22.11.2014 Views

Biuletyn Instytutu Spawalnictwa No. 01/2012

Biuletyn Instytutu Spawalnictwa No. 01/2012

Biuletyn Instytutu Spawalnictwa No. 01/2012

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Combined models of arc with constant<br />

column length<br />

The series connection of the Cassie-Berger<br />

and Mayr-Kulakov models makes it possible<br />

to obtain the Habedank model, where substitute<br />

conductance fulfils the dependence<br />

(22)<br />

(23)<br />

If one now implements the simplified Mayr-Kulakov<br />

model taking into consideration the<br />

virtual static characteristics of the arc component<br />

U Mstat<br />

(i), instead of (21) one receives<br />

and after reduction<br />

1 1 1<br />

Similarly, instead of (23) the resistance<br />

= +<br />

(16)<br />

(16)<br />

g g form of the model will be<br />

M<br />

g C<br />

1<br />

r<br />

C<br />

1<br />

r<br />

M<br />

drC<br />

dt<br />

dr<br />

dt<br />

M<br />

1<br />

=<br />

θ<br />

C<br />

⎡ u<br />

⎢1<br />

−<br />

⎢⎣<br />

U<br />

2<br />

2<br />

C<br />

⎛<br />

⎜<br />

⎝<br />

rC<br />

r<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

1 ⎡ u r<br />

= ⎢ −<br />

M<br />

1<br />

θ ⎣ rP r<br />

M<br />

M<br />

⎤<br />

⎥<br />

⎥⎦<br />

⎤<br />

⎥<br />

⎦<br />

1<br />

g<br />

M<br />

1<br />

g<br />

M<br />

dg<br />

dt<br />

M<br />

dg<br />

dt<br />

M<br />

2<br />

1 ⎡ u g g ⎤<br />

= ⎢<br />

−1⎥ θ<br />

Ms ⎣i<br />

⋅U<br />

Mstat<br />

() i g<br />

M ⎦<br />

1 ⎡ u g ⎤<br />

= ⎢ −1⎥ θ ⎣ U () i g ⎦<br />

Ms<br />

Mstat<br />

M<br />

(24)<br />

(25)<br />

2<br />

and resistance is<br />

1 dr ⎡<br />

⎤<br />

M<br />

1 u rM<br />

= ⎢1<br />

−<br />

⎥ (26)<br />

rM<br />

dt θ<br />

Ms<br />

r = r M<br />

+r C<br />

(17)<br />

⎣ r ⋅i<br />

⋅U<br />

Mstat<br />

() i r ⎦<br />

As the same current flows through both elements<br />

and after taking into consideration that 1 dr ⎡ ⎤<br />

and after reduction<br />

M<br />

1 u r<br />

= ⎢ −<br />

M<br />

1<br />

⎥ (27)<br />

g C<br />

= i / u C<br />

, g M<br />

= i / u M<br />

and g = i / u it can be r<br />

⎣ () r<br />

M<br />

dt θ<br />

Ms<br />

U<br />

Mstat<br />

i ⎦<br />

stated that<br />

where<br />

g rC<br />

uC = u = u<br />

(18) U Mstat<br />

(i) (18) = U stat<br />

(i) - U 0<br />

sign(i), U C<br />

= f(U 0<br />

).<br />

gC<br />

r<br />

The voltage of U 0<br />

corresponds to ranges of<br />

and<br />

strong arc currents.<br />

g r<br />

The Habedank model (20)-(23) is sometimes<br />

used to simulate commutation processes<br />

M<br />

uM = u = u<br />

(19) (19)<br />

g<br />

M<br />

r<br />

in electric circuits with high voltage electrical<br />

Then on the basis of (18) and (19), one can<br />

devices; its expansion being the series connection<br />

of as many as three models (1 – Cas-<br />

express the Habedank model in the conductance<br />

form:<br />

sie-Berger, 2 – Mayr-Kulakov) [7]. Known as<br />

2<br />

⎡ 2<br />

1 dg 1 ⎛ ⎞ ⎤<br />

KEMA, the model was even implemented as a<br />

C u g<br />

= ⎢<br />

⎜<br />

⎟ −1⎥<br />

(20) (20)<br />

2<br />

gC<br />

dt θC<br />

⎣⎢<br />

U<br />

C ⎝ gC<br />

⎠ ⎥⎦<br />

blackbox in simulation programmes [8, 9].<br />

In the TWV hybrid arc model [2], the values<br />

of (21) currents flowing through two parallel<br />

2<br />

1 dg 1 ⎡ ⎤<br />

M<br />

u g g<br />

= ⎢ −1⎥<br />

(21)<br />

g<br />

M<br />

dt θ<br />

M ⎣ PM<br />

g<br />

M ⎦<br />

nonlinear conductances, corresponding to the<br />

The resistance form of the formulas is as follows: Mayr-Kulakov and Cassie-Berger models, depend<br />

on their resultant value and therefore can<br />

(22)<br />

be presented as follows:<br />

2<br />

⎛<br />

2<br />

⎛ i ⎞<br />

⎛<br />

()<br />

(23)<br />

⎟ ⎞<br />

⎜<br />

i ⎞<br />

i t = u<br />

⎜<br />

⎟ + ⋅ ⋅<br />

−<br />

⎜ −<br />

⎟<br />

kol<br />

g = ukol<br />

⋅ gM<br />

exp − u 1 exp<br />

2 kol<br />

gC<br />

2<br />

⎝ I0<br />

⎠ ⎝ ⎝ I0<br />

⎠⎠<br />

(28)<br />

Hence one receives<br />

g<br />

⎛ i −<br />

2<br />

⎞<br />

⎞⎞<br />

() t = g () () ⎜<br />

⎜<br />

⎟ + ⋅<br />

−<br />

⎜<br />

⎟<br />

⎟ M<br />

t ⋅ exp g<br />

2 C<br />

t 1 exp<br />

2<br />

⎝ I0<br />

⎠ ⎝ ⎝ I0<br />

⎠⎠<br />

⎛<br />

⎛ i −<br />

2<br />

(29)<br />

18 BIULETYN INSTYTUTU SPAWALNICTWA<br />

NR <strong>01</strong>/2<strong>01</strong>2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!