃile şi<br />

cantităŃile <strong>de</strong> ADN redate <strong>de</strong> spectrofotomentrul Nanodrop ND 1000, variază <strong>de</strong> la un bazin<br />

la altul ca şi <strong>de</strong> la o metodă la alta în cadrul aceluiaşi bazin.<br />

Astfel, purităŃile ADN redate <strong>de</strong> spectrofotomentru, în urma extracŃiei cu kit pe<br />

microcoloane (Qiagen), oscilează între 1,02 - 1,51, cu o medie a purităŃii probelor <strong>de</strong> 1,250,<br />

la lungimea <strong>de</strong> undă 260/280, iar cantităŃile <strong>de</strong> ADN obŃinute prin aceeaşi metodă între 2,54<br />

– 14,00 ng/µl, cu o medie <strong>de</strong> 5,543 ng/µl. Analizând purităŃile ADN redate <strong>de</strong><br />

spectrofotomentru, în urma extracŃiei cu soluŃie ce conŃine PBS, constatăm că probele au<br />

valori cuprinse între 1,10 – 1,51, cu o medie <strong>de</strong> 1,394, la lungimea <strong>de</strong> undă 260/280, iar<br />

cantităŃile <strong>de</strong> ADN obŃinute prin aceeaşi metodă, între 5,23 ng/µl şi 86,56 ng/µl, cu o medie<br />

<strong>de</strong> 30,653 ng/µl.<br />

II.5. REZULTATELE AMPLIFICĂRII ADN-ULUI LA SPECII<br />

DE FUNGI DIN FAMILIA SAPROLEGNIACEAE<br />

II.5.1. Amplificarea ADN prin PCR<br />

ReacŃiile <strong>de</strong> amplificare au fost efectuate individual, într-un volum final <strong>de</strong> 25 µl, cu<br />

un termocycler Eppendorf. MenŃionăm faptul că procesul <strong>de</strong> amplificare în fază preliminară<br />

a fost efectuat pe câte 20 probe, din care 10 provenite din extracŃia ADN-ului din fungi<br />

utilizând kituri <strong>de</strong> extracŃie (QIAGEN) şi 10 probe provenite din extracŃia ADN-ului din<br />

fungi utilizând soluŃia PBS (tampon fosfat salin). Acest test a fost efectuat pentru a se urmări<br />

prin care din cele două meto<strong>de</strong> utilizate se realizează cea mai precisă amplificare a ADNului,<br />

fără obŃinerea <strong>de</strong> produşi nespecifici.<br />

MenŃionez faptul că al doilea protocol utilizat, <strong>de</strong>scris în material şi metodă, nu a dat<br />

rezultatele scontate la fungi, motiv pentru care s-a renunŃat la el. Prezentăm în continuare, în<br />

fig.3, rezultate comparative privind profilele electroforetice ale fragmentelor amplificate cu<br />

cele două seturi <strong>de</strong> primeri.<br />

22


Deoarece am utilizat în experimente extracŃiile ADN cu soluŃie PBS şi kit QIAGEN<br />

şi combinaŃia <strong>de</strong> primeri universali ITS1 şi ITS4, ITS4 şi ITS5, rezultatele electroforezei m-<br />

au <strong>de</strong>terminat să optez pentru extracŃia ADN cu kit (QIAGEN) şi perecherea <strong>de</strong> primeri<br />

ITS1 şi ITS4.<br />

1 2 3 4 5 6 7 8 9<br />

700pb-<br />

Fig.3. Profilul electroforetic ale unei probe <strong>de</strong> ADN extras din Saprolegnia şi amplificat cu<br />

perechile <strong>de</strong> primeri ITS1 şi ITS4, ITS4 şi ITS5 (original)<br />

1-Lad<strong>de</strong>r Low Range <strong>de</strong> 700 pb (Fermentas); 2-probă ADN extrasă cu kit (primeri ITS1-ITS<br />

4); 3-probă ADN extrasă cu soluŃie PBS (primeri ITS1-ITS4); 4-probă ADN extrasă cu<br />

soluŃie NE (primeri ITS1-ITS4); 5-probă ADN purificată cu kit PCR (primeri ITS1-ITS4);<br />

6-probă ADN purificată cu kit PCR (primeri ITS4-ITS5); 7-probă ADN extrasă cu soluŃie<br />

NE (primeri ITS4-ITS5); 8-probă ADN extrasă cu soluŃie PBS (primeri ITS4-ITS5);<br />

9-probă ADN extrasă cu kit (primeri ITS4-ITS5)<br />

II.6. REZULTATELE RESTRICłIEI ENZIMATICE A ADN-ULUI DE LA SPECII DE<br />

FUNGI DIN FAMILIA SAPROLEGNIACEAE PRIN METODA PCR-RFLP<br />

În cazul restricŃiei cu enzimele AluI şi HindIII, aceasta nu s-a produs, enzimele<br />

nedigerând fragmentul <strong>de</strong> aproximativ 700 pb amplificat, nerecunoscând situsul <strong>de</strong> restricŃie.<br />

Pentru acest consi<strong>de</strong>rent cea <strong>de</strong>-a treia enzimă testată (RsaI), care a restricŃionat toate<br />

23


probele testate a fost utilizată în continuare în analiza profilului electroforetic al celor 69 <strong>de</strong><br />

probe, aparŃinând bazinelor din cele 10 locaŃii.<br />

În continuare s-au efectuat profilele electroforetice ale analizelor <strong>de</strong> restricŃie cu<br />

enzima RsaI (Fermentas) a ADN amplificat cu perechile <strong>de</strong> primeri ITS1 şi ITS4 la specii <strong>de</strong><br />

fungi din familia Saprolegniaceae, pe fiecare bazin al fiecărei locaŃii.<br />

În cazul probelor <strong>de</strong> fungi din familia Saprolegniaceae, provenite din Complexului<br />

Piscicol Ariniş, ju<strong>de</strong>Ńul Maramureş, cu 9 bazine, în probele provenite din bazinele 1,2,3,4,5,8<br />

şi 9, se remarcă prezenŃa a 3 fragmente <strong>de</strong> ADN bine evi<strong>de</strong>nŃiate, primul fragment fiind<br />

cuprins între 350 şi 400 pb, al doilea fragment în jur <strong>de</strong> 200 pb, iar cel <strong>de</strong>-al treilea în jur <strong>de</strong><br />

150 pb. În probele din bazinele 6 şi 7 se evi<strong>de</strong>nŃiază 4 fragmente: primul este cuprins între<br />

450 şi 500 pb, aldoilea în jur <strong>de</strong> 300 pb, al treilea în jur <strong>de</strong> 200 pb, iar al patrulea la 150 pb.<br />

Aceste probe <strong>de</strong> ADN amplificate prezintă un polimorfism <strong>de</strong> lungime al fragmentelor, fapt<br />

confirmat <strong>de</strong> analiza secvenŃierii. Astfel, în urma rezultatelor secvenŃierii s-au i<strong>de</strong>ntificat<br />

două specii <strong>de</strong> fungi acvatici, fiecare aparŃinând la câte un alt gen din familia<br />

Saprolegniaceae. Profilele <strong>de</strong> ADN ilustrate în go<strong>de</strong>urile 2,3,4,5,6,9 şi 10, aparŃin speciei<br />

Saprolegnia ferax, iar profilele polimorfice <strong>de</strong> ADN, prezente în go<strong>de</strong>urile 7 şi 8, aparŃin<br />

speciei Achlya bisexualis.<br />

La probele <strong>de</strong> fungi din familia Saprolegniaceae, provenite din Complexul Piscicol<br />

Motiş, ju<strong>de</strong>Ńul Sălaj, în toate cele 7 bazine analizate se constată acelaşi profil electroforetic al<br />

produşilor PCR, constituit din câte 3 fragmente vizibile. Primul fragment este <strong>de</strong><br />

aproximativ 400 pb, al doilea fragment <strong>de</strong> 200 pb şi al treilea <strong>de</strong> 150 pb. În probele analizate<br />

din această locaŃie nu se semnalează existenŃa unor polimorfisme, toate fragmentele indicând<br />

prezenŃa unei singure specii <strong>de</strong> fungi, confirmată în urma secvenŃierii ca Saprolegnia ferax.<br />

La probele <strong>de</strong> fungi din familia Saprolegniaceae, din Complexul Piscicol Adrian,<br />

ju<strong>de</strong>Ńul Satu Mare, cu 10 bazine, în bazinele 1,2,3,4,6,7,8 şi 10, semnalăm prezenŃa a 3 benzi<br />

<strong>de</strong> migrare, prima la aproximativ 380-400 pb, a doua bandă la 200 pb şi a treia între 100 şi<br />

150 pb. În urma analizelor <strong>de</strong> secvenŃiere, în bazinele respective s-a i<strong>de</strong>ntificat specia<br />

Saprolegnia ferax. În bazinul 5 semnalăm prezenŃa a 2 benzi, din care banda 1 la<br />

aproximativ 450 pb, iar a doua bandă la 200 pb. În bazinul 9 pot fi observate clar 4<br />

24


fragmente: primul la aproximativ 450 pb, al doilea la 250 pb, al treilea la 200 pb şi al<br />

patrulea între 100 şi 150 pb. În probele din go<strong>de</strong>urile 6 şi 10 pot fi observate polimorfisme<br />

<strong>de</strong> lungime diferite faŃă <strong>de</strong> restul probelor <strong>de</strong> ADN fungic, confirmate prin secvenŃiere ca<br />

aparŃinând speciei Achlya bisexualis.<br />

La probele <strong>de</strong> fungi din familia Saprolegniaceae, provenite din Ferma Piscicolă łaga,<br />

din ju<strong>de</strong>Ńul <strong>Cluj</strong>, sunt evi<strong>de</strong>nŃiate la fiecare din cele 5 bazine analizate câte 4 fragmente <strong>de</strong><br />

restricŃie. Primul fragment este între 380-400 pb, al doilea fragment la 200 pb, al treilea<br />

fragment la 150 pb, iar al patrulea la aproximativ 100 pb. Profilele electroforetice ale<br />

probelor <strong>de</strong> ADN sunt asemănătoare ca şi lungime <strong>de</strong> perechi <strong>de</strong> baze. Datele secvenŃierii au<br />

relevat faptul că toate profilele electroforetice aparŃin speciei Saprolegnia ferax.<br />

La probele <strong>de</strong> fungi din familia Saprolegniaceae, provenite din Ferma Piscicolă Ciurila,<br />

ju<strong>de</strong>Ńul <strong>Cluj</strong>, cu 6 bazine, în bazinele 1,2,3,5 şi 6 se constată 3 fragmente <strong>de</strong> ADN restrictate,<br />

din care primul fragment este <strong>de</strong> aproximativ 400 pb, al doilea la 200 pb, iar al treilea la<br />

130-150 pb. În bazinul numărul 4, respectiv în go<strong>de</strong>ul 5, sunt evi<strong>de</strong>nŃiate 4 fragmente <strong>de</strong><br />

ADN, din care primul la 500 pb, al doilea la 250 pb, al treilea la 200 pb şi al patrulea între<br />

130-150 pb, ceea ce semnalează existenŃa unui polimorfism, confirmat prin secvenŃiere ca<br />

aparŃinând speciei Achlya bisexualis.<br />

La probele <strong>de</strong> fungi din familia Saprolegniaceae, provenite din Ferma Piscicolă<br />

Chiochiş, ju<strong>de</strong>Ńul BistriŃa-Năsăud, cu 5 bazine, în bazinele 1,2,3 şi 5, apar 3 fragmente cu<br />

următoarele mărimi: primul fragment între 400 şi 500 pb, al doilea fragment între 200 şi 250<br />

pb, iar al treilea fragment între 150-200 pb. Aceste profile electroforetice, corelate cu datele<br />

secvenŃierii şi confruntarea lor în GeneBank, au indicat prezenŃa speciei Saprolegnia ferax.<br />

În bazinul 4, cele 3 fragmente au lungimi diferite, astfel: primul fragment <strong>de</strong> 500 pb, al<br />

doilea <strong>de</strong> aproximativ 250 pb, iar al treilea <strong>de</strong> 150-200 pb. În urma analizei lungimii<br />

fragmentelor <strong>de</strong> amplificare prin electroforeză, în bazinul 4, se evi<strong>de</strong>nŃiază un polimorfism<br />

diferit faŃă <strong>de</strong> al celorlalte probe <strong>de</strong> ADN <strong>de</strong> la fungi, care pune în evi<strong>de</strong>nŃă prezenŃa unei<br />

alte specii, confirmată ca Achlya bisexualis.<br />

La probele <strong>de</strong> fungi din familia Saprolegniaceae, provenite din Ferma Piscicolă Daia,<br />

ju<strong>de</strong>Ńul Alba, cu 5 bazine, în bazinele 1,2,3,4 se remarcă prezenŃa a 3 benzi <strong>de</strong> restricŃie, din<br />

25


care prima bandă este la 400 pb, a doua bandă la 200 pb, iar a treia la 130-150 pb, în urma<br />

secvenŃierii i<strong>de</strong>ntificându-se specia <strong>de</strong> fungi acvatici Saprolegnia ferax. Se observă un<br />

polimorfism al lungimii fragmentelor la probele <strong>de</strong> fungi provenite din bazinul 5, confirmat<br />

ca aparŃinând speciei Achlya bisexualis. Primul fragment este <strong>de</strong> 500 pb, al doilea <strong>de</strong><br />

aproximativ 200 pb. Al treilea fragment este slab vizibil.<br />

La probele <strong>de</strong> fungi din familia Saprolegniaceae, din Ferma Piscicolă Iernut, ju<strong>de</strong>Ńul<br />

Mureş, cu 5 bazine, se observă aceleaşi lungimi ale fragmentelor în bazinele 1,2,3 şi 5.<br />

Primul fragment este <strong>de</strong> 400 pb, al doilea fragment <strong>de</strong> 200 pb, iar al treilea <strong>de</strong> 130-150 pb.<br />

Profilele electroforetice aparŃin speciei Saprolegnia ferax, secvenŃiată ulterior. În bazinul 4,<br />

lungimea fragmentelor diferă astfel: primul fragment este <strong>de</strong> 500 pb, al doilea <strong>de</strong><br />

aproximativ 210-220 pb, iar al treilea <strong>de</strong> 150 pb, fiind vorba <strong>de</strong> un polimorfism, respectiv <strong>de</strong><br />

o altă specie <strong>de</strong> fungi (Achlya bisexualis).<br />

În cazul probelor <strong>de</strong> fungi din familia Saprolegniaceae, provenite din Complexul<br />

Piscicol Cefa, ju<strong>de</strong>Ńul Bihor, cu 10 bazine, în bazinele 1,2,4,5,6,7 şi 9, cele 3 fragmente au<br />

următoarele lungimi: primul fragment este <strong>de</strong> 400 pb, al doilea <strong>de</strong> 200 pb, iar al treilea între<br />

130 şi 150 pb. Aceste polimorfisme aparŃin speciei Saprolegnia ferax. În bazinele 3, 8 şi 10,<br />

fragmentele sunt <strong>de</strong> mărimi diferite, confirmând în urma secvenŃierii specia Achlya<br />

bisexualis. Primul fragment se vizualizează mai clar, fiind la aproximativ 450 pb. La probele<br />

provenite din bazinele 8 şi 10, se observă prezenŃa unui fragment în plus, al doilea, <strong>de</strong> 250<br />

pb, al treilea <strong>de</strong> 200 pb şi al patrulea <strong>de</strong> aproximativ 130 pb sunt la aceeaşi lungime cu al<br />

doilea şi al treilea fragment <strong>de</strong> la probele provenite din celelalte bazine.<br />

La Ferma Piscicolă Ineu, ju<strong>de</strong>Ńul Arad, fragmentele tuturor probelor <strong>de</strong> fungi din<br />

familia Saprolegniaceae, din cele 7 bazine analizate au prezentat aceleaşi mărimi: primul <strong>de</strong><br />

400 pb, al doilea <strong>de</strong> 200 pb şi al treilea între 130 şi 150 pb. Analizele ulterioare <strong>de</strong><br />

secvenŃiere au confirmat prezenŃa speciei Saprolegnia ferax, în bazinele din locaŃia studiată.<br />

26


II.7. REZULTATE PRIVIND STUDIUL ÎNRUDIRII GENETICE A<br />

FUNGILOR DIN FAMILIA SAPROLEGNIACEAE<br />

Tree Diagram for 12 Variables<br />

Single Linkage<br />

Eucli<strong>de</strong>an distances<br />

Var1<br />

Var7<br />

Var3<br />

Var6<br />

Var2<br />

Var8<br />

Var10<br />

Var11<br />

Var4<br />

Var9<br />

Var5<br />

Var12<br />

0 10 20 30 40 50 60<br />

Linkage Distance<br />

Fig.4. Analiza <strong>de</strong> filogenie a celor 69 <strong>de</strong> probe <strong>de</strong> ADN<br />

<strong>de</strong> la fungi din familia Saprolegniaceae, provenite din 10 locaŃii<br />

Varianta 1: Ariniş, cu probele din bazinele 1-5, 8,9; Motiş, cu probele din cele 7 bazine;<br />

Varianta 2: Ariniş, cu probele din bazinele 6 şi 7;<br />

Varianta 3: Adrian, cu probele din bazinele 1–4, 6-8, 10;<br />

Varianta 4: Adrian, cu probele din bazinul 5;<br />

Varianta 5:Adrian, cu probele din bazinul 9;<br />

Varianta 6: łaga, cu probele din toate cele 5 bazine;<br />

Varianta 7: Ciurila, cu probele din bazinele 1-3, 5-6; Daia, cu probele din bazinele 1-4;<br />

Iernut, cu probele din bazinele 1-3, 5; Cefa, cu probele din bazinele 1-2, 4-7, 9;<br />

Ineu, cu probele din toate cele 7 bazine;<br />

Varianta 8: Ciurila, cu probele din bazinul 4;<br />

Varianta 9: Chiochiş, cu probele din bazinele 1-3 şi 5;<br />

Varianta 10: Chiochiş, cu probele din bazinul 4;<br />

Varianta 11: Iernut, cu probele din bazinul 4; Daia, cu probele din bazinul 5;<br />

Varianta 12: Cefa, cu probele din bazinele 8 şi 10.<br />

27


Interpretarea <strong>de</strong>ndrogramei efectuate în urma citirii lungimilor fragmentelor <strong>de</strong> ADN<br />

din toate cele 69 <strong>de</strong> bazine analizate ne permite să afirmăm următoartele aspecte privind<br />

filiaŃia fungilor din familia Saprolegniaceae i<strong>de</strong>ntificaŃi (fig.4).<br />

Toate tipurile <strong>de</strong> fungi i<strong>de</strong>ntificate au origine ancestrală comună, prima ruptură <strong>de</strong><br />

speciaŃie realizându-se la varietatea ancestrală, la o distanŃă <strong>de</strong> linkage <strong>de</strong> 58 cM (centi-<br />

Morgani). Una din speciaŃii a evoluat o lungă perioadă <strong>de</strong> timp, într-o parte a bazinelor<br />

analizate, când din cauza unei mutaŃii punctiforme, localizată la o distanŃă <strong>de</strong> 20 cM au<br />

apărut alte două speciaŃii. Una din acestea evoluează si în prezent, fiind localizată în bazinele<br />

1-5, 8,9 din locaŃia Ariniş, cele 7 bazine <strong>de</strong> la locaŃia Motiş (var.1), bazinele 1-3, 5-6 din<br />

Ciurila, bazinele 1-4 din Daia, bazinele 1-3 şi 5 din Iernut, bazinele 1-2, 4-7 şi 9 <strong>de</strong> la Cefa şi<br />

toate cele 7 bazine din locaŃie Ineu (var.7).<br />

Cealaltă speciaŃie care a evoluat în urma mutaŃiei punctiforme, <strong>de</strong> la nivelul <strong>de</strong> 20 cM<br />

a evoluat o perioadă <strong>de</strong> timp, după care în urma altei mutaŃii punctiforme, la distanŃa <strong>de</strong><br />

linkage <strong>de</strong> 10 cM a generat alte două speciaŃii. Una dintre ele (var.3) evoluează şi a fost<br />

i<strong>de</strong>ntificată în prezent în bazinele 1-4, 6-8 şi 10 în locaŃia Adrian şi în toate cele 5 bazine din<br />

locaŃia łaga (var.6). Cea <strong>de</strong>-a doua ramură care s-a <strong>de</strong>sprins din forma ancestrală, la distanŃa<br />

<strong>de</strong> 58 cM a evoluat în timp până când o mutaŃie punctiformă a <strong>de</strong>terminat crearea a două noi<br />

speciaŃii, la distanŃa <strong>de</strong> linkage <strong>de</strong> 42 cM. Una din ramuri a evoluat o perioadă scurtă <strong>de</strong><br />

timp, când la o distanŃă <strong>de</strong> linkage <strong>de</strong> 35 cM, a realizat o mutaŃie punctiformă care a<br />

<strong>de</strong>terminat crearea a două noi speciaŃii. Una a fost i<strong>de</strong>ntificată în bazinele 6 şi 7 din locaŃia<br />

Ariniş (var.2). Cealaltă speciaŃie, în urma unei alte mutaŃii punctiforme, la o distanŃă <strong>de</strong> 30<br />

cM a <strong>de</strong>terminat evoluŃia a două unităŃi taxonomice i<strong>de</strong>ntificate azi. Una din ele evoluează şi<br />

este foarte activă în bazinul 4 din localitatea Ciurila (var.8) şi bazinul 4 din localitatea<br />

Chiochiş (var.10). Cealaltă ramură <strong>de</strong>sprinsă este i<strong>de</strong>ntificată şi activează în bazinul 4 din<br />

localitatea Iernut şi bazinul 5 din Daia (var.11).<br />

Cea <strong>de</strong>-a doua ramură <strong>de</strong>sprinsă la distanŃa <strong>de</strong> linkage <strong>de</strong> 42 cM a evoluat o lungă<br />

perioadă <strong>de</strong> timp într-o parte a bazinelor analizate, după care, la distanŃa <strong>de</strong> 10 cM, în urma<br />

unei alte mutaŃii, au rezultat 3 speciaŃii, din care două apropiate genetic (var.4 şi 9),<br />

i<strong>de</strong>ntificate în bazinul 4 din locaŃia Adrian şi bazinele 1-3 şi 5 din Chiochiş. La o distanŃă<br />

28


mai mare genetică, indivizii <strong>de</strong>sprinşi din aceeaşi ramură evoluează în bazinul 9 din ferma<br />

Adrian (var.5) şi cei din bazinele 8 şi 10, localitatea Cefa (var.12).<br />

II.8. REZULTATELE SECVENłIERII SPECIILOR DE FUNGI DIN FAMILIA<br />

SAPROLEGNIACEAE ÎN LOCAłIILE STUDIATE<br />

În urma secvenŃierii automate cu secvenŃiatorul ABI Prism, efectuate la Mycrosinth<br />

(ElveŃia), au fost i<strong>de</strong>ntificate două specii <strong>de</strong> fungi acvatici în bazinele studiate, reprezentate<br />

<strong>de</strong> Saprolegnia ferax şi Achlya bisexualis.<br />

În cazul secvenŃierii speciei Saprolegnia ferax, fragmentul secvenŃiat cu primerii<br />

ITS1 (forward) şi ITS4 (reverse) are o lungime <strong>de</strong> 743 <strong>de</strong> perechi <strong>de</strong> baze, o i<strong>de</strong>ntitate <strong>de</strong><br />

99% şi prezintă două mutaŃii punctiforme faŃă <strong>de</strong> specia matriŃă din GeneBank. La poziŃia<br />

31, se observă o <strong>de</strong>leŃie a unei nucleoti<strong>de</strong> C, între nucleoti<strong>de</strong>le A–C şi la poziŃia 368, se<br />

remarcă o substituŃie A cu C.<br />

În cazul secvenŃierii speciei Achlya bisexualis, fragmentul secvenŃiat cu primerii ITS1<br />

(forward) şi ITS4 (reverse) are o lungime <strong>de</strong> 761 <strong>de</strong> perechi <strong>de</strong> baze, o i<strong>de</strong>ntitate <strong>de</strong> 99% şi<br />

prezintă 7 mutaŃii punctiforme faŃă <strong>de</strong> specia matriŃă din GeneBank. La poziŃia 112, se<br />

observă o substituŃie între nucleoti<strong>de</strong>le C cu T; la poziŃia 119, se remarcă o substituŃie G cu<br />

A; la poziŃia 194, o substituŃie T cu G; la poziŃiile 370 şi 371, două substituŃii C cu A; la<br />

poziŃia 416, o substituŃie A cu T şi la poziŃia 633 o substituŃie A cu G.<br />

II.9. INCIDENłA SAPROLEGNIOZEI ÎN AREALUL STUDIAT<br />

DIN CENTRUL ŞI NORD-VESTUL ROMÂNIEI<br />

Aşa cum s-a arătat la începutul acestei teze, saprolegnioza este consi<strong>de</strong>rat “ucigaşul<br />

tăcut” al speciilor piscicole, boala producând pier<strong>de</strong>ri extrem <strong>de</strong> importante în toate<br />

crescătoriile piscicole, în<strong>de</strong>osebi la cele ciprinicole.<br />

Saprolegnioza constituie una din cele mai importante cauze ale pier<strong>de</strong>rilor economice<br />

din acvacultură, infecŃiile cu fungi secondând doar bolile bacteriene ca importanŃă<br />

economică. InfecŃiile bacteriene sunt în general cronice, provocând pier<strong>de</strong>ri constante. În<br />

Japonia rata anuală <strong>de</strong> mortalitate la somonul Coho (Oncorhynchus kisuth) cauzată <strong>de</strong><br />

29


Saprolegnia parasitica Coker este <strong>de</strong> 50%. Acelaşi procent se înregistrează şi la anghilă<br />

(Anguilla anguilla), tot în Japonia. În ScoŃia, saprolegnioza provoacă pier<strong>de</strong>ri economice<br />

importante în<strong>de</strong>osebi în crescătoriile <strong>de</strong> somoni.<br />

În sudul Statelor Unite ale Americii pier<strong>de</strong>rile înregistrate la somn au fost <strong>de</strong> 50%, iar<br />

pier<strong>de</strong>rea economică <strong>de</strong> 40 milioane <strong>de</strong> dolari. În fiecare an crescătorii <strong>de</strong> somn din S.U.A.<br />

înregistreză pier<strong>de</strong>ri mai mari <strong>de</strong> 25 milioane <strong>de</strong> dolari din cauza bolilor acvatice, conform<br />

statisticilor.<br />

În Europa procentul <strong>de</strong> pier<strong>de</strong>ri la populaŃiile <strong>de</strong> ciprini<strong>de</strong>, în zonele în care pe lângă<br />

factorii predispozanŃi reprezentaŃi <strong>de</strong> suprapopulare, manipularea <strong>de</strong>fectuasă a peştilor,<br />

stresul <strong>de</strong> reproducŃie <strong>de</strong>terminat <strong>de</strong> excesul hormonilor corticosteroizi, infecŃiile asociate<br />

(Jeney şi col., 1995), se suprapun şi factorii <strong>de</strong> poluare a apei şi aerului, procentul <strong>de</strong><br />

mortalitate mediu la adulŃi <strong>de</strong>păşeşte 25%. Pier<strong>de</strong>ri între 50 şi 100% la icre şi <strong>de</strong> 14 până la<br />

30% la larve şi alevini, între 10 şi 15% la tineret semnalează mai mulŃi autori (Horvath şi<br />

col., 2005). Raportându-ne la situaŃia pe plan mondial şi european, constatăm că în arealul<br />

cuprins în cercetare evi<strong>de</strong>nŃiază şi în cazul nostru pier<strong>de</strong>ri însemnate <strong>de</strong>terminate <strong>de</strong><br />

saprolegnioză (tabelul 4).<br />

LocaŃia<br />

Icre în<br />

perioada <strong>de</strong><br />

incubaŃie<br />

Procentul <strong>de</strong> pier<strong>de</strong>ri <strong>de</strong>terminate <strong>de</strong> saprolegnioză<br />

în locaŃiile studiate la ciprini<strong>de</strong> (%)<br />

Larve Alevini Tineret<br />

AdulŃi<br />

Tabelul 4<br />

Iarna Primăvara Vara Toamna<br />

Ariniş 70 30 5 3 4 5 5 3<br />

Motiş 40 20 7 5 3 2 3 3<br />

Adrian 58 25 10 5 8 6 6 5<br />

łaga 60 28 10 8 9 5 4 4<br />

Ciurila 30 10 5 5 7 5 4 3<br />

Chiochiş 30 12 10 5 10 6 5 4<br />

Daia 25 15 5 3 5 3 3 3<br />

Iernut 50 25 13 10 10 7 5 5<br />

Cefa 20 5 5 2 3 4 4 4<br />

Ineu 28 7 6 3 4 3 4 3<br />

Media pe<br />

total locaŃii<br />

41,1 16,7 7,6 4,9 6,3 4,6 4,3 4,1<br />

30


MenŃionăm faptul că în toate bazinele piscicole analizate se proce<strong>de</strong>ază la <strong>de</strong>zinfecŃia<br />

anuală a bazinelor în care se practică reproducŃia naturală dirijată, prin golirea şi menŃinerea<br />

lor uscată pe perioada <strong>de</strong> iarnă. Înainte <strong>de</strong> umplere bazinele sunt <strong>de</strong>zinfectate cu var nestins<br />

pe toată suprafaŃa lor. Cu toate acestea, prin modul <strong>de</strong> manipulare al reproducătorilor şi prin<br />

explozia <strong>de</strong> tipuri <strong>de</strong> vegetaŃie, în perioada <strong>de</strong> reproducŃie se semnalează atacuri masive <strong>de</strong><br />

fungi patogeni asupra icrelor, cu pier<strong>de</strong>ri procentuale <strong>de</strong> până la 70% în locaŃia Ariniş, iar<br />

acolo un<strong>de</strong> măsurile <strong>de</strong> igienă sunt extrem <strong>de</strong> severe, pier<strong>de</strong>rile se ridică la 20% din icre<br />

(locaŃia Cefa). În medie, pe cele 69 bazine din cele 10 locaŃii luate în studiu, pier<strong>de</strong>rile <strong>de</strong><br />

icre <strong>de</strong> ciprini<strong>de</strong> se ridică la 41,10%. Perioada larvară, mai ales cea cuprinsă în primele 3 zile<br />

<strong>de</strong> viaŃă, când <strong>de</strong>plasarea lor este limitată <strong>de</strong> prezenŃa sacului vitelin, pier<strong>de</strong>rile medii<br />

semnalate pe arealul studiat se ridică la 16,70%, cu un maxim <strong>de</strong> pier<strong>de</strong>ri <strong>de</strong> 30% în<br />

Complexul Piscicol Ariniş, şi un minim <strong>de</strong> 5% în locaŃia Cefa. Perioada <strong>de</strong> alevini, extrem<br />

<strong>de</strong> pretenŃioasă ca nivel a oxigenului din apă şi a calităŃii hranei, este puternic afectată <strong>de</strong><br />

saprolegnioză. Pier<strong>de</strong>rile medii sunt ceva mai reduse faŃă <strong>de</strong> perioada larvară, fiind <strong>de</strong><br />

7,60%. Cel mai mare procent <strong>de</strong> pier<strong>de</strong>ri la această categorie, <strong>de</strong> 13% se semnalează în<br />

locaŃia Iernut, şi un minim <strong>de</strong> 5% în locaŃiile Ariniş, Ciurila, Daia, Cefa.<br />

Pe perioada <strong>de</strong> tineret, căreia i se acordă o <strong>de</strong>osebită atenŃie, în ceea ce priveşte<br />

calitatea apei şi a furajului, când se asigură o <strong>de</strong>nsitate optimă <strong>de</strong> indivizi şi când<br />

manipulările sunt interzise, pier<strong>de</strong>rile <strong>de</strong>terminate <strong>de</strong> saprolegnioză sunt mult mai reduse, în<br />

medie în arealul studiat fiind <strong>de</strong> 4,90%.<br />

Perioada <strong>de</strong> adult nu este ferită <strong>de</strong> atacul cu Saprolegnia. În majoritatea pescăriilor<br />

luate în studiu se practică pescuitul <strong>de</strong> toamnă şi mutarea peştilor reŃinuŃi pentru anul<br />

următor în bazinele <strong>de</strong> iernare. OperaŃiunea <strong>de</strong> prin<strong>de</strong>re, transport şi repopulare în alt bazin<br />

produc inerente răniri la nivelul cutanat şi al înotătoarelor. Pe perioada <strong>de</strong> iernare peştii nu<br />

consumă furaj, organismul fiind uşor slăbit şi pe acest fond, sub influenŃa schimbărilor<br />

bruşte <strong>de</strong> temperatură şi a stratului <strong>de</strong> gheaŃă, pier<strong>de</strong>rile sunt în medie <strong>de</strong> 6,30%. În perioada<br />

<strong>de</strong> primăvară, atât reproducătorii, cât şi peştii reŃinuŃi pentru creştere sunt verificaŃi privind<br />

starea lor <strong>de</strong> întreŃinere şi sănătate, prin pescuit <strong>de</strong> control cu plase. Manipularea produce<br />

răniri, care duc la creşterea inci<strong>de</strong>nŃei saprolegniozei, în medie pier<strong>de</strong>rile semnalate în areal<br />

31


fiind <strong>de</strong> 4,60%. Sfârşitul primăverii şi începutul verii coinci<strong>de</strong> la ciprini<strong>de</strong> cu perioada <strong>de</strong><br />

reproducŃie, când manipularea reproducătorilor, ca şi stresul dat <strong>de</strong> hormonii corticosteroizi<br />

<strong>de</strong>termină la exemplarele slăbite şi în asociere cu alte boli apariŃia saprolegniozei. Procentul<br />

mediu <strong>de</strong> pier<strong>de</strong>ri pe toate cele 69 <strong>de</strong> bazine studiate este <strong>de</strong> 4,30%.<br />

Un procent mai redus, <strong>de</strong> 4,10% se înregistrează pe perioada <strong>de</strong> toamnă, când toate<br />

efectivele <strong>de</strong> peşti prezintă în general o foarte bună stare <strong>de</strong> întreŃinere, fiind pregătiŃi <strong>de</strong><br />

iernare.<br />

32


CAPITOLUL III<br />

CONCLUZII ŞI RECOMANDĂRI<br />

1. PrezenŃa Saprolegniei în apă, dovedită prin infestarea icrelor, este semnalată indiferent<br />

<strong>de</strong> luna <strong>de</strong> recoltare a apei.<br />

2. Cel mai mare grad <strong>de</strong> infestare al icrelor <strong>de</strong> ciprini<strong>de</strong> cu Saprolegnia s-a semnalat la<br />

temperatura apei <strong>de</strong> 22ºC, când procentul <strong>de</strong> infestare mediu şi puternic atinge<br />

85,41%, indiferent <strong>de</strong> lunile calendaristice în care se prelevează probele.<br />

3. Indiferent <strong>de</strong> mediul <strong>de</strong> cultură solid utilizat (PDA şi SGA) şi timpul <strong>de</strong> citire (24, 48<br />

şi 72 ore) se semnalează diferenŃe <strong>de</strong> la un bazin la altul şi <strong>de</strong> la o locaŃie la alta a<br />

coloniilor <strong>de</strong> Saprolegnia analizate.<br />

4. Dezvoltarea coloniilor <strong>de</strong> Saprolegnia în mediul lichid Potato Dextrose Broth (PDBbulion<br />

cu cartof-<strong>de</strong>xtroză) este superioară celei realizate în mediul lichid Sabouraud<br />

Dextrose Broth (SDB-bulion Sabouraud cu <strong>de</strong>xtroză).<br />

5. Caracterizarea morfologică a tulpinilor <strong>de</strong> Saprolegnia din coloniile obŃinute,<br />

evi<strong>de</strong>nŃiază hife cu aspect neseptat specifice fungilor inferiori, fiind semnalate<br />

diferenŃe privind prezenŃa reproducŃiei sexuate (la 59,42%) şi absenŃa acesteia (la<br />

40,58%).<br />

6. La toate izolatele <strong>de</strong> Saprolegnia a fost i<strong>de</strong>ntificată prezenŃa flagelilor la zoosporii<br />

primari.<br />

7. PurităŃile ADN redate <strong>de</strong> spectrofotomentrul Nanodrop ND 1000 în urma extracŃiei cu<br />

kit pe microcoloane (Qiagen), oscilează între 1,02 - 1,51, cu o medie a purităŃii<br />

probelor <strong>de</strong> 1,250, la lungimea <strong>de</strong> undă 260/280 nm, iar cantităŃile <strong>de</strong> ADN obŃinute<br />

prin aceeaşi metodă între 2,54 – 14,00 ng/µl, cu o medie <strong>de</strong> 5,543 ng/µl, iar purităŃile<br />

ADN redate <strong>de</strong> spectrofotomentru, în urma extracŃiei cu soluŃie ce conŃine PBS, au<br />

valori cuprinse între 1,10 – 1,51, cu o medie <strong>de</strong> 1,394 la lungimea <strong>de</strong> undă 260/280<br />

nm, iar cantităŃile <strong>de</strong> ADN obŃinute prin aceeaşi metodă între 5,23 – 86,56 ng/µl, cu o<br />

medie <strong>de</strong> 30,653 ng/µl.<br />

33


8. În cazul probelor ADN extrase cu kit QIAGEN, în toate cazurile s-a produs<br />

amplificarea cu ambele perechi <strong>de</strong> primeri utilizate, cu evi<strong>de</strong>nŃierea fragmentelor <strong>de</strong><br />

743 pb la Saprolegnia ferax, respectiv 761 pb la Achlya bisexualis.<br />

9. În cazul probelor ADN extrase cu soluŃii PBS, cu toate că purităŃile şi cantităŃile <strong>de</strong><br />

ADN au fost în limite normale, amplificarea probelor <strong>de</strong> ADN provenite <strong>de</strong> la<br />

Saprolegnia cu cele două perechi <strong>de</strong> primeri s-a produs diferit, din cauza prezenŃei în<br />

probe a unor posibili inhibitori fungici, care nu permit ataşarea perechii <strong>de</strong> primeri<br />

ITS1 şi ITS4, iar în cazul utilizării unui kit <strong>de</strong> purificare PCR, amplificarea s-a<br />

produs.<br />

10. În cazul probelor extrase cu soluŃii NE, cu toate că purităŃile şi cantităŃile <strong>de</strong> ADN au<br />

fost în limite normale, amplificarea probelor <strong>de</strong> ADN provenite <strong>de</strong> la Saprolegnia cu<br />

cele două perechi <strong>de</strong> primeri nu s-a produs.<br />

11. Enzima RsaI are specificitate foarte bună pentru situsurile <strong>de</strong> restricŃie <strong>de</strong> la<br />

Saprolegnia şi Achlya, motiv pentru care s-a optat pentru utilizarea acesteia în toate<br />

restricŃiile <strong>de</strong> fragmente efectuate.<br />

12. Enzimele AluI şi HindIII testate <strong>de</strong> noi în experiment nu au specificitate pentru<br />

situsul <strong>de</strong> restricŃie <strong>de</strong> la probele provenite <strong>de</strong> la Saprolegnia şi Achlya, acestea<br />

nerealizând restricŃia fragmentelor <strong>de</strong> ADN.<br />

13. În cazul celor 10 locaŃii piscicole analizate şi în cele 69 <strong>de</strong> probe recoltate, se<br />

semnalează prezenŃa a două polimorfisme <strong>de</strong> lungime a ADN-ului, în gelurile<br />

analizate.<br />

14. Studiul arborelui filogenetic, pe baza distanŃelor <strong>de</strong> linkage şi a celor Euclidiene ne<br />

permite să afirmăm faptul că în locaŃiile şi bazinele studiate există diferite genuri din<br />

familia Saprolegniaceae, care manifestă patogenitate diferită faŃă <strong>de</strong> speciile <strong>de</strong><br />

ciprini<strong>de</strong>.<br />

15. În urma secvenŃierii ADN au fost i<strong>de</strong>ntificate două specii <strong>de</strong> fungi acvatici în<br />

bazinele studiate, reprezentate <strong>de</strong> Saprolegnia ferax (743 pb, o i<strong>de</strong>ntitate <strong>de</strong> 99% şi<br />

prezintă două mutaŃii punctiforme faŃă <strong>de</strong> specia matriŃă din GeneBank) şi Achlya<br />

34


isexualis (761 pb, o i<strong>de</strong>ntitate <strong>de</strong> 99% şi prezintă 7 mutaŃii punctiforme faŃă <strong>de</strong><br />

specia matriŃă din GeneBank).<br />

16. Cele mai mari pier<strong>de</strong>ri <strong>de</strong>terminate <strong>de</strong> speciile i<strong>de</strong>ntificate <strong>de</strong> noi (Saprolegnia ferax<br />

şi Achlya bisexualis), la speciile <strong>de</strong> ciprini<strong>de</strong> din România, sunt semnalate în perioada<br />

<strong>de</strong> reproducŃie, când procentul <strong>de</strong> pier<strong>de</strong>ri mediu al icrelor este <strong>de</strong> 41,10%, iar în<br />

perioada larvară, cu pier<strong>de</strong>ri medii <strong>de</strong> 16,70%.<br />

17. Speciile i<strong>de</strong>ntificate produc pier<strong>de</strong>ri în bazinele <strong>de</strong> creştere ale ciprini<strong>de</strong>lor din<br />

România, şi la categoriile <strong>de</strong> tineret (4,90%) şi adult (cu o medie <strong>de</strong> 6,30% pe<br />

perioada <strong>de</strong> iernare, 4,60% primăvara, 4,30% vara şi 4,10% toamna).<br />

18. Pier<strong>de</strong>rile semnalate din cauza saprolegniozei variază <strong>de</strong> la un sezon la altul, <strong>de</strong> la o<br />

crescătorie la alta în funcŃie <strong>de</strong> condiŃiile fizico-chimice şi biologice ale apei, <strong>de</strong><br />

acurateŃea tehnologiei <strong>de</strong> creştere aplicate şi <strong>de</strong> condiŃiile meteorologice generale.<br />

Pe baza rezultatelor obŃinute recomandăm:<br />

1. Recomandăm ca pentru analiza prezenŃei Saprolegniei în bazinele piscicole, probele<br />

<strong>de</strong> apă să fie prelevate din 4 laturi şi centrul bazinului, la adâncimea <strong>de</strong> aproximativ<br />

50 cm.<br />

2. Pentru creşterea diferitelor tulpini <strong>de</strong> Saprolegnia se pretează mediile soli<strong>de</strong> (PDA şi<br />

SGA), dar prin timpul <strong>de</strong> creştere mai rapid al coloniilor recomandăm mediul PDA.<br />

3. Întrucât în analiza <strong>de</strong> ADN sunt necesare cantităŃi mai mari <strong>de</strong> fungi şi Ńinând cont <strong>de</strong><br />

modul <strong>de</strong> <strong>de</strong>zvoltare a Saprolegniei în cele două medii lichi<strong>de</strong>, recomandăm utilizarea<br />

mediului lichid Potato Dextrose Broth (PDB-bulion cu cartof-<strong>de</strong>xtroză) în<br />

experimentele pe speciile genului.<br />

4. Recomandăm extracŃia ADN-ului fungic cu kituri (QIAGEN) şi neutilizarea extracŃiei<br />

cu soluŃii (PBS şi NE), care cu toate că realizează purităŃi şi cantităŃi <strong>de</strong> ADN în<br />

limite normale, realizează parŃial sau nu realizează amplificarea probelor <strong>de</strong> ADN<br />

provenite <strong>de</strong> la Saprolegnia.<br />

35


5. În cercetările pe fungi acvatici recomandăm utilizarea enzimei RsaI, care are o<br />

specificitate foarte bună pentru situsurile <strong>de</strong> restricŃie <strong>de</strong> la Saprolegnia şi Achlya, şi<br />

neutilizarea enzimelor AluI şi HindIII, care nu au specificitate pentru situsul <strong>de</strong><br />

restricŃie.<br />

6. Pentru caracterizarea genetică a fungilor acvatici din familia Saprolegniaceae,<br />

recomandăm utilizarea meto<strong>de</strong>i PCR-RFLP <strong>de</strong>scrisă <strong>de</strong> Ristaino şi col., 1998,<br />

adaptată <strong>de</strong> noi.<br />

7. Pentru i<strong>de</strong>ntificarea precisă a genurilor şi speciilor din familia Saprolegniaceae,<br />

recomandăm utilizarea secvenŃierii ADN şi compararea rezultatelor cu cele din<br />

GeneBank.<br />

8. Pentru evitarea pier<strong>de</strong>rilor datorate saprolegniozei, în bazinele <strong>de</strong> ciprini<strong>de</strong> din centrul<br />

şi nord-vestul României, recomandăm o <strong>de</strong>osebită vigilenŃă a crescătorilor<br />

concretizată în: controlul permanent al calităŃii apei, controlul tipurilor <strong>de</strong> vegetaŃie<br />

existentă în bazine, evitarea traumatizării peştilor prin manipulări, evitarea stresului<br />

prin oscilaŃiile nivelului apei, ca şi a tipului <strong>de</strong> furaj utilizat.<br />

36


BIBLIOGRAFIE SELECTIVĂ<br />

1. Colao Maria Chiara, 1999, Proprieta cinetiche e molecolari di laccasi fungine,<br />

Universita <strong>de</strong>gli Studi <strong>de</strong>lla Tuscia, Viterbo, 99 pg.;<br />

2. Coşier Viorica, 2007, Inginerie genetică, Ed. Risoprint, <strong>Cluj</strong>-<strong>Napoca</strong>;<br />

3. Dick, M.W., 1969, Morphology and taxonomy of the Oomycetes, with special<br />

reference to Saprolegniaceae, Leptomitaceae and Pithyaceae. I. Sexual reproduction,<br />

New Phytol., 68, 751–775;<br />

4. Dick, M.W., 1972, Morphology and taxonomy of the Oomycetes, with special<br />

reference to Saprolegniaceae, Leptomitaceae and Pithyaceae. II. Cytogenetic<br />

systems, New Phytol., 71, 1151–1159;<br />

5. Dieguez-Uribeondo, J., Fregeneda-Gran<strong>de</strong>s, J.M., Cerenius, L., Elena Perez-<br />

Iniesta, Aller-Gancedo, J.M., Teresa M. Telleri, So<strong>de</strong>rhall, K., Maria P. Martin,<br />

2007, Re-evaluation of the enigmatic species complex Saprolegnia diclina–<br />

Saprolegnia parasitica based on morphological, physiological and molecular data,<br />

Fungal Genetics and Biology, 44, 585–601;<br />

6. Fernan<strong>de</strong>z-Benitez Maria Jose, Ortiz-Santaliestra, M.E., Lizana, M., Dieguez-<br />

Uribeondo, J., 2008, Saprolegnia diclina: another species responsible for the<br />

emergent disease‘Saprolegnia infections’ in amphibians, FEMS Microbiol. Lett., 279,<br />

23–29;<br />

7. Francesconi, A., Kasai, M., Susan M. Harrington, Mara G. Beveridge, Ruta<br />

Petraitiene, Petraitis, V., Schaufele, R. L., Walsh, T J., 2008, Automated and<br />

manual methods of DNA extraction for Aspergillus fumigatus and Rhizopus oryzae<br />

analyzed by Quantitative Real-Time PCR, Journal of Clinical Microbiology, 46:6,<br />

1978–1984;<br />

8. Fregeneda Gran<strong>de</strong>s, J.M., Fernan<strong>de</strong>z Diez, M., Aller Gancedo, J.M., 2000,<br />

Ultrastructural analysis of Saprolegnia secondary zoospore cyst ornamentation from<br />

infected wild brown trout, Salmo trutta L., and river water indicates two distinct<br />

morphotypes amongst long-spined isolates, Journal of Fish Diseases, 23, 147–160;<br />

37


9. Frisvad, J.C., Bridge, P.D., Arora, D.K., 1998, Chemical fungal taxonomy, Marcel<br />

Dekker Inc., New York, 398 pg.;<br />

10. Heath, I.B., Karen Rethoret, 1981, Nuclear cycle of Saprolegnia ferax, J. Cell Set.,<br />

49, 353-367;<br />

11. Johnson Jr., T.W., Seymour, R.L., Padgett, D.E., 2002, Biology and systematics of<br />

the Saprolegniaceae, on-line publication: http://www.ilumina-dlib.org., 1028 pg.;<br />

12. Kamoun Sophien, 2003, Molecular genetics of pathogenic oomycetes, Eukaryotic<br />

Cell, 2:2, 191–199;<br />

13. Lategan, M.J., Gibson, L.F., 2003, Antagonistic activity of Aeromonas media strain<br />

A199 against Saprolegnia sp., an opportunistic pathogen of the eel, Anguilla australis<br />

Richardson, Journal of Fish Diseases, 26, 147-153;<br />

14. Lategan, M.J., Torpy, F.R., Gibson, L.F., 2004, Biocontrol of saprolegniosis in<br />

silver perch Bidyanus bidyanus (Mitchell) by Aeromonas media strain A199,<br />

Aquaculture, 235, 77-88;<br />

15. Leclerc, M.C., Guillot, J., Devilla, M., 2000, Taxonomic and phylogenetic analysis<br />

of Saprolegniaceae (Oomycetes) inferred from LSU rDNA and ITS sequence<br />

comparisons, Antonie van Leeuwenhoek, 77, 369–377;<br />

16. Llanos Frutos, R., M. Teresa Fernán<strong>de</strong>z-Espinar, Querol, A., 2004, I<strong>de</strong>ntification<br />

of species of the genus Candida by analysis of the 5.8S rRNA gene and the two<br />

ribosomal internal transcribed spacers, Antonie van Leeuwenhoek, 85, 175–185;<br />

17. Oroian, R.G., Oroian, T.E., Crina Teodora Carşai, Viorica Coşier, L. Sasca,<br />

2009, RAPD technique used in analyzing the genetic structure of Cyprinus carpio<br />

species – Galitian and Lausitz varieties, International symposium “Mo<strong>de</strong>rn animal<br />

husbandry-science, creativity and innovation”, Lucrări ştiinŃifice seria Zootehnie,<br />

<strong>USAMV</strong> Iaşi, cotaŃie CNCSIS B+, 52:14, 444-449;<br />

18. Oroian, R.G., Vlaic, A., Oroian, T.E., 2008, PCR technique used in Saprolegnia sp.<br />

genetical characterization, Lucrări ŞtiinŃifice - Universitatea <strong>de</strong> Ştiinte Agricole şi<br />

Medicină Veterinară Iaşi, Seria Zootehnie, vol. 51, 631-634;<br />

38


19. Oroian, T.E., 2006, SelecŃia asistată <strong>de</strong> markeri la crap, Ed. Risoprint, <strong>Cluj</strong>-<strong>Napoca</strong>,<br />

180 pg.;<br />

20. Oroian, T.E., Oroian, R.G., Cristina Hegeduş, Cighi, V., Dronca, D., 2009, The<br />

monitoring of phytoplankton evolution by biological year within Arinis-Maramures<br />

fishery complex, International symposium “Mo<strong>de</strong>rn animal husbandry-science,<br />

creativity and innovation”, Lucrări ştiinŃifice seria Zootehnie, <strong>USAMV</strong> Iaşi, cotaŃie<br />

CNCSIS B+, 52:14, 456-461;<br />

21. Paul, B., Monica M. Steciow, 2004, Saprolegnia multispora, a new oomycete<br />

isolated from water samples taken in a river in the Burgundian region of France,<br />

FEMS Microbiology Letters, 237, 393–398;<br />

22. Ristaino, J.B., Madritch, M., Trout, C.L., Parra, G., 1998, PCR amplification of<br />

ribosomal DNA for species i<strong>de</strong>ntification in the plant pathogen genus Phytophthora,<br />

Applied and Environmental Microbiology, 64:3, 948-954;<br />

23. Stueland, S., Hatai, K., Skaar, I., 2005, Morphological and physiological<br />

characteristics of Saprolegnia spp. strains pathogenic to Atlantic salmon, Salmo salar<br />

L., Journal of Fish Diseases, 28, 445-453;<br />

24. Vlaic, A., 2007, Genetica peştilor, Ed. Risoprint, <strong>Cluj</strong>-<strong>Napoca</strong>, 150 pg.;<br />

25. White, P.L., Barton, R., Guiver, M., Linton, C.J., Wilson, S., Smith, M., Beatriz<br />

L. Gomez, Carr, M.J., Kimmitt, P.T., Shila Seaton, Rajakumar, K., Tessa<br />

Holyoake, Chris C. Kibbler, Elizabeth Johnson, Hobson, R.P., Jones, B.,<br />

Rosemary A. Barnes, 2006, A consensus on fungal Polymerase Chain Reaction<br />

diagnosis, Journal of Molecular Diagnostics, 8:3, 376-384;<br />

26. White, T.J., Bruns, T., Lee, S., Taylor, J., 1990, Amplification and direct<br />

sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M., Gelfand,<br />

D.H., Sninsky, J., White, T.J. (Eds) PCR protocols (pg 315–322), Aca<strong>de</strong>mic Press,<br />

San Diego;<br />

27. *** http://www.fermentas.com<br />

28. *** http://www.ncbi.nlm.nih.gov<br />

29. *** http://www.qiagen.com<br />

39


30. *** http://www.sigmaaldrich.com<br />

31. *** http://www.tnfish.org/FishDiseasesParasites_TWRA/files/Saprolegnia.pdf<br />

40


UNIVERSITY OF AGRICULTURAL SCIENCES<br />

AND VETERINARY MEDICINE CLUJ-NAPOCA<br />

DOCTORAL SCHOOL<br />

FACULTY OF ANIMAL PRODUCTION<br />

AND BIOTECHNOLOGIES<br />

Vet. Oroian Rareş Gelu<br />

The genotypization of Saprolegnia species and the<br />

establishing of their pathogenicity upon different<br />

carp species from centern and north-western<br />

Romanian fisheries<br />

-SUMMARY OF THE PhD. THESIS-<br />

SCIENTIFIC COORDINATOR<br />

Prof.univ.dr.eng. AUGUSTIN VLAIC<br />

<strong>Cluj</strong>-<strong>Napoca</strong><br />

41


2010<br />

CONTENTS<br />

CHAPTER I ........................................................................................................................................... 4<br />

EXPERIMENTAL HYPOTHESIS, RESEARCH OBJECTIVES,<br />

EXPERIMENTAL DISPOSAL, MATERIAL AND METHOD........................................................... 4<br />

I.1. EXPERIMENTAL HYPOTHESIS AND RESEARCH OBJECTIVES ..................................... 4<br />

I.2. EXPERIMENTAL DISPOSAL................................................................................................... 5<br />

I.3. MATERIAL AND METHOD ..................................................................................................... 7<br />

I.3.1. Sample collecting.................................................................................................................. 7<br />

I.3.2. The initiation of Saprolegnia culture in laboratory conditions............................................. 7<br />

I.3.3. Culture media used ............................................................................................................... 8<br />

I.3.3.1. Solid culture media used in the experiment ................................................................... 9<br />

I.3.3.2. Liquid culture media used in the experiment............................................................... 50<br />

I.3.3.3. Antibiotics used in the experiment ............................................................................... 51<br />

I.3.4. Morphological characterization of Saprolegnia strains...................................................... 51<br />

I.3.5. Fungal DNA extraction and <strong>de</strong>tection ................................................................................ 52<br />

I.3.5.1. Fungal DNA extraction using extraction kits (QIAGEN) ............................................ 52<br />

I.3.5.2. Fungal DNA extraction using solutions....................................................................... 52<br />

I.3.6. DNA quantification using direct method of DNA purity and concentration with<br />

Nanodrop ND-1000 spectrophotometer ....................................................................................... 53<br />

I.3.7. ITS region from fungi and primers used............................................................................. 53<br />

I.3.8. Molecular techniques used in the experiment..................................................................... 55<br />

I.3.8.1. PCR amplification of Saprolegnia samples ................................................................. 55<br />

I.3.8.2. PCR-RFLP techique - Restriction Fragment Length Polymorphism .......................... 56<br />

I.3.9. Methods used in establishing the phylogenetic diversity<br />

and relationship of Saprolegniaceae family fungi species........................................................... 56<br />

I.3.9.1. Automatic sequencing .................................................................................................. 56<br />

CHAPTER II........................................................................................................................................ 56<br />

PERSONAL RESEARCH RESULTS................................................................................................. 56<br />

II.1. THE RESULTS OF SAPROLEGNIA CULTURE IN<br />

LABORATORY CONDITIONS ..................................................................................................... 57<br />

II.2. RESULTS REGARDING SAPROLEGNIA’S GROWTH AND<br />

DEVELOPMENT ON THE CULTURE MEDIA ........................................................................... 58<br />

II.2.1. Comparative results regarding the growth<br />

of Saprolegnia colonies on solid culture media ........................................................................... 58<br />

II.2.2. Comparative results regarding the <strong>de</strong>velopment<br />

of Saprolegnia colonies on the liquid culture media.................................................................... 19<br />

II.3. THE MORPHOLOGICAL DESCRIPTION OF SAPROLEGNIA STRAINS......................... 19<br />

II.4. RESULTS REGARDING SAPROLEGNIA’S DNA<br />

EXTRACTION AND QUANTIFICATION.................................................................................... 61<br />

II.4.1. DNA extraction.................................................................................................................. 61<br />

II.5. THE DNA AMPLIFICATION RESULTS OF FUNGAL SPECIES<br />

FROM SAPROLEGNIACEAE FAMILY ......................................................................................... 62<br />

II.5.1. DNA amplification using PCR .......................................................................................... 62<br />

II.6. THE DNA ENZYMATIC RESTRICTION RESULTS OF FUNGAL<br />

42


SPECIES FROM SAPROLEGNIACEAE FAMILY USING PCR-RFLP METHOD...................... 63<br />

II.7. RESULTS REGARDING THE GENETIC PHYLOGENY<br />

STUDY OF SAPROLEGNIACEAE FAMILY FUNGI.................................................................... 67<br />

II.8. SEQUENCING RESULTS OF THE SAPROLEGNIACEAE FAMILY<br />

FUNGAL SPECIES FROM THE STUDIED LOCATIONS .......................................................... 28<br />

II.9. THE INCIDENCE OF SAPROLEGNIASIS IN THE CENTRAL<br />

AND NORTH-WESTERN ROMANIAN AREAL......................................................................... 28<br />

CHAPTER III....................................................................................................................................... 72<br />

CONCLUSIONS AND RECOMMENDATIONS............................................................................... 72<br />

SELECTIVE BIBLIOGRAPHY.......................................................................................................... 76<br />

43


INTRODUCTION<br />

Saprolegniasis is one of the most important causes of economic losses in aquaculture,<br />

fungal infections are second only to bacterial diseases in economic importance. Fungal<br />

infections are generally restricted to chronic, steady losses. Saprolegnia infests a large<br />

number of teleosts, as: channel catfish, pike, bass, roach, carp, salmonids, sturgeon,<br />

barramundi, tilapia; being associated with tropical fish: gourami, guppy, platyfish.<br />

In Japan, there is an annual mortality rate of 50% in coho salmon (Oncorhynchus<br />

kisutch) due to Saprolegnia parasitica Coker. Fifty percent per year losses have also been<br />

reported in elver (Anguilla anguilla) culture in Japan. In Scotland, saprolegniasis causes<br />

important economic losses especially in salmon fisheries. In the southeastern of United<br />

States, major losses of 50% occur in channel catfish farming, and the economic loss of 40<br />

million dollars.<br />

In Romania, until now, there is not a scientific estimation of the fisheries losses due<br />

to saprolegniasis.<br />

CHAPTER I<br />

EXPERIMENTAL HYPOTHESIS, RESEARCH OBJECTIVES,<br />

EXPERIMENTAL DISPOSAL, MATERIAL AND METHOD<br />

I.1. EXPERIMENTAL HYPOTHESIS AND RESEARCH OBJECTIVES<br />

The bibliographic study on fish saprolegniasis in general, and particularly on carp<br />

species, indicates the fact that in the world, because of the differences generated by the<br />

diversity of water and soil types, by the medium annual temperatures, by the habitation<br />

<strong>de</strong>gree and by the existent fish species, the disease is generated by many species of<br />

Saprolegnia, which have different specificity and pathogenicity, <strong>de</strong>pending on the factors<br />

listed above.<br />

44


The specific literature presents updated preoccupations regarding the i<strong>de</strong>ntificationd<br />

and classification of different Saprolegnia species and subspecies, saprophytic and<br />

conditioned pathogenic at different fish species. This fact indicates that there is not sufficient<br />

the strain morphologic strict i<strong>de</strong>ntification, but there is nee<strong>de</strong>d a molecular additional<br />

characterization regarding DNA structure, which could permit a correct i<strong>de</strong>ntification and<br />

the establishing of genetic distances between Saprolegnia populations and subpopulations.<br />

This fact is necessary because the technological losses in fish industry, raported at<br />

international and national level, caused by saprolegniasis, which are affecting the fish<br />

<strong>de</strong>velopment from spawn, larva, alevin, young fish and adults, are reaching up to 50% from<br />

production, which has a negative impact on the fisheries economical and financial situation.<br />

Starting from those consi<strong>de</strong>rations, by the research hypothesis we proposed the<br />

morphologic and molecular i<strong>de</strong>ntification and <strong>de</strong>scription, using DNA samples, of<br />

Saprolegnia species and subspecies, which are affecting carp species populations from<br />

centern and north-western romanian fisheries. In Romania there haven’t been ma<strong>de</strong> any<br />

genetic studies on Saprolegnia species and subspecies, which affect carp species, and which<br />

could be the starting point in the future for DNA vaccination technology, at reproduction<br />

individuals. The study of Saprolegnia local isolates will have an obvious contribution at the<br />

<strong>de</strong>velopment of the disease control strategies.<br />

The research objectives were the following:<br />

1. The establishing of experimental plan and protocole;<br />

2. The optimization of Saprolegnia culture methods;<br />

3. The optimization of Saprolegnia DNA extraction and amplification methods;<br />

4. The testing of different restriction enzymes using PCR-RFLP technique;<br />

5. The establishing of genetic distances between i<strong>de</strong>ntified species from Saprolegniaceae<br />

family;<br />

6. The monitor of saprolegniasis inci<strong>de</strong>nce at carp species from centern and northwestern<br />

part of Romania.<br />

45


I.2. EXPERIMENTAL DISPOSAL<br />

The experimental disposal was placed in the centern and north-western part of<br />

Romania, including in the control, fishponds localized as it follows:<br />

Ariniş Fishery Complex, Maramureş county, with 9 fishponds;<br />

Motiş Fishery Complex, Sălaj county, with 7 fishponds;<br />

Adrian Fishery Complex, Satu Mare county, with 10 fishponds;<br />

łaga Fishery, <strong>Cluj</strong> county, with 5 fishponds;<br />

Ciurila Fishery, <strong>Cluj</strong> county, with 6 fishponds;<br />

Chiochiş Fishery, BistriŃa-Năsăud county, with 5 fishpons;<br />

Daia Fishery, Alba county, with 5 fishponds;<br />

Iernut Fishery, Mureş county, with 5 fishponds;<br />

Cefa Fishery Complex, Bihor county, with 10 fishponds;<br />

Ineu Fishery, Arad county, with 7 fishponds;<br />

In this experimental disposal, representative as areal distribution, including all types<br />

of water and soil existing, we have organized more experiments.<br />

We are presenting the repartition of the locations, marked with white points on the<br />

map of Romania (fig.1).<br />

46


Fig.1. The locations where the researches took place<br />

I.3. MATERIAL AND METHOD<br />

I.3.1. Sample collecting<br />

For the sample representativeness of the analyzed fisheries, the collecting of water<br />

samples inclu<strong>de</strong>d a completely randomized experimental plan. There were established the<br />

fishponds from each fishery, being monitored: the water surface area, with the <strong>de</strong>pth and<br />

biological characteristics, as well as the structure of phytoplankton and zooplankton, and the<br />

fish species which populate them. For the results accuracy in Saprolegniaceae family species<br />

i<strong>de</strong>ntification, besi<strong>de</strong> the current observations ma<strong>de</strong> in the experimental period, we took<br />

water samples from each fishpond studied, in 3 different months of the year (December,<br />

March, June), irrespective of the fishpond surface area, comprised between 0,5 and 30 Ha.<br />

47


The experimental mo<strong>de</strong>l used, inclu<strong>de</strong>d the collecting of 5 water samples from each<br />

fishpond, from the 4 lake si<strong>de</strong>s and from centre, and 50 cm medium <strong>de</strong>pth. From the 5<br />

samples we ma<strong>de</strong> a single water sample, which was subsequent analyzed in laboratory<br />

conditions.<br />

For the i<strong>de</strong>ntification of different species from Saprolegniaceae family, we collected<br />

and analyzed water samples, carp species and spawns affected by disease, from Transylvania<br />

monitored fishponds. The water samples were collected in 2 litres recipients, from the 5<br />

areas of each fishpond, then the 5 samples were mixed in a 15 litres tank, collecting for the<br />

analyze a single blen<strong>de</strong>d sample from each fishpond, in a 2 litres recipient. The transport<br />

was ma<strong>de</strong> in the first 12-24 hours from the collection and the analysis were performed in the<br />

next day.<br />

I.3.2. The initiation of Saprolegnia culture in laboratory conditions<br />

To ensure that the possible differences, which could appear between the fungal<br />

species from Saprolegniaceae family present in the water, could be strict attributed to the<br />

differences given by water nature and the species which populates it, we performed as it<br />

follows: from each water sample, in a quantity of 2 litres, we ma<strong>de</strong> up 3 samples of 100 ml,<br />

in plastic sterile recipients. In each recipient there were introduced 10-15 spawns from the<br />

same carp female. Because the literature offers contradictory data respecting Saprolegnia’s<br />

<strong>de</strong>velopment temperature in different world areals, we suggested the testing of the fungus<br />

growing and <strong>de</strong>velopment mo<strong>de</strong>, at 3 levels of temperature: 10°C, 15°C and 22°C.<br />

Water samples, containing 10-15 spawns for artificial infestation, were introduced in<br />

a incubator, following the temperatures mentioned, between 3-7 days. In this period we<br />

ma<strong>de</strong> daily observations on each sample, to find out the starting moment of fungus<br />

infestation upon spawns and the intensity of its <strong>de</strong>velopment at that temperature.<br />

There was constituted a number of 207 samples for each collecting month, 3 samples<br />

for each fishpond, which were monitored at the 3 temperature levels, and making an<br />

48


estimation of the spawns infestation <strong>de</strong>gree, with marks from 0 to 4, at 48, 96 and 144 hours.<br />

The data interpretation was ma<strong>de</strong> by estimating the medium score of all the samples from<br />

the same thermal gradient, the differences being percentual expressed.<br />

The marks used have the following significations:<br />

0 – uninfested<br />

1 – very weak infested<br />

2 – weak infested<br />

3 – medium infested<br />

4 –strong infested<br />

I.3.3. Culture media used<br />

The scientific literature un<strong>de</strong>rlines the fact that, generally, in the fungi cultures<br />

<strong>de</strong>velopment could be used either solid media, or liquid ones. Liquid media allow the<br />

<strong>de</strong>velopment of fungal mycelium in a large quantity, that could be used in techniques for<br />

DNA extraction (Dieguez-Uribeondo and al., 2007; Fernan<strong>de</strong>z-Benitez and al., 2008).<br />

In this research we utilized comparatively 2 solid media: Potato Dextrose Agar (PDA)<br />

and Sabouraud 2% Glucose Agar (SGA), and 2 liquid media: Potato Dextrose Broth (PDB)<br />

and Sabouraud Dextrose Broth (SDB).<br />

The spawns were sterile collected in Petri dishes and washed with distilled water<br />

containing 100 mg L -1 Penicillin G potassium salt. Then, were inoculated in two solid<br />

media: Potato Dextrose Agar (PDA) and Sabouraud 2% Glucose Agar (SGA), and for<br />

preventing the bacterial growing, we ad<strong>de</strong>d the same antibiotic, in the recommen<strong>de</strong>d<br />

concentration. The colonies were preserved then on PDA and SGA media, in the incubator<br />

for 3 days, at the mentioned temperatures (10, 15 and 22°C). In this period we observed<br />

Saprolegnia colonies growing speed and their diameter (adapted after Fernan<strong>de</strong>z-Benitez<br />

and al., 2008). The original contribution consisted in the fact that we used two comparative<br />

solid culture media and three temperature gradients for each medium.<br />

49


I.3.3.1. Solid culture media used in the experiment<br />

The two solid culture media used in the experiment were the following (according to<br />

http://www.sigmaaldrich.com):<br />

Potato Dextrose Agar (PDA) (Fluka)<br />

Sabouraud 2% Glucose Agar (SGA) (Fluka)<br />

From each fishpond, we ma<strong>de</strong> an inoculation in the two solid culture media used<br />

(PDA, SGA), from the most <strong>de</strong>veloped sample, for making comparative observations<br />

respecting the <strong>de</strong>veloping mo<strong>de</strong> of fungal species from Saprolegniaceae family.<br />

For testing the growing rate on agar solid medium, in Petri dishes containing the two<br />

solid culture media (PDA, SGA) and incubated at 22°C ± 2°C for 72 hours, we observed<br />

Saprolegnia’s hyphae growing rate. The radial diameter growth was measured at every 24<br />

hours. The hyphae reached the maximum capacity of radial growth, when those have get<br />

until the edge of Petri dises (>40 mm) (adapted after Stueland and al., 2005).<br />

At 72 hours of <strong>de</strong>velopment on the solid media, fungal colonies were moved on the<br />

liquid ones, in the following procedure: the colonies from Potato Dextrose Agar (PDA) solid<br />

medium were transfered on Potato Dextrose Broth (PDB) liquid medium, and the colonies<br />

from Sabouraud 2% Glucose Agar (SGA) solid medium, on Sabouraud Dextrose Broth<br />

(SDB) liquid medium. This experiment was performed to be able to observe and recommend<br />

the best transfer procedure from a solid medium to a liquid one.<br />

I.3.3.2. Liquid culture media used in the experiment<br />

The liquid media used in the experiment were the following (according to<br />

http://www.sigmaaldrich.com):<br />

Potato Dextrose Broth (PDB) (Fluka)<br />

Sabouraud Dextrose Broth (SDB) (Fluka)<br />

All the saprolegnian colonies from the solid media were moved in Erlenmeyer<br />

glasses, with 100 ml antibiotic liquid medium and kept in an rotary shaker incubator, at the<br />

temperature of 22°C ± 2°C, for 5-7 days, <strong>de</strong>pending on the <strong>de</strong>veloping <strong>de</strong>gree. The mycelial<br />

50


pellets were filtred, washed with distilled water and maintained at -20°C until DNA was<br />

extracted (adapted method after Leclerc and al., 2000).<br />

We mention the fact that this procedure was applied to fungi samples obtained from<br />

the water collected in June 2009, including 138 samples, whereby 69 samples on solid-liquid<br />

medium combination, Potato Dextrose Agar (PDA)- Potato Dextrose Broth (PDB), and the<br />

other 69 samples on solid-liquid Sabouraud 2% Glucose Agar (SGA) - Sabouraud Dextrose<br />

Broth (SDB).<br />

I.3.3.3. Antibiotics used in the experiment<br />

For preventing the bacterial <strong>de</strong>velopment and contamination, in the fungi culture<br />

media there are used more types of antibiotics (Lategan and al., 2003, 2004). In our<br />

experience, we opted for Penicillin G potassium salt (Sigma). We used the working<br />

concentration of <strong>de</strong> 100 mg L - Penicillin G potassium salt, on both solid and liquid media.<br />

I.3.4. Morphological characterization of Saprolegnia strains<br />

For the morphological characterization of Saprolegnia strains, <strong>de</strong>veloped on culture<br />

media, we analyzed the 69 samples with the following aspects: the hyphal type specific to<br />

Saprolegnia genus, the asexual reproduction (flagella presence on primary zoospores) and<br />

the formation of sexual structures (antheridia and oogonia).<br />

Fungal strains collected from each fishpond, at 72 hours of growing on PDA solid<br />

medium, were inoculated in 9 cm diameter plastic Petri dishes, on the same PDA medium, at<br />

22ºC, 5,5 pH. Saprolegnia’s growing was periodically examined at the microscope, for 2-3<br />

weeks, to check the <strong>de</strong>veloping of sexual structures. All the strains were characterized and<br />

i<strong>de</strong>ntified pursuant to the control keys communicated by Johnson Jr. and al., 2002 (Dieguez-<br />

Uribeondo and al., 2007).<br />

The microscope observations were performed for each sample from each fishpond,<br />

after the following procedure: we isolated with a microbiological dowser a part of the colony<br />

51


<strong>de</strong>veloped on PDA medium, then was placed on a histological sli<strong>de</strong>, minced with a scalpel,<br />

was ad<strong>de</strong>d a droplet of Lugol solution for coloring, homogenized, and in the end the sample<br />

was covered with a histological sli<strong>de</strong>. The observations were performed with the phase<br />

contrast microsope and the images were analyzed with a adapted digital camera.<br />

I.3.5. Fungal DNA extraction and <strong>de</strong>tection<br />

DNA extraction was ma<strong>de</strong> pursuant to the protocol of Colao Maria Chiara (1999).<br />

DNA was extracted from fungal mycellium <strong>de</strong>veloped in pure culture on PDB (Potato<br />

<strong>de</strong>xtrose broth) liquid medium. We used Qiagen extraction kit Dneasy Plant Minikit<br />

(pursuant to http://www.qiagen.com) and DNA rapid extraction using PBS (phosphate saline<br />

buffer) solution. The DNA extraction was applied to 69 samples, obtained on Potato<br />

Dextrose Agar (PDA) solid medium-Potato Dextrose Broth (PDB) liquid medium<br />

combination. Each sample from each fishpond was divi<strong>de</strong>d in two equal parts, being realized<br />

a total number of 138 samples, performing a comparative extraction for the two methods<br />

used.<br />

I.3.5.1. Fungal DNA extraction using extraction kits (QIAGEN)<br />

The DNeasy Plant minikit is a spin column procedure that incorporates sample lysis,<br />

removal of RNA, removal of proteins and polysacchari<strong>de</strong>s, DNA precipitation, and binding<br />

to the spin column membrane. Multiple washes are performed to remove contaminants, and<br />

DNA is then eluted from the membrane.<br />

Equipment, materials and reactives used:<br />

- Stationary phase fungal colonies (approximate 1 x 10 9 ), 69 samples, on fishponds<br />

provenance; Qiagen kit.<br />

I.3.5.2. Fungal DNA extraction using solutions<br />

52


The DNA rapid extraction using PBS solution, applied on 69 samples, performed<br />

in the following way: there was weighted 120 mg of fungal tissue in an Eppendorf tube and<br />

ad<strong>de</strong>d 200 µl PBS solution. The samples were centrifuged at 3000 rpm, for 20 minutes, then<br />

the supernatant was removed. This operation repeated five times, until the fungal DNA<br />

pellet was clean. Then, the samples were introduced in a marine bath, at 95°C for 15<br />

minutes, to disrupt the cell wall. The samples were dried for 30 minutes, and then was ad<strong>de</strong>s<br />

TE (Tris-EDTA) solution for DNA rehydrating.<br />

For the DNA rapid extraction method with NE solution are used some chemical<br />

substances, the solutions being ma<strong>de</strong> in a laboratory. The materials and expendables were<br />

the following: Eppendorf pipettes, with adjustable volumes; Eppendorf tubes; pipette tips of<br />

different dimensions (large, medium and small); sterile water.<br />

I.3.6. DNA quantification using direct method of DNA purity and concentration with<br />

Nanodrop ND-1000 spectrophotometer<br />

For the establishing of DNA purity and concentration, there was used Nanodrop ND-<br />

1000 spectrophotometer. To be able to find the DNA concentration extracted from fungal<br />

samples, we used the direct method, which involves the optical <strong>de</strong>nsity measurement of<br />

DNA sample, at 260/280 nm ripple length on a spectrophotometer, in UV/VIS domain.<br />

I.3.7. ITS region from fungi and primers used<br />

At the fungi and other eukaryotes, there are two locations for rDNA: the nuclear and<br />

the mitochondrial genome. The last one contains two genes which are coding the small and<br />

large mitochondrial genes of rDNA. Fungal nuclear rDNA is generally structured in a<br />

tan<strong>de</strong>m repeated nuclear unit. A rDNA unit, illustrated in fig.2, inclu<strong>de</strong>s 3 rRNA genes:<br />

small nuclear (18S) rRNA, 5,8S rRNA and large nuclear (28S) rRNA gene. In a unit, the<br />

53


genes are separated by two internal transcribed spacers (ITS1 and ITS2), and two rDNA<br />

units separated by intergenic spacer (IGS). The last rRNA gene (5S) can or can’t be in the<br />

interior of repeated unit (Kamoun, 2003).<br />

Fig.2. Diagram of nuclear ribosomal DNA repeat unit<br />

(Frisvad and al., 1998)<br />

With the exception of some variable domains of the rRNA genes, the coding regions<br />

are highly conserved among organisms, thus allowing comparisons between distantly related<br />

fungi. In contrast, because they evolve rapidly, noncoding regions have more variability than<br />

coding regions. The noncoding internal transcribed spacers (ITS1 and ITS2) can be used to<br />

discriminate between closely related species within a fungal genus. The ITS region,<br />

including the ITS1, the 5,8S rRNA gene, and the ITS2, is about 600 to 1000 base pairs and<br />

can be amplified either fully or partly, using “universal” primers <strong>de</strong>scribed by White and al.,<br />

in 1990.<br />

The ITS region is now perhaps the most wi<strong>de</strong>ly sequenced DNA region in fungi. It<br />

has typically been most useful for molecular systematics at the species level, and even<br />

within species (e.g., to i<strong>de</strong>ntify geographic races). Because of its higher <strong>de</strong>gree of variation<br />

than other genic regions of rDNA (SSU and LSU), variation among individual rDNA repeats<br />

can sometimes be observed within both the ITS and IGS regions. In addition to the standard<br />

primers used by most labs (ITS1 and ITS4), everal taxon-specific primers have been<br />

<strong>de</strong>scribed that allow selective amplification of fungal ITS sequences.<br />

The primers used in PCR reaction were the following (standardized by White and al.,<br />

1990):<br />

- ITS1, with 5’-3’ sequence: TCCGTAGGTGAACCTGCGG;<br />

- ITS4, with 5’-3’ sequence: TCCTCCGCTTATTGATATGC;<br />

- ITS5, with 5’-3’ sequence: GGAAGTAAAAGTCGTAACAAGG;<br />

54


We used a comparatively mixture of two primer pairs, in the following combination:<br />

ITS1 with ITS4 and ITS4 with ITS5. ITS1 primer is attaching at the 3’ end of the 18S rDNA<br />

gene and ITS4 primer is at the 5’end of the 28S rDNA gene (after Paul B. And al., 2004).<br />

The last combination of primers is used to amplify the region of the rDNA repeat unit that<br />

inclu<strong>de</strong>s the two non-coding regions <strong>de</strong>signated as the internal transcribed spacers ITS1 and<br />

ITS2, and the 5,8S rDNA gene (Llanos Frutos and al., 2004).<br />

I.3.8. Molecular techniques used in the experiment<br />

I.3.8.1. PCR amplification of Saprolegnia samples<br />

In our experience we used ITS1 and ITS4, ITS4 and ITS5 primer pair combinations<br />

(White and al., 1990), which amplify ITS1 region, 5,8S rRNA gene and ITS2. The<br />

amplification reactions were individually performed, in a final volume of 25 µl, with an<br />

Eppendorf thermocycler.<br />

The amplification cycling parameters were: initial <strong>de</strong>naturation at 95°C for 3 minutes,<br />

followed by 35 cycles of <strong>de</strong>naturation at 94°C for 1 minute, annealing at 55°C for 1 minute,<br />

and extension at 72°C for 1 minute, with a final extension at 72°C for 7 minutes. The<br />

amplification products were separated by electrophoresis in 1,5% agarose gels, in 1x TBE<br />

buffer, for 60 minutes at 70V. The DNA was stained with Sybr Safe (Invitrogen) and<br />

visualized un<strong>de</strong>r UV light. The gel was photographed and the image recor<strong>de</strong>d on the<br />

machine (Biorad).<br />

The lengths of amplification products were estimated by comparison to a DNA<br />

Lad<strong>de</strong>r Low Range (700 bp) or 50 bp (Fermentas) (adapted after Ristaino and al., 1998).<br />

We tested another amplification method, which was performed in an Eppendorf<br />

thermocycler, after the following protocol:<br />

- initial <strong>de</strong>naturation: 5 minutes at 95°C<br />

- 35 cycles: - <strong>de</strong>naturation 30 seconds at 95°C<br />

- annealing 30 seconds at 48°C<br />

55


- extension 90 seconds at 68°C<br />

- final extension: 7 minutes at 68°C (after Coalo Maria Chiara, 1999).<br />

The amplification performed on 69 samples, <strong>de</strong>veloped on Potato Dextrose Broth<br />

(PDB) medium, using an adapted method after Ristaino and al., 1998.<br />

I.3.8.2. PCR-RFLP techique - Restriction Fragment Length Polymorphism<br />

The amplified fragments were digested with 3 restriction enzymes from Fermentas:<br />

RsaI, HindIII and AluI. The digestion protocol was pursuant to the manufacturer<br />

(http://www.fermentas.com).<br />

The PCR products were overnight incubated, at 37ºC, and at the end at 65ºC for 10<br />

minutes. The digestion products were then separated by electrophoresis, in a 3% agarose gel,<br />

in 1x TBE buffer, for 2 hours at 60V. The DNA was stained with Sybr Safe (Invitrogen), for<br />

the observation of amplified fragments polymorphism, un<strong>de</strong>r UV light (Biorad). There was<br />

used a DNA Lad<strong>de</strong>r Low Range (700 bp), for the fragment comparison (Fermentas).<br />

I.3.9. Methods used in establishing the phylogenetic diversity<br />

and relationship of Saprolegniaceae family fungi species<br />

I.3.9.1. Automatic sequencing<br />

The DNA strand was sequenced with universal primers ITS1 (forward) and ITS4<br />

(reverse), by Mycrosinth (Switzerland). The sequencing results were interpreted using a<br />

specific software called Chromas Lite.<br />

For the establishing of genetic diversity there were used specific genetical software.<br />

CHAPTER II<br />

PERSONAL RESEARCH RESULTS<br />

56


II.1. THE RESULTS OF SAPROLEGNIA CULTURE IN<br />

LABORATORY CONDITIONS<br />

We expressed in percentage from the total number of analyzed samples, every<br />

infestational score from each temperature level, regardless the fishponds and fisheries (table<br />

1).<br />

Spawns infestation <strong>de</strong>gree with Saprolegnia based on temperature<br />

percentage estimated from the total number of samples (207)<br />

Temperature<br />

Infestational <strong>de</strong>gree<br />

Table 1<br />

0 1 2 3 4<br />

10°C 4,34 38,64 54,58 2,41 0<br />

15°C 0,96 11,11 32,36 51,20 4,34<br />

22°C 0,96 0,96 12,56 45,41 40,09<br />

Legend: 0 – uninfested; 1 - very weak infested; 2 - weak infested; 3 – medium infested; 4 –<br />

strong infested.<br />

From the table data results the fact that saprolegniasis <strong>de</strong>velopment is different from<br />

one incubation temperature to another. At 10°C, 38,64% from the samples had the score of<br />

1, which indicates a very weak infestation at 144 hours of incubation. A percentage of<br />

54,58%, more than half of the analyzed samples, are weak infested, and only 2,41% are<br />

medium infested.<br />

At 15°C, only 0,96% from the samples do not manifest any infestation sign,<br />

comparative to 4,34% uninfested samples at 10°C. A weak infestation <strong>de</strong>gree, of 32,36%<br />

from samples is reached at 15°C, and the infestation medium level at 51,20%. Compared to<br />

the temperature gradient of 10ºC, at 15°C there is a percentage of 4,34% with strong<br />

infestation.<br />

At 22ºC, 40,09% from the samples have a strong infestation <strong>de</strong>gree, 45,41% have a<br />

medium infestation, and only 0,96% are uninfested. Those data indicate the fact that<br />

regardless the fishpond, the area and the time of the year, saprolegniasis as disease spreads<br />

with a high intensity and a shorter period at 20°C. This result confirms the literature data<br />

regarding the carp spawns and larvae losses, communicated by fishery owners and<br />

57


esearchers, which take place in May-June months, the reproduction period, when there is<br />

observed a high inci<strong>de</strong>nce of saprolegniasis. At lower temperatures, the fungus is present<br />

even if to infest the fish populations it needs a longer incubation period. At carp populations,<br />

which are wintering un<strong>de</strong>r the ice and have reduced movements, the inci<strong>de</strong>nce is lower<br />

compared to the other species, being infested only the individuals which were weak in<br />

winter period or had wounds generated by manipulation procedures.<br />

II.2. RESULTS REGARDING SAPROLEGNIA’S GROWTH AND<br />

DEVELOPMENT ON THE CULTURE MEDIA<br />

II.2.1. Comparative results regarding the growth<br />

of Saprolegnia colonies on solid culture media<br />

We used two solid media to be able to test comparatively the growth type of the<br />

colonies, at 24, 48 and 72 hours. From each fishpond of each fishery, there were constituted<br />

2 samples, one for each medium. Because the two samples from the two media, are<br />

originating from the same culture, inoculated at 6 days, we consi<strong>de</strong>r that the growing<br />

differences at the same temperature gradient, of 22°C, are assigned to the differences<br />

between species and to the culture requests.<br />

To interpret statistical correctly the colonies growth differences on the two culture<br />

media and at the three temperature gradients, we present in table 2 the average values of<br />

colonies <strong>de</strong>velopment in mm.<br />

The diameter averages of Saprolegnia colonies at 24, 48 and 72 hours<br />

of <strong>de</strong>velopment on the two solid culture media (in mm)<br />

Table 2<br />

58


Reading time 24 48 72<br />

n<br />

Culture media<br />

PDA* SGA** PDA SGA PDA SGA<br />

Location<br />

Ariniş 14,33 9,44 29,00 19,44 56,22 38,11 9+9<br />

Motiş 12,57 7,57 26,57 16,00 51,85 31,57 7+7<br />

Adrian 13,50 10,10 28,10 20,70 53,90 39,50 10+10<br />

łaga 12,00 7,60 24,20 16,20 48,80 32,20 5+5<br />

Ciurila 14,66 9,16 30,33 19,16 57,00 36,50 6+6<br />

Chiochiş 13,60 9,60 28,20 19,20 53,80 36,60 5+5<br />

Daia 11,80 8,00 24,80 16,60 49,40 33,60 5+5<br />

Iernut 11,80 8,20 25,00 17,40 50,80 34,80 5+5<br />

Cefa 12,20 8,00 22,50 16,60 51,30 33,20 10+10<br />

Ineu 13,14 8,28 26,85 17,14 54,00 35,71 7+7<br />

*PDA - Potato Dextrose Agar<br />

**SGA - Sabouraud 2% Glucose Agar<br />

Analyzing the diameter averages at 24 hours (table 2), on PDA culture medium, the<br />

colonies had values between 11,80 mm (Daia and Iernut) and 14,66 mm (Ciurila). The<br />

colonies inoculated on SGA culture medium had an average between 7,57 mm (Motiş) and<br />

10,10 mm (Adrian).<br />

At 48 hours, the reading of the same culture Petri dishes indicated almost a doubling<br />

from the first reading, on PDA culture medium. The minimum diameter, in average of 22,50<br />

mm, was observed in the colonies from Cefa, and the maximum of 30,33 mm in the colonies<br />

from Ciurila (table 2). At the same time interval, compared to the samples from PDA culture<br />

medium, the samples from SGA medium had lower values, with a minimum of 16,00 mm in<br />

diameter (Motiş) and a maximum of 20,70 mm (Adrian). After Stueland and al., 2005,<br />

values of the colonies diameter bigger than 40 mm are indicating the reaching at the growing<br />

edge.<br />

At 72 hours, the diameter averages indicated values bigger than 40 mm on PDA<br />

culture medium, and un<strong>de</strong>r this value for SGA medium. The maximum diameter of the<br />

colonies, 57,00 mm, was observed on the 6 samples inoculated from Ciurila, and medium<br />

values of 48,80 mm on the samples collected from łaga (table 2). On SGA culture medium,<br />

59


the minimum growing diameter, of 31,57 mm, was realized by the colonies inoculated from<br />

Motiş water samples, and the maximum diameter, of 38,11 mm, the water samples from<br />

Ariniş.<br />

II.2.2. Comparative results regarding the <strong>de</strong>velopment<br />

of Saprolegnia colonies on the liquid culture media<br />

The usage of liquid culture media is necessary to obtain bigger quantities of fungal<br />

mass, for DNA extraction.<br />

This experiment was performed to observe and recommend the best transfer<br />

combination from solid culture medium to the liquid one, estimating the fungal mass<br />

quantity, in cm 3 .<br />

There were observed and analyzed 138 samples, 69 samples on each culture medium<br />

combination. Daily observations ma<strong>de</strong> from the transfer day up to the seventh day indicated<br />

almost a double rhythm of <strong>de</strong>velopment in Potato Dextrose Broth (PDB) liquid medium<br />

compared to the samples in Sabouraud Dextrose Broth (SDB) liquid medium. In day seven,<br />

in all 100 ml Erlenmeyer glasses, the fungal pellets from Potato Dextrose Broth (PDB)<br />

liquid medium had between 2,5 and 4 cm 3 , compared to the colonies <strong>de</strong>veloped in Potato<br />

Dextrose Broth (PDB) liquid medium, with values of 1-2 cm 3 .<br />

Further to the results, only the fungal samples obtained in bigger quantities on Potato<br />

Dextrose Broth (PDB) liquid medium were analyzed.<br />

II.3. THE MORPHOLOGICAL DESCRIPTION OF SAPROLEGNIA STRAINS<br />

The microscope observations indicated the fact that the hyphae have a characteristic<br />

unsegmented aspect of lower fungi. There were not analyzed the hyphal length and<br />

thickness, only the morphological general aspect, which confirmed the presence of<br />

saprolegnian fungi in the culture, without any morphological differentiation between genera<br />

and species. The microscope observations performed on a period of 21 days evaluated at<br />

every sample the presence or the absence of sexual reproduction organs, as well as the<br />

60


asexual one. We can precisely conclu<strong>de</strong> that in specific laboratory conditions, all fungal<br />

isolates had flagella on primary zoospores.<br />

Regarding the <strong>de</strong>velopment of sexual reproduction organs (antheridia and oogonia),<br />

there are differences from on fishpond and location to another. This presence or absence of<br />

the sexual reproduction can be attributed to the fact that the existent species are different,<br />

and some of them do not realyze the sexual reproduction in vitro (Fregeneda Gran<strong>de</strong>s, 2000;<br />

Dieguez Uribeondo, 2007).<br />

A statistical analysis regarding the <strong>de</strong>velopment of sexual reproduction organs at the<br />

analyzed fungal species from Saprolegniaceae family (69 samples), allows us to conclu<strong>de</strong><br />

that 41 isolates (59,42%) have sexual reproduction organs, observed at the microscope. At<br />

28 samples (40,58%), their presence was not visualized (table 3).<br />

Hyphal<br />

aspect<br />

Table 3<br />

Synthesis regarding the <strong>de</strong>velopment of reproduction organs<br />

at analyzed fungal species from Saprolegniaceae family<br />

Sexual reproduction<br />

Asexual<br />

Present<br />

Absent<br />

reproduction<br />

(Flagella presence)<br />

No.of<br />

samples<br />

Percent<br />

(%)<br />

No.of<br />

samples<br />

Percent<br />

(%)<br />

No.of<br />

samples<br />

Percent<br />

(%)<br />

Unsegmented 41 59,42 28 40,58% 69 100%<br />

II.4. RESULTS REGARDING SAPROLEGNIA’S DNA<br />

EXTRACTION AND QUANTIFICATION<br />

II.4.1. DNA extraction<br />

Each sample of biologic material was divi<strong>de</strong>d, the two samples being tested by an<br />

extraction method, to conclu<strong>de</strong> which one of the two methods is more efficient for this type<br />

of fungi, respecting the DNA quantity and purity.<br />

The results of the 69 samples extracted by each method, are indicating that DNA<br />

purities and quantities performed by Nanodrop ND 1000 spectrophotometer differ from one<br />

fishpond and method to another.<br />

61


So, DNA purities obtained after kit extraction (Qiagen) varied between 1,02 and 1,51,<br />

with an average of 1,250, at 260/280 nm, and the DNA quantity obtained was between 2,54<br />

and 14,00 ng/µl, with an average of 5,543 ng/µl. Analyzing the DNA purities after the<br />

extraction with PBS solution, we observate that the samples have values between 1,10 and<br />

1,51, with an average of 1,394, at 260/280 nm, and DNA quantities varied between 5,23<br />

ng/µl and 86,56 ng/µl, with an average of 30,653 ng/µl.<br />

II.5. THE DNA AMPLIFICATION RESULTS OF FUNGAL SPECIES<br />

FROM SAPROLEGNIACEAE FAMILY<br />

II.5.1. DNA amplification using PCR<br />

The amplification reactions were individually performed, in a final volume of 25 µl,<br />

with a thermocycler Eppendorf. In a preliminary phase, the amplification process was<br />

applied on 20 samples, 10 of the fungal DNA being extracted with kits (QIAGEN) and 10<br />

extracted with PBS solution. This test was done to observe which of the two methods used,<br />

realizes a more precisely DNA amplification, without any unspecific product.<br />

The second protocol used, <strong>de</strong>scribed in material and method, didn’t give the expected<br />

results at fungi, so we abandoned it. In the figure 3, we present the comparative results<br />

regarding the electrophoretic profiles of the fragments amplified with the two primer pairs.<br />

Because we used in the DNA extractions, PBS solution and QIAGEN kit, and the<br />

universal primers, the electrophoresis results convinced me to continue with the DNA kit<br />

extraction (QIAGEN), and ITS1 - ITS4 primer pair.<br />

62


1 2 3 4 5 6 7 8 9<br />

700pb-<br />

Fig.3. Electrophoretic profile of a DNA sample extracted from Saprolegnia and amplified<br />

with ITS1 and ITS4, ITS4 and ITS5 primer pairs<br />

1-Lad<strong>de</strong>r Low Range of 700 bp (Fermentas); 2-DNA sample extracted with kit (ITS1-ITS4<br />

primers); 3-DNA sample extracted with PBS solution (ITS1-ITS4 primers); 4-DNA sample<br />

extracted with NE solution (ITS1-ITS4 primers); 5-DNA sample purified with PCR kit<br />

(ITS1-ITS4 primers); 6-DNA sample purified with PCR kit (ITS4-ITS5 primers); 7-DNA<br />

sample extracted with NE solution (ITS4-ITS5 primers); 8-DNA sample extracted with PBS<br />

solution (ITS4-ITS5 primers); 9-DNA sample extracted with kit (ITS4-ITS5 primers)<br />

II.6. THE DNA ENZYMATIC RESTRICTION RESULTS OF FUNGAL<br />

SPECIES FROM SAPROLEGNIACEAE FAMILY USING PCR-RFLP METHOD<br />

When we used AluI and HindIII restriction enzymes, the restriction didn’t perform.<br />

The enzymes couldn’t digest the amplified fragment of 700 bp, because of the restriction<br />

site. Only the third enzyme tested (RsaI), which restricted all the samples, was used in the<br />

experiment to analyze the electrophoretic profile of the 69 samples, from the 10 locations.<br />

Then were performed the electrophoretic profiles of the restriction analyses, with<br />

RsaI (Fermentas) enzyme, of the DNA amplified with ITS1 and ITS4 primer pairs, at<br />

Saprolegniaceae family fungal species.<br />

The samples of fungal species from Saprolegniaceae family, from Ariniş fishery,<br />

Maramureş county, with 9 fishponds, collected from the fishponds 1,2,3,4,5,8 and 9, had 3<br />

63


DNA fragments, the first one between 350 and 400 bp, the second one around 200 bp, and<br />

the third one around 150 bp. In the samples collected from 6 and 7 fishponds, there are<br />

visualized 4 fragments: the first one between 450 bp and 500 bp, the second one around 300<br />

bp, the third one around 200 bp, and the fourth one at 150 pb. Those samples of amplified<br />

DNA are presenting a fragment length polymorphism, confirmed by the sequencing<br />

analyses. The results indicated the presence of two aquatic fungal species, each one<br />

belonging to another genera of Saprolegniaceae family. The DNA profiles, observed in<br />

2,3,4,5,6,9 and 10 lanes, are belonging to Saprolegnia ferax species, and the DNA<br />

polymorphic profiles, from 7 an 8 lanes, to Achlya bisexualis species.<br />

At the fungal samples from Saprolegniaceae family, collected from Motiş fishery,<br />

Sălaj county, in all the 7 analyzed fishponds, there is observed the same electrophoretic<br />

profile of the PCR products, with 3 visible fragments. The first fragment has about 400 bp,<br />

the second one 200 bp and the third one 150 bp. In all the analyzed samples, the<br />

polymorphisms were the same, all the fragments indicating the presence of a single fungal<br />

species, confirmed by sequencing as Saprolegnia ferax.<br />

At the fungal species from Saprolegniaceae family, collected from Adrian fishery,<br />

Satu Mare county, with 10 fishponds, in the 1,2,3,4,6,7,8 and 10 fishponds, there can be<br />

visualized 3 migration lanes, the first one at about 380-400 bp, the second one at 200 bp and<br />

the third one between 100 and 150 bp. After the sequence analyses performing, in the<br />

respective fishponds was i<strong>de</strong>ntified Saprolegnia ferax species. In the fishpond 5, there are<br />

present 2 lanes, the first one at about 450 bp, and the second one at 200 bp. In the fishpond 9<br />

can be observed precisely 4 fragments: the first one at about 450 bp, the second one at 250<br />

bp, the third one at 200 bp and the fourth one between 100 and 150 bp. At the samples from<br />

6 and 10 lanes, can be observed length polymorphisns, different from the rest of fungal DNA<br />

samples, confirmed by sequencing as belonging to Achlya bisexualis species.<br />

At the fungal species from Saprolegniaceae family, collected from łaga fishery, <strong>Cluj</strong><br />

county, there are present 4 restriction fragments, in all 5 analyzed fishponds. The first<br />

fragment has 380-400 bp, the second one has 200 bp, the third one has 150 bp, and the fouth<br />

one has around 100 bp. The electrophoretic profiles of DNA samples are similar as base<br />

64


pairs length. The sequencing results indicated the fact that all the electrophoretic profiles<br />

belonged to Saprolegnia ferax species.<br />

At the fungal species from Saprolegniaceae family, collected from Ciurila fishery,<br />

<strong>Cluj</strong> county, with 6 fishponds, in the fishponds 1,2,3,5 and 6 there can be observed 3<br />

fragments of restricted DNA, the first one is about 400 bp, the second one has 200 bp, and<br />

the third one has 130-150 bp. In the fishpond 4 there can be seen 4 DNA fragments, the first<br />

one at 500 bp, the second one at 250 bp, the third one at 200 bp and the fouth one between<br />

130-150 bp, which indicate the presence of a polymorphism, confirmed by sequencing as<br />

belonging to Achlya bisexualis species.<br />

At the fungal species from Saprolegniaceae family, collected from Chiochiş fishery,<br />

BistriŃa-Năsăud county, with 5 fishponds, in the 1,2,3 and 5 fishponds, can be observed 3<br />

fragments, with the following lengths: the first one between 400 bp and 500 bp, the second<br />

fragment between 200 bp and 250 bp, and the third one between 150-200 bp. Those<br />

electrophoretic profiles, correlated with the sequencing data and the GeneBank comparison,<br />

indicated the presence of Saprolegnia ferax species. In the fishpond 4, the 3 fragments have<br />

different lengths: the first fragment has 500 bp, the second one has about 250 bp and the<br />

third one has 150-200 bp. After the fragment length analyses by electrophoresis, in the<br />

fishpond 4 there is observed a different polymorphism compared to the other fungal DNA<br />

samples, which indicates the presence of another species, confirmed as Achlya bisexualis.<br />

At the fungal species from Saprolegniaceae family, collected from Daia fishery, Alba<br />

county, with 5 fishponds, in the 1,2,3,4 fishponds there is remarked the presence of 3<br />

restriction lanes, the first one having 400 bp, the second one 200 bp, and the third one 130-<br />

150 bp, after the sequencing analyses being i<strong>de</strong>ntified the aquatic fungal species named<br />

Saprolegnia ferax. It can be seen a fragment length polymorphism at the fungal species<br />

collected from fishpond 5, confirmed as belonging to Achlya bisexualis species. The first<br />

fragment has 500 bp, the second one has about 200 bp. The third fragment is low visible.<br />

At the fungal species from Saprolegniaceae family, collected from Iernut fishery,<br />

Mureş county, with 5 fishponds, can be observed the same fragment lengths, in 1,2,3 and 5<br />

fishponds. The first fragment has 400 bp, the second one had 200 bp, and the third one 130-<br />

65


150 bp. The electrophoretic profiles are belonging to Saprolegnia ferax species, ulterior<br />

sequenced. In the fishpond 4, the fragment length differs as it follows: the first fragment has<br />

500 bp, the second one has about 210-220 bp, and the third one has 150 bp, involving a<br />

polymorphism of another fungal species (Achlya bisexualis).<br />

In the case of the fungal species from Saprolegniaceae family, collected from Cefa<br />

fishery, Bihor county, with 10 fishponds, in the fishponds 1,2,4,5,6,7 and 9 , the 3 fragments<br />

have the following lengths: the first fragment 400 bp, the second fragment 200 bp and the<br />

third fragment between 130 and 150 bp. Those polymorphisms are belonging to Saprolegnia<br />

ferax species. In the fishponds 3,8 and 10, the fragments have different lengths, the<br />

sequencing confirming the presence of Achlya bisexualis species. The first fragment is<br />

visualized more clearly, having about 450 bp. At the samples originating from the fishponds<br />

8 and 10, it is observed an extra fragment the second one, of 250 bp, the third one having<br />

200 bp and the fourth one about 130 bp, have the same length with the second and third<br />

fragments from the other fishpond samples.<br />

At Ineu fishery, Arad county, the fragments of all the fungal samples from<br />

Saprolegniaceae family, collected from 7 fishponds analyzed, had the same lengths: the first<br />

one had 400 bp, the second one 200 bp, and the third one between 130 and 150 bp. The<br />

ulterior sequencing analyses confirmed the presence of Saprolegnia ferax species, in this<br />

location fishponds.<br />

66


II.7. RESULTS REGARDING THE GENETIC PHYLOGENY<br />

STUDY OF SAPROLEGNIACEAE FAMILY FUNGI<br />

Tree Diagram for 12 Variables<br />

Single Linkage<br />

Eucli<strong>de</strong>an distances<br />

Var1<br />

Var7<br />

Var3<br />

Var6<br />

Var2<br />

Var8<br />

Var10<br />

Var11<br />

Var4<br />

Var9<br />

Var5<br />

Var12<br />

0 10 20 30 40 50 60<br />

Linkage Distance<br />

Fig.4. Phylogenetic analysis of 69 DNA samples<br />

from Saprolegniaceae family fungi, isolated from 10 locations<br />

Variant 1: Ariniş, with the samples from 1-5, 8,9 fishponds; Motiş, with the samples from the 7 fishponds;<br />

Variant 2: Ariniş, with the samples from 6 şi 7 fishponds;<br />

Variant 3: Adrian, with the samples from 1–4, 6-8, 10 fishponds;<br />

Variant 4: Adrian, with the samples from fishpond 5;<br />

Variant 5:Adrian, with the samples from fishpond 9;<br />

Variant 6: łaga, with the samples from all the 5 fishponds;<br />

Variant 7: Ciurila, with the samples from 1-3, 5-6 fishponds; Daia, with the samples from 1-4 fishponds; Iernut, with<br />

the samples from 1-3, 5 fishponds; Cefa, with the samples from 1-2, 4-7, 9 fishponds; Ineu, with the<br />

samples from all the 7 fishponds;<br />

Variant 8: Ciurila, with the samples from fishpond 4;<br />

Variant 9: Chiochiş, with the samples from 1-3 and 5 fishponds;<br />

Variant 10: Chiochiş, with the samples from fishpond 4;<br />

Variant 11: Iernut, with the samples from fishpond 4; Daia, with the samples from fishpond 5;<br />

Variant 12: Cefa, with the samples from 8 and 10 fishponds.<br />

67


The <strong>de</strong>ndrogram interpretation, performed after the reading of DNA fragment lengths,<br />

from the 69 analyzed fishponds, allows us to conclu<strong>de</strong> the following aspects regarding the<br />

Saprolegniaceae family fungi phylogeny (fig.4).<br />

All the i<strong>de</strong>ntified fungal types have an common ancestral origin, the first speciation<br />

being realized at the ancestral variety, at a linkage distance of 58 cM (centiMorgans). One of<br />

the speciations evolved for a longer period of time, in a part of the analyzed fishponds, when<br />

caused by a point mutation, placed on a distance of 20 cM, appeared another 2 speciations.<br />

One of them evolves until today, being localized in the fishponds 1-5, 8,9 from Ariniş<br />

fishery, in the 7 fishponds from Motiş fishery (var.1), in the fishponds 1-3, 5-6 from Ciurila,<br />

Daia fishponds 1-4, Iernut fishponds 1-3 and 5, Cefa fishponds 1-2, 4-7 and 9, and all the 7<br />

fishponds from Ineu fishery (var.7).<br />

The other speciation, which evolved from a point mutation, at the level of 20 cM, for<br />

a period of time, suffered another point mutation, at the linkage distance of 10 cM,<br />

generating another two speciations. One of them (var.3) still evolves and was i<strong>de</strong>ntified in<br />

the fishponds 1-4, 6-8 and 10 from Adrian fishery and in all the 5 fishponds from łaga<br />

fishery (var.6). The second branch which broked from the ancestral form, at the distance of<br />

58 cM evolved until a point mutation caused the creation of two new speciations, at the<br />

linkage distance of 42cM. One of the branches evolved for a shorter period of time, when at<br />

the linkage distance of 35 cM realized a point mutation, which caused the appearance of<br />

another two new speciations. One of them was i<strong>de</strong>ntified in the fishponds 6 and 7 from<br />

Ariniş fishery (var.2). The other speciation, after a point mutation, at a linkage distance of 30<br />

cM, caused the evolution of two taxonomical units, i<strong>de</strong>ntified today. One of them evolves<br />

and it is very active in the fishpond 4 from Ciurila fishery (var.8), and in the fishpond 4 from<br />

Chiochiş fishery (var.10). The other broked branch is i<strong>de</strong>ntified and present today in the<br />

fishpond 4 from Iernut fishery and fishpond 5 from Daia (var.11).<br />

The second branch, broked at a linkage distance of 42 cM, evolved for a longer<br />

period of time, in a part of the analyzed fishponds, then, at a distance of 10 cM, after another<br />

mutation, resulted 3 speciations, two of them genetic related (var.4 and 9), i<strong>de</strong>ntified in the<br />

fishpond 4 from Adrian fishery and in fishponds 1-3 and 5 from Chiochiş fishery. At a<br />

68


higher genetic distance, the individuals broked from the same branch, are evolving today in<br />

the fishpond 9 from Adrian fishery (var.5) and in the fishponds 8 and 10, from Cefa fishery<br />

(var.12).<br />

II.8. SEQUENCING RESULTS OF THE SAPROLEGNIACEAE FAMILY<br />

FUNGAL SPECIES FROM THE STUDIED LOCATIONS<br />

After the automatic sequencing, performed with ABI Prism sequencer, by<br />

Mycrosinth (Switzerland), there were i<strong>de</strong>ntified two aquatic fungal species, in the studied<br />

fishponds, represented by Saprolegnia ferax and Achlya bisexualis.<br />

In the case of Saprolegnia ferax species sequencing, the fragment sequenced with<br />

the primers ITS1(forward) and ITS4 (reverse), has a length of 743 bp, a i<strong>de</strong>ntity of 99% and<br />

has two point mutations compared to the matrix species from GeneBank. At 31 position,<br />

there is observed a <strong>de</strong>letion between A-C nucleoti<strong>de</strong>s, of a C nucleoti<strong>de</strong>, and at 368 position,<br />

there is a substitution of A with C.<br />

After sequencing Achlya bisexualis species, the fragment sequenced with the<br />

primers ITS1(forward) and ITS4 (reverse), has a length of 761 bp, a i<strong>de</strong>ntity of 99% and has<br />

7 point mutations compared to the matrix species from GeneBank. At 112 position, there is<br />

rematked a substitution of C with T; at 119 position, a substitution of G with A; at 194<br />

position, a substitution of T with G; at 370 and 371 positions, two substitutions of C with A;<br />

at 416 position, a substitution of A with T, and at 633 position, a substitution of A with G.<br />

II.9. THE INCIDENCE OF SAPROLEGNIASIS IN THE CENTRAL<br />

AND NORTH-WESTERN ROMANIAN AREAL<br />

Saprolegniasis is the ”silent killer” of the aquatic species, the disease producing<br />

extremely important losses in the fisheries, particularly in the cyprinid ones.<br />

Saprolegniasis is one of the most important causes of economic losses in aquaculture,<br />

fungal infections are second only to bacterial diseases in economic importance. Fungal<br />

infections are generally restricted to chronic, steady losses. In Japan, there is an annual<br />

mortality rate of 50% in coho salmon (Oncorhynchus kisutch) due to Saprolegnia parasitica<br />

69


Coker. Fifty percent per year losses have also been reported in elver (Anguilla anguilla)<br />

culture in Japan. In Scotland, saprolegniasis causes important economic losses especially in<br />

salmon fisheries.<br />

In the southeastern of United States, major losses of 50% occur in channel catfish<br />

farming, and the economic loss of 40 million dollars. Every year, the channel catfish<br />

farmers, from United States, have losses of more than 25 million dollars caused by aquatic<br />

diseases.<br />

In Europe, the cyprinid species losses percentage is more than 25%, in the areals<br />

where over the predisposing factors, represented by overpopulation, bad manipulation of the<br />

fish, reproduction stress caused by corticosteroid hormone excess, associated infection<br />

(Jeney and al., 1995), there are cumulating the water and air pollution factors. Losses<br />

between 50 and 100% at spawns, and between 14% up to 30% at larvae and alevins,<br />

between 10 and 15% at young fish are signaled by different authors (Horvath and al., 2005).<br />

Taking in consi<strong>de</strong>ration the International and European situation, we observed in our<br />

research areal important losses caused by saprolegniasis (table 4).<br />

Location<br />

Spawns in<br />

hatching<br />

period<br />

The percentage of losses caused by saprolegniasis<br />

at carp species in the studied locations (%)<br />

Larvae Alevins Young<br />

fish<br />

Adults<br />

Table 4<br />

Winter Spring Summer Autumn<br />

Ariniş 70 30 5 3 4 5 5 3<br />

Motiş 40 20 7 5 3 2 3 3<br />

Adrian 58 25 10 5 8 6 6 5<br />

łaga 60 28 10 8 9 5 4 4<br />

Ciurila 30 10 5 5 7 5 4 3<br />

Chiochiş 30 12 10 5 10 6 5 4<br />

Daia 25 15 5 3 5 3 3 3<br />

Iernut 50 25 13 10 10 7 5 5<br />

Cefa 20 5 5 2 3 4 4 4<br />

Ineu 28 7 6 3 4 3 4 3<br />

Average on<br />

total<br />

locations<br />

41,1 16,7 7,6 4,9 6,3 4,6 4,3 4,1<br />

70


We mention the fact that in al the analyzed fisheries there is applied the annual<br />

disinfection, in the fishponds where the natural supervised reproduction takes place,<br />

emptying and keeping them dry on the winter period. Before the filling, the fishponds are<br />

disinfected with lime at all of their surface. With all this, because of the reproduction<br />

individuals manipulation and of the vegetation massive <strong>de</strong>velopment, in the reproduction<br />

period there are <strong>de</strong>scribed strong attacks of pathogenic fungi upon spawns, with losses up to<br />

70% in Ariniş fishery, and in the fisheries where the hygienic measures are very severe, the<br />

losses are up to 20% from affected spawns (Cefa location). In average, in the 69 fishponds<br />

from the 10 locations studied, the cyprinid spawn losses raise up to 41,10%. The larval<br />

period, specially the first 3 days of life one, when their movements are limited by the<br />

presence of vitelline membrane, the average losses raise up to 16,70%, with a 30%<br />

maximum of losses, in Ariniş fishery, and a 5% minimum of losses in Cefa fishery. The<br />

alevin period, extremely difficult as needs of water oxygen level and food quality, is strong<br />

affected by saprolegniasis. The average losses of 7,60%, are more reduced compared to the<br />

larval period. The biggest losses percentage at this category of age, is encountered in Iernut<br />

fishery (13%), and a minimum of 5% in Ariniş, Ciurila, Daia, Cefa fishries.<br />

In the young fish period, with its particular attention gived by the fishery owners<br />

regarding the water and food quality, when there is assured an optimal <strong>de</strong>nsity of the<br />

individuals and the manipulations restricted, the losses caused by saprolegniasis are more<br />

reduced, being in average of 4,90%.<br />

The adult period is not safe from Saprolegnia attack. In the majority of the studied<br />

fisheries, there is practiced the autumn fishing and the transfer of the kept fish for the next<br />

year, in the wintering fishponds. The manual labor of catching, transportation and<br />

repopulation in another fishpond causes body and fishfins inherent wounds. On the winter<br />

period, the fish do not eat any food, their organism being weakened, and un<strong>de</strong>r the<br />

influences of sud<strong>de</strong>n temperature changes and ice layer, the losses are in average of 6,30%.<br />

In springtime, the reproducers, as well as the fish kept for breeding, are verified regarding<br />

their state maintenance and health, using fishing nets. The manipulation produces wounds,<br />

which are causing the increase of saprolegniasis inci<strong>de</strong>nce, the average of the losses being of<br />

71


4,60%. The springtime end and the begining of the summer are overlapping with the<br />

cyprinid reproduction period, when the manipulations, as well as the stress caused by<br />

corticosteroid hormones are the factors of saprolegniasis inci<strong>de</strong>nce, at the weakened<br />

individuals. The average losses on the 69 samples studied is 4,30%.<br />

A lower percentage, of 4,10%, is remarked in the autumn period, when generally all<br />

the fish populations have a very good immune status, being prepared for wintering.<br />

CHAPTER III<br />

CONCLUSIONS AND RECOMMENDATIONS<br />

1. The water presence of Saprolegnia, prooved by the spawns infestation, is observed<br />

irrespective of the water collecting month.<br />

2. The higher infestation <strong>de</strong>gree of the cyprinid spawns with Saprolegnia was remarked<br />

at the water temperature of 22ºC, when the medium and strong infestation percentage<br />

reaches 85,41%, irrespective of sample collecting months.<br />

3. Irrespective of the solid culture media used (PDA and SGA), and of the reading<br />

interval (24, 48 and 72 hours), there are differences between the analyzed<br />

Saprolegnia colonies, from one fishpond and location to another.<br />

4. The growing of Saprolegnia colonies on Potato Dextrose Broth (PDB) liquid culture<br />

medium is superior to the one realized on Sabouraud Dextrose Broth (SDB) liquid<br />

medium.<br />

5. The morphologic characterization of Saprolegnia strains, from the obtained colonies,<br />

reveals unsegmented hyphae specific to the inferior fungi, and differences regarding<br />

the presence of sexual reproduction (at 59,42%) and its absence (at 40,58%).<br />

6. At all Saprolegnia isolates it was i<strong>de</strong>ntified the presence of flagella on the primary<br />

zoospores.<br />

7. DNA purities illustrated by Nanodrop ND 1000 spectrophotometer, after the kit<br />

extraction (Qiagen), varies between 1,02 - 1,51, with a sample purity average of<br />

1,250, at 260/280 nm ripple length, and the DNA quantities between 2,54 – 14,00<br />

ng/µl, with an average of 5,543 ng/µl, and the DNA purities after PBS solution<br />

72


extraction have values between 1,10 – 1,51, with an average of 1,394, at 260/280 nm<br />

ripple length, and the DNA quantities obtained by the same method, varied between<br />

5,23 – 86,56 ng/µl, with an average of 30,653 ng/µl.<br />

8. In the case of DNA samples extracted with kit QIAGEN, in all the situations the<br />

amplification produced with both primer pairs used, with the visualization of 743 bp<br />

fragments at Saprolegnia ferax, and of 761 bp at Achlya bisexualis.<br />

9. In the case of the DNA samples extracted with PBS solutions, in spite of the normal<br />

DNA purities and quantities, the amplification of Saprolegnia DNA samples, with the<br />

two primer pairs, produced differently, because of the presence of possible fungal<br />

inhibitors, which do not allow the attachment of ITS1 and ITS4 primer pair, and in<br />

the case of using a PCR purification kit, the amplification performed.<br />

10. In the case of the samples extracted with NE solutions, in spite of the normal purities<br />

and quantities, the amplification of Saprolegnia DNA samples, with the two primer<br />

pairs didn’t produced.<br />

11. RsaI enzyme has a very good specificity for Saprolegnia and Achlya restriction sites,<br />

so we opted for its usage in all the fragment restriction tests.<br />

12. AluI and HindIII enzymes, tested by us in the experiment, do not have any specificity<br />

for Saprolegnia and Achlya restriction sites, failing to produce any restricion of the<br />

DNA fragments.<br />

13. In the case of the 10 fisheries and 69 samples analyzed, there are visualized two DNA<br />

length polymorphisms, in the gels.<br />

14. The study of phylogenetic tree, using linkage and Eucli<strong>de</strong>an distances, allows us to<br />

conclu<strong>de</strong> the fact that in the studied fisheries and fishponds, there are different genera<br />

of fungi from Saprolegniaceae family, which have different pathogenicity upon<br />

cyprinid species.<br />

15. After the DNA sequencing, there were i<strong>de</strong>ntified two species of aquatic fungi, in the<br />

studied fishponds, represented by Saprolegnia ferax (743 bp, a i<strong>de</strong>ntity of 99% and<br />

has two point mutations compared to the matrix species from GeneBank) and Achlya<br />

73


isexualis (761 bp, a i<strong>de</strong>ntity of 99% and has 7 point mutations compared to the<br />

matrix species from GeneBank).<br />

16. The bigger losses caused by i<strong>de</strong>ntified species (Saprolegnia ferax and Achlya<br />

bisexualis), at the cyprinid species from Romania, are observed in the reproduction<br />

period, when the percentage of average losses at spawns reaches 41,10%, and 16,70%<br />

at larval period.<br />

17. The i<strong>de</strong>ntified species are causing losses in the cyprinid breeding fishponds from<br />

Romania, and at the young fish (4,90%) and adults (with an average of 6,30% in<br />

wintertime, 4,60% in springtime, 4,30% in summertime and 4,10% in autumn).<br />

18. The losses caused by saprolegniasis differ from one season and fishery to another,<br />

<strong>de</strong>pending on the water physical, chemical and biological conditions, on the breeding<br />

technology severity and on the general meteorological conditions.<br />

Based on the obtained results, we recommend:<br />

9. We recommend for the analyses of Saprolegnia presence in fishponds, that the water<br />

samples should be collected from the 4 lake si<strong>de</strong>s and centre, and from the <strong>de</strong>pth of<br />

about 50 cm.<br />

10. For the growth of different Saprolegnia strains, can be used solid culture media (PDA<br />

and SGA), but we recommend PDA culture medium for the colonies more rapid<br />

growing time.<br />

11. Because, in the DNA analyses there are nee<strong>de</strong>d big quantities of fungi, and making<br />

allowance for Saprolegnia <strong>de</strong>velopment mo<strong>de</strong> in the two culture liquid media, we<br />

recommend the use of Potato Dextrose Broth (PDB) liquid medium, in the<br />

experiments on the genus species.<br />

12. We recommend the fungal DNA extraction with kits (QIAGEN) and avoiding the<br />

solutions extraction (PBS and NE), which in spite of the fact that realizes normal<br />

DNA purities and quantities, the amplification of Saprolegnia DNA samples<br />

produces partialy or was absent.<br />

74


13. In researches on the aquatic fungi we recommend the use of RsaI enzyme, which has<br />

a very good specificity for Saprolegnia and Achlya restriction sites, and to avoid AluI<br />

and HindIII enzymes, which do not have any specificity for the restriction sites.<br />

14. For the genetic characterization of Saprolegniaceae family aquatic fungi, we<br />

recommend the use of PCR-RFLP method, <strong>de</strong>scribed by Ristaino and al., 1998,<br />

adapted by us.<br />

15. To be able to i<strong>de</strong>ntify precisely the genera and species from Saprolegniaceae family,<br />

we recommend the use of DNA sequencing and the results comparison with the ones<br />

from GeneBank.<br />

16. To avoid the losses caused by saprolegniasis, in the cyprinid fisheries from centern<br />

and north-western part of Romania, we recommend a special attention of the fishery<br />

owners in: the permanent water quality control, the vegetation type control, avoiding<br />

the fish traumatisms during manipulations, avoiding the stress caused by water level<br />

oscillations, and by the forage type used.<br />

75


SELECTIVE BIBLIOGRAPHY<br />

32. Colao Maria Chiara, 1999, Proprieta cinetiche e molecolari di laccasi fungine,<br />

Universita <strong>de</strong>gli Studi <strong>de</strong>lla Tuscia, Viterbo, 99 pg.;<br />

33. Coşier Viorica, 2007, Inginerie genetică, Ed. Risoprint, <strong>Cluj</strong>-<strong>Napoca</strong>;<br />

34. Dick, M.W., 1969, Morphology and taxonomy of the Oomycetes, with special<br />

reference to Saprolegniaceae, Leptomitaceae and Pithyaceae. I. Sexual reproduction,<br />

New Phytol., 68, 751–775;<br />

35. Dick, M.W., 1972, Morphology and taxonomy of the Oomycetes, with special<br />

reference to Saprolegniaceae, Leptomitaceae and Pithyaceae. II. Cytogenetic<br />

systems, New Phytol., 71, 1151–1159;<br />

36. Dieguez-Uribeondo, J., Fregeneda-Gran<strong>de</strong>s, J.M., Cerenius, L., Elena Perez-<br />

Iniesta, Aller-Gancedo, J.M., Teresa M. Telleri, So<strong>de</strong>rhall, K., Maria P. Martin,<br />

2007, Re-evaluation of the enigmatic species complex Saprolegnia diclina–<br />

Saprolegnia parasitica based on morphological, physiological and molecular data,<br />

Fungal Genetics and Biology, 44, 585–601;<br />

37. Fernan<strong>de</strong>z-Benitez Maria Jose, Ortiz-Santaliestra, M.E., Lizana, M., Dieguez-<br />

Uribeondo, J., 2008, Saprolegnia diclina: another species responsible for the<br />

emergent disease‘Saprolegnia infections’ in amphibians, FEMS Microbiol. Lett., 279,<br />

23–29;<br />

38. Francesconi, A., Kasai, M., Susan M. Harrington, Mara G. Beveridge, Ruta<br />

Petraitiene, Petraitis, V., Schaufele, R. L., Walsh, T J., 2008, Automated and<br />

manual methods of DNA extraction for Aspergillus fumigatus and Rhizopus oryzae<br />

analyzed by Quantitative Real-Time PCR, Journal of Clinical Microbiology, 46:6,<br />

1978–1984;<br />

39. Fregeneda Gran<strong>de</strong>s, J.M., Fernan<strong>de</strong>z Diez, M., Aller Gancedo, J.M., 2000,<br />

Ultrastructural analysis of Saprolegnia secondary zoospore cyst ornamentation from<br />

infected wild brown trout, Salmo trutta L., and river water indicates two distinct<br />

morphotypes amongst long-spined isolates, Journal of Fish Diseases, 23, 147–160;<br />

76


40. Frisvad, J.C., Bridge, P.D., Arora, D.K., 1998, Chemical fungal taxonomy, Marcel<br />

Dekker Inc., New York, 398 pg.;<br />

41. Heath, I.B., Karen Rethoret, 1981, Nuclear cycle of Saprolegnia ferax, J. Cell Set.,<br />

49, 353-367;<br />

42. Johnson Jr., T.W., Seymour, R.L., Padgett, D.E., 2002, Biology and systematics of<br />

the Saprolegniaceae, on-line publication: http://www.ilumina-dlib.org., 1028 pg.;<br />

43. Kamoun Sophien, 2003, Molecular genetics of pathogenic oomycetes, Eukaryotic<br />

Cell, 2:2, 191–199;<br />

44. Lategan, M.J., Gibson, L.F., 2003, Antagonistic activity of Aeromonas media strain<br />

A199 against Saprolegnia sp., an opportunistic pathogen of the eel, Anguilla australis<br />

Richardson, Journal of Fish Diseases, 26, 147-153;<br />

45. Lategan, M.J., Torpy, F.R., Gibson, L.F., 2004, Biocontrol of saprolegniosis in<br />

silver perch Bidyanus bidyanus (Mitchell) by Aeromonas media strain A199,<br />

Aquaculture, 235, 77-88;<br />

46. Leclerc, M.C., Guillot, J., Devilla, M., 2000, Taxonomic and phylogenetic analysis<br />

of Saprolegniaceae (Oomycetes) inferred from LSU rDNA and ITS sequence<br />

comparisons, Antonie van Leeuwenhoek, 77, 369–377;<br />

47. Llanos Frutos, R., M. Teresa Fernán<strong>de</strong>z-Espinar, Querol, A., 2004, I<strong>de</strong>ntification<br />

of species of the genus Candida by analysis of the 5.8S rRNA gene and the two<br />

ribosomal internal transcribed spacers, Antonie van Leeuwenhoek, 85, 175–185;<br />

48. Oroian, R.G., Oroian, T.E., Crina Teodora Carşai, Viorica Coşier, L. Sasca,<br />

2009, RAPD technique used in analyzing the genetic structure of Cyprinus carpio<br />

species – Galitian and Lausitz varieties, International symposium “Mo<strong>de</strong>rn animal<br />

husbandry-science, creativity and innovation”, Lucrări ştiinŃifice seria Zootehnie,<br />

<strong>USAMV</strong> Iaşi, cotaŃie CNCSIS B+, 52:14, 444-449;<br />

49. Oroian, R.G., Vlaic, A., Oroian, T.E., 2008, PCR technique used in Saprolegnia sp.<br />

genetical characterization, Lucrări ŞtiinŃifice - Universitatea <strong>de</strong> Ştiinte Agricole şi<br />

Medicină Veterinară Iaşi, Seria Zootehnie, vol. 51, 631-634;<br />

77


50. Oroian, T.E., 2006, SelecŃia asistată <strong>de</strong> markeri la crap, Ed. Risoprint, <strong>Cluj</strong>-<strong>Napoca</strong>,<br />

180 pg.;<br />

51. Oroian, T.E., Oroian, R.G., Cristina Hegeduş, Cighi, V., Dronca, D., 2009, The<br />

monitoring of phytoplankton evolution by biological year within Arinis-Maramures<br />

fishery complex, International symposium “Mo<strong>de</strong>rn animal husbandry-science,<br />

creativity and innovation”, Lucrări ştiinŃifice seria Zootehnie, <strong>USAMV</strong> Iaşi, cotaŃie<br />

CNCSIS B+, 52:14, 456-461;<br />

52. Paul, B., Monica M. Steciow, 2004, Saprolegnia multispora, a new oomycete<br />

isolated from water samples taken in a river in the Burgundian region of France,<br />

FEMS Microbiology Letters, 237, 393–398;<br />

53. Ristaino, J.B., Madritch, M., Trout, C.L., Parra, G., 1998, PCR amplification of<br />

ribosomal DNA for species i<strong>de</strong>ntification in the plant pathogen genus Phytophthora,<br />

Applied and Environmental Microbiology, 64:3, 948-954;<br />

54. Stueland, S., Hatai, K., Skaar, I., 2005, Morphological and physiological<br />

characteristics of Saprolegnia spp. strains pathogenic to Atlantic salmon, Salmo salar<br />

L., Journal of Fish Diseases, 28, 445-453;<br />

55. Vlaic, A., 2007, Genetica peştilor, Ed. Risoprint, <strong>Cluj</strong>-<strong>Napoca</strong>, 150 pg.;<br />

56. White, P.L., Barton, R., Guiver, M., Linton, C.J., Wilson, S., Smith, M., Beatriz<br />

L. Gomez, Carr, M.J., Kimmitt, P.T., Shila Seaton, Rajakumar, K., Tessa<br />

Holyoake, Chris C. Kibbler, Elizabeth Johnson, Hobson, R.P., Jones, B.,<br />

Rosemary A. Barnes, 2006, A consensus on fungal Polymerase Chain Reaction<br />

diagnosis, Journal of Molecular Diagnostics, 8:3, 376-384;<br />

57. White, T.J., Bruns, T., Lee, S., Taylor, J., 1990, Amplification and direct<br />

sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M., Gelfand,<br />

D.H., Sninsky, J., White, T.J. (Eds) PCR protocols (pg 315–322), Aca<strong>de</strong>mic Press,<br />

San Diego;<br />

58. *** http://www.fermentas.com<br />

59. *** http://www.ncbi.nlm.nih.gov<br />

60. *** http://www.qiagen.com<br />

78


61. *** http://www.sigmaaldrich.com<br />

62. ***http://www.tnfish.org/FishDiseasesParasites_TWRA/files/Saprolegnia.pdf<br />

79

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!