28.11.2014 Views

Pythagorean Theorem Differentiated Instruction for Use in an ...

Pythagorean Theorem Differentiated Instruction for Use in an ...

Pythagorean Theorem Differentiated Instruction for Use in an ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong><br />

<strong>Differentiated</strong> <strong>Instruction</strong> <strong>for</strong> <strong>Use</strong> <strong>in</strong> <strong>an</strong><br />

Inclusion Classroom<br />

Grade Level: Seven<br />

Time Sp<strong>an</strong>: Four Days<br />

Tools: Calculators, The Proofs of Pythagoras, GSP, Internet<br />

Colleen Parker<br />

1


Objectives<br />

Students will be able to:<br />

identify the hypotenuse <strong>an</strong>d legs of a right tri<strong>an</strong>gle<br />

state the <strong>for</strong>mula <strong>for</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong><br />

use the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to calculate the lengths of the sides of a right tri<strong>an</strong>gle<br />

use the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to identify right tri<strong>an</strong>gles<br />

New York State St<strong>an</strong>dards<br />

7.G.5 Identify the right <strong>an</strong>gle, hypotenuse, <strong>an</strong>d legs of a right tri<strong>an</strong>gle<br />

7.G.6 Explore the relationship between the lengths of the three sides of a right tri<strong>an</strong>gle to<br />

develop the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong><br />

7.G.8 <strong>Use</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to determ<strong>in</strong>e the unknown length of a side of a right<br />

tri<strong>an</strong>gle<br />

7.G.9 Determ<strong>in</strong>e whether a given tri<strong>an</strong>gle is a right tri<strong>an</strong>gle by apply<strong>in</strong>g the <strong>Pythagore<strong>an</strong></strong><br />

<strong>Theorem</strong> <strong>an</strong>d us<strong>in</strong>g a calculator<br />

7.N.16 Determ<strong>in</strong>e the square root of non-perfect squares us<strong>in</strong>g a calculator<br />

7.RP.7 Develop, expla<strong>in</strong>, <strong>an</strong>d verify <strong>an</strong> argument us<strong>in</strong>g mathematical ideas <strong>an</strong>d l<strong>an</strong>guage<br />

7.RP.8 Justify <strong>an</strong> argument by us<strong>in</strong>g a systematic approach<br />

7.CM.9 Increase their use of mathematical vocabulary <strong>an</strong>d l<strong>an</strong>guage when communicat<strong>in</strong>g with<br />

others<br />

7.CM.10 <strong>Use</strong> appropriate l<strong>an</strong>guage, representations, <strong>an</strong>d term<strong>in</strong>ology when describ<strong>in</strong>g objects,<br />

relationships, mathematical solutions, <strong>an</strong>d rational<br />

NCTM St<strong>an</strong>dards<br />

Compute fluently <strong>an</strong>d make reasonable estimates<br />

Analyze characteristics <strong>an</strong>d properties of two- <strong>an</strong>d three-dimensional geometric shapes <strong>an</strong>d<br />

develop mathematical arguments about geometric relationships<br />

Recognize reason<strong>in</strong>g <strong>an</strong>d proof as fundamental aspects of mathematics<br />

<strong>Use</strong> the l<strong>an</strong>guage of mathematics to express mathematical ideas precisely<br />

2


Resources<br />

Textbook<br />

Prentice Hall<br />

Middle Grades Math Tools <strong>for</strong> Success, course 2<br />

Chapters 8-6, 8-7 pp 359-367<br />

Other resources<br />

Prentice Hall<br />

Middle Grades Math Tools <strong>for</strong> Success, course 3<br />

Chapter 5-10 pp 263-268<br />

Prentice Hall<br />

Connected Mathematics Look<strong>in</strong>g <strong>for</strong> Pythagoras<br />

Chapters 3, 4 pp 27-51<br />

Prentice Hall<br />

Algebra<br />

Chapter 1-8 pp 45-51<br />

ETA Cuisenaire<br />

The Proof of Pythagoras<br />

Proof 1 pp 2-3<br />

3


Materials <strong>an</strong>d Equipment<br />

Scissors (class set)<br />

glue sticks (class set)<br />

copies of <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> worksheets puzzle proof one <strong>an</strong>d puzzle proof<br />

two<br />

tr<strong>an</strong>sparency of proof puzzle one<br />

right tri<strong>an</strong>gle tray <strong>an</strong>d green <strong>an</strong>d blue tiles (ETA Cuisenaire, The Proof of<br />

Pythagoras, proof 1)<br />

copies of notes <strong>for</strong> Days 2<br />

tr<strong>an</strong>sparency of notes page 3<br />

calculators<br />

tr<strong>an</strong>sparencies of questions from the textbook 8 pp 362, 19 <strong>an</strong>d 20 pp 363, <strong>an</strong>d 20<br />

pp 367<br />

copies of directions <strong>for</strong> the activity <strong>for</strong> Day 3<br />

several rect<strong>an</strong>gular boxes <strong>an</strong>d tri<strong>an</strong>gles cut from construction paper which fit<br />

diagonally <strong>in</strong>side the box<br />

str<strong>in</strong>g<br />

tape<br />

copies of practice 8-6 from workbook<br />

computer<br />

The Geometer’s Sketchpad<br />

<strong>in</strong>ternet connection<br />

copies of activity sheets <strong>for</strong> each of the 6 additional activities<br />

4


Overview<br />

Introduction<br />

I developed this unit <strong>in</strong> response my student teach<strong>in</strong>g experience with <strong>an</strong><br />

<strong>in</strong>clusion class. I had students who worked on m<strong>an</strong>y different levels. Some students<br />

could complete the lesson with m<strong>in</strong>imal direct <strong>in</strong>struction while other students needed<br />

careful step by step <strong>in</strong>struction. I w<strong>an</strong>ted to develop related activities <strong>for</strong><br />

mathematically precocious students to explore while I worked with the rest of the<br />

class. I hoped that this would keep them <strong>in</strong>terested <strong>in</strong> the mathematics <strong>an</strong>d decrease<br />

classroom disruptions.<br />

The alternative activities c<strong>an</strong> be assigned to students based on your experience<br />

with your students. I would require students to complete the class work be<strong>for</strong>e<br />

mov<strong>in</strong>g on but you may have a gifted student <strong>for</strong> which this is not necessary. The<br />

activities are not necessarily associated with one particular day <strong>an</strong>d c<strong>an</strong> be used at<br />

each teacher’s discretion. The additional activities are <strong>in</strong>cluded after Day 4 <strong>in</strong> the unit<br />

pl<strong>an</strong>.<br />

Day 1<br />

<strong>Use</strong> activities to help all students discover the relationship between the areas of<br />

squares built on the sides of right tri<strong>an</strong>gles. Students will complete two ‘puzzle’<br />

proofs by <strong>in</strong>spection of the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>. Each puzzle is based on a different<br />

right tri<strong>an</strong>gle <strong>an</strong>d a different proof.<br />

Day 2<br />

Review right tri<strong>an</strong>gles <strong>an</strong>d the area of a square. Introduce right tri<strong>an</strong>gle vocabulary,<br />

leg <strong>an</strong>d hypotenuse. Discuss the activities of day one <strong>an</strong>d use what was learned to<br />

develop the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>. Review how to use the calculator to estimate<br />

square roots. Introduce us<strong>in</strong>g the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> as a way to solve problems<br />

f<strong>in</strong>d<strong>in</strong>g the side lengths of right tri<strong>an</strong>gles.<br />

Day 3<br />

Review <strong>for</strong>mula <strong>for</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> <strong>an</strong>d how to use a calculator to estimate<br />

square roots. <strong>Use</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to solve problems <strong>in</strong> context. End this<br />

day with <strong>an</strong> activity that allows the students to apply what they have learned.<br />

Students will work cooperatively to f<strong>in</strong>d the longest rod that will fit <strong>in</strong>side a box.<br />

Day 4<br />

Review leg, hypotenuse, <strong>an</strong>d <strong>for</strong>mula <strong>for</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>. In Egypti<strong>an</strong><br />

Survey<strong>in</strong>g Activity students create a right tri<strong>an</strong>gle with a piece of str<strong>in</strong>g that has been<br />

partitioned <strong>in</strong>to 12 equal pieces. This activity will re<strong>in</strong><strong>for</strong>ce us<strong>in</strong>g the <strong>Pythagore<strong>an</strong></strong><br />

<strong>Theorem</strong> with right tri<strong>an</strong>gles only. Students will practice determ<strong>in</strong><strong>in</strong>g whether or not a<br />

tri<strong>an</strong>gle is a right tri<strong>an</strong>gle.<br />

5


Additional Activities:<br />

Activity 1: Investigate the area of squares proof us<strong>in</strong>g The Geometer’s Sketchpad<br />

Set up this activity on a PC with GSP. Students will be able to alter the size<br />

of the right tri<strong>an</strong>gle to <strong>in</strong>vestigate whether the area of squares proof works with<br />

<strong>an</strong>y right tri<strong>an</strong>gle.<br />

Activity 2: Area proof us<strong>in</strong>g half circles<br />

This activity allows students to <strong>in</strong>vestigate whether <strong>an</strong> area proof will work if the<br />

shapes built on the sides of the right tri<strong>an</strong>gle are not squares.<br />

Activity 3: Algebraic proof<br />

This activity is <strong>for</strong> students who have superior algebraic skills. Follow the<br />

directions from The Proofs of Pythagoras page 6.<br />

Activity 4: Internet search <strong>for</strong> President Garfield’s Proof<br />

<strong>Use</strong> this activity to make a Social Studies connection. Have students search the<br />

<strong>in</strong>ternet to learn more about more about Garfield <strong>an</strong>d f<strong>in</strong>d his proof.<br />

Activity 5: F<strong>in</strong>d<strong>in</strong>g the length of a l<strong>in</strong>e segment.<br />

This activity encourages students to use the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to determ<strong>in</strong>e<br />

the length of l<strong>in</strong>e segments drawn on a grid.<br />

Activity 6: Theodosi<strong>an</strong> Spiral<br />

This activity provides <strong>an</strong> <strong>in</strong>terest<strong>in</strong>g application <strong>for</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>.<br />

6


Day 1<br />

Lesson – Puzzle Proofs of the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong><br />

Objectives:<br />

Students will be able to:<br />

state that the area of squares built on the legs of a right tri<strong>an</strong>gle is equal to the area of<br />

the square built on the hypotenuse.<br />

conjecture that the same relationship applies to all right tri<strong>an</strong>gles.<br />

Materials:<br />

Scissors, glue sticks, copies of <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> worksheets puzzle proof one (page 7),<br />

puzzle proof two (page 8) <strong>an</strong>d puzzle pieces (page 9), tr<strong>an</strong>sparency of proof puzzle one (page 7),<br />

right tri<strong>an</strong>gle tray <strong>an</strong>d green <strong>an</strong>d blue tiles<br />

Outl<strong>in</strong>e of Activities:<br />

1. Review right tri<strong>an</strong>gles. Students should def<strong>in</strong>e right <strong>an</strong>gle <strong>an</strong>d f<strong>in</strong>d examples <strong>in</strong> the classroom.<br />

Students should def<strong>in</strong>e right tri<strong>an</strong>gle. Create a right tri<strong>an</strong>gle <strong>in</strong> corner of the blackboard us<strong>in</strong>g a<br />

yard stick.<br />

2. Students should beg<strong>in</strong> puzzle proof one. Their task is to cover the largest square with pieces of<br />

the smaller squares <strong>an</strong>d look <strong>for</strong> the relationships between the areas of the squares. Read through<br />

the directions with the students. Have then cut out the pieces <strong>an</strong>d cover the two small squares.<br />

Then use the same pieces to cover the largest square. There may be students who c<strong>an</strong> work<br />

ahead <strong>an</strong>d beg<strong>in</strong> puzzle 2 on their own. Demonstrate the solution to the puzzle us<strong>in</strong>g the<br />

tr<strong>an</strong>sparency.<br />

3. Students should beg<strong>in</strong> puzzle two. Their task is to cover the largest square with pieces of the<br />

smaller squares <strong>an</strong>d look <strong>for</strong> the relationships between the areas of the squares. Read through the<br />

directions with the students. Have then cut out the pieces. They should cover the two small<br />

squares <strong>an</strong>d then use the same pieces to cover the largest square. Students who f<strong>in</strong>ish the puzzle<br />

proofs quickly <strong>an</strong>d identify the relationship c<strong>an</strong> beg<strong>in</strong> work on <strong>an</strong> alternate activity. Demonstrate<br />

the solution to the puzzle proof us<strong>in</strong>g the right tri<strong>an</strong>gle tray <strong>an</strong>d green <strong>an</strong>d blue tiles.<br />

4. Class discussion. C<strong>an</strong> the pieces of the two smaller squares be used to cover the larger square?<br />

Invite students to <strong>for</strong>m conjectures about whether they th<strong>in</strong>k this will work <strong>for</strong> all right tri<strong>an</strong>gles.<br />

We did two proofs of the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>, po<strong>in</strong>t out that there are m<strong>an</strong>y different proofs<br />

<strong>in</strong>clud<strong>in</strong>g one by President Garfield.<br />

Assign students additional activities as needed.<br />

7


Name _________________________________<br />

Example 1<br />

1. Cut out pieces 1, 2, 3, 4, <strong>an</strong>d 5.<br />

2. Cover the smaller squares with pieces. Piece 1 covers the smallest square, pieces 2, 3, 4, 5 cover<br />

the medium square.<br />

3. Cover the largest square with the pieces from the smaller two squares (pieces 1, 2, 3, 4, <strong>an</strong>d 5).<br />

Glue the pieces down.<br />

5<br />

2<br />

4<br />

3<br />

1<br />

What k<strong>in</strong>d of tri<strong>an</strong>gle is created by the squares?_______________<br />

C<strong>an</strong> you cover the largest square with pieces from the smaller squares?___________<br />

8


Name _________________________________<br />

Example 2<br />

1. Cut out pieces 6, 7, 8, 9, 10, 11 <strong>an</strong>d 12.<br />

2. Cover the smaller squares with pieces. Pieces 6, 7, 8 covers the smallest square, pieces 9, 10, 11<br />

<strong>an</strong>d 12 cover the medium square.<br />

3. Cover the largest square with the pieces from the smaller two squares (pieces 6, 7, 8, 9, 10, 11 <strong>an</strong>d<br />

12). Glue the pieces down.<br />

6<br />

8<br />

7<br />

13<br />

11<br />

12<br />

10<br />

9<br />

What k<strong>in</strong>d of tri<strong>an</strong>gle is created by the squares?_______________<br />

C<strong>an</strong> you cover the largest square with pieces from the smaller squares?___________<br />

9


pieces <strong>for</strong> Puzzle Proof One<br />

5<br />

2<br />

4<br />

3<br />

1<br />

6<br />

8<br />

pieces <strong>for</strong> Puzzle Proof Two<br />

7<br />

13<br />

11<br />

12<br />

10<br />

9<br />

10


Day 2<br />

Lesson – Develop<strong>in</strong>g the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong><br />

Objectives:<br />

Students will be able to:<br />

identify the legs <strong>an</strong>d hypotenuse of a right tri<strong>an</strong>gle<br />

state the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong><br />

use the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to f<strong>in</strong>d the lengths of the sides of right tri<strong>an</strong>gles<br />

Materials:<br />

Right tri<strong>an</strong>gle tray <strong>an</strong>d green <strong>an</strong>d blue tiles, copies of notes, tr<strong>an</strong>sparency of notes page 3,<br />

calculators<br />

Outl<strong>in</strong>e of Activities:<br />

1. Review right tri<strong>an</strong>gles <strong>an</strong>d the area of a square. Draw a right tri<strong>an</strong>gle on the board <strong>an</strong>d use it to<br />

<strong>in</strong>troduce right tri<strong>an</strong>gle vocabulary. Ask students what k<strong>in</strong>d of tri<strong>an</strong>gle it is? Where is the right<br />

<strong>an</strong>gle? The hypotenuse is across from the right <strong>an</strong>gle, also the longest side. The other sides of a<br />

right tri<strong>an</strong>gle are called the legs. Draw a square with side s on the board. Students should be able<br />

to identify the area.<br />

2. Develop the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> <strong>for</strong>mally. Ask a student to rem<strong>in</strong>d the class of the activity we<br />

did yesterday. What does this tell us about the area of the squares? The area of the small square +<br />

the area of the medium square = the area of the large square. Us<strong>in</strong>g the right <strong>an</strong>gle tray, green<br />

<strong>an</strong>d blue tiles follow the directions <strong>for</strong> prov<strong>in</strong>g the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> on page 2. Emphasize<br />

that the legs are always a <strong>an</strong>d b <strong>an</strong>d the hypotenuse is always c.<br />

3. What does the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> look like with numbers? Add numbers, a = 3 <strong>an</strong>d b = 4.<br />

What will a² be? What will b² be? 9 + 16 = 25 25 is equal to c². As a class discuss the example<br />

on the notes page 3. Ask the students to po<strong>in</strong>t out which side are the legs <strong>an</strong>d which side is the<br />

hypotenuse. Review how to f<strong>in</strong>d a square root us<strong>in</strong>g a calculator. Have students fill <strong>in</strong> the boxes<br />

at the bottom of page 3. Press the yellow 2 nd key, then x², <strong>an</strong>d be sure to close the parentheses.<br />

4. How c<strong>an</strong> we use the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>? The <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> allows us to f<strong>in</strong>d the<br />

length of a side of a right tri<strong>an</strong>gle if we know the length of the other two sides. Do example<br />

problems <strong>for</strong> f<strong>in</strong>d<strong>in</strong>g miss<strong>in</strong>g side lengths (notes page 4 <strong>an</strong>d 5).<br />

5. Ask a student to restate the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>. Ask a student what the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong><br />

c<strong>an</strong> be used <strong>for</strong>.<br />

Assign students additional activities as needed.<br />

11


Name:________________________ Page 1<br />

The <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong><br />

A right tri<strong>an</strong>gle will have one <strong>an</strong>gle measur<strong>in</strong>g 90˚.<br />

Two sides of a right tri<strong>an</strong>gle are called legs <strong>an</strong>d one side is called the hypotenuse.<br />

The hypotenuse is the longest side of the tri<strong>an</strong>gle. The longest side is always the side<br />

opposite the right <strong>an</strong>gle.<br />

The legs are the two shorter sides of the tri<strong>an</strong>gle. The legs are adjacent to the right<br />

<strong>an</strong>gle.<br />

Right Tri<strong>an</strong>gle<br />

hypotenuse<br />

leg<br />

right <strong>an</strong>gle<br />

leg<br />

From the activity:<br />

The two squares built on the legs of the right tri<strong>an</strong>gle c<strong>an</strong> be cut apart <strong>an</strong>d used<br />

to fill the square built on the hypotenuse of the right tri<strong>an</strong>gle.<br />

What does this tell us about the area of the squares?<br />

12


page 2<br />

Count the blocks <strong>in</strong> the small <strong>an</strong>d<br />

medium squares. What should the<br />

area of the largest square be?<br />

The area of the smallest square is 9 or 3². The area of the medium square is 16 or<br />

4². The area of the largest square is 25 or 5². 9 + 16 = 25 or 3² + 4² = 5².<br />

<strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>: the legs of a right tri<strong>an</strong>gle have the lengths a <strong>an</strong>d b <strong>an</strong>d the<br />

hypotenuse has a length of c. Remember that the area of a square = side x side or s².<br />

Then the areas of the squares built on the sides are a², b², <strong>an</strong>d c².<br />

So a² + b² = c².<br />

The <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> c<strong>an</strong> only be used with right tri<strong>an</strong>gles. The legs are<br />

always called a <strong>an</strong>d b. The hypotenuse is always called c.<br />

13


page 3<br />

Check it out!<br />

What is the length of the leg<br />

AC?<br />

What is the length of the leg<br />

CB?<br />

The area of the two smaller squares is<br />

The area of the larger square is<br />

What is the length of the hypotenuse AB?<br />

The length of the hypotenuse is c. Estimate the square root of c² to f<strong>in</strong>d c.<br />

c² = 18 The square root of 18 is<br />

The length of the hypotenuse is<br />

Review – How to f<strong>in</strong>d a square root on the calculator.<br />

Record the key strokes <strong>for</strong> f<strong>in</strong>d<strong>in</strong>g the square root of 18 below.<br />

Us<strong>in</strong>g your calculator f<strong>in</strong>d the follow<strong>in</strong>g (round to the nearest tenth):<br />

√5 = √12 = √22 = √154 = √41 =<br />

14


page 4<br />

How c<strong>an</strong> we use the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>? The <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> allows us to<br />

f<strong>in</strong>d the length of a side of a right tri<strong>an</strong>gle if we know the lengths of the other two<br />

sides.<br />

F<strong>in</strong>d the length of the hypotenuse of the tri<strong>an</strong>gles below.<br />

a = 5<br />

b = 8<br />

c = ?<br />

Substitute <strong>in</strong>to the <strong>for</strong>mula<br />

8 5² + 8² = c²<br />

f<strong>in</strong>d the length of the hypotenuse<br />

5<br />

a =<br />

b =<br />

10 Substitute <strong>in</strong>to the <strong>for</strong>mula<br />

F<strong>in</strong>d the length of the hypotenuse<br />

5<br />

The legs of a tri<strong>an</strong>gle are 6 <strong>an</strong>d 7.<br />

Label the tri<strong>an</strong>gle at the right <strong>an</strong>d<br />

f<strong>in</strong>d the hypotenuse. Round to the<br />

nearest 100 th .<br />

15


F<strong>in</strong>d the length of the miss<strong>in</strong>g leg on the tri<strong>an</strong>gles below.<br />

Page 5<br />

a = 5<br />

9 b = ?<br />

5 c = 9<br />

Substitute <strong>in</strong>to the <strong>for</strong>mula<br />

5² + b² = 9²<br />

F<strong>in</strong>d the length of the miss<strong>in</strong>g leg.<br />

a =<br />

b =<br />

c =<br />

20 22 Substitute <strong>in</strong>to the <strong>for</strong>mula<br />

F<strong>in</strong>d the length of the miss<strong>in</strong>g leg.<br />

The tri<strong>an</strong>gle at the right has a leg<br />

of 12 <strong>an</strong>d a hypotenuse of 23.4.<br />

Label the tri<strong>an</strong>gle at the right <strong>an</strong>d<br />

f<strong>in</strong>d the miss<strong>in</strong>g leg. Round to the<br />

nearest 100 th .<br />

16


Name:___<strong>an</strong>swer key_____________________ Page 1<br />

The <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong><br />

A right tri<strong>an</strong>gle will have one <strong>an</strong>gle measur<strong>in</strong>g 90˚.<br />

Two sides of a right tri<strong>an</strong>gle are called legs <strong>an</strong>d one side is called the hypotenuse.<br />

The hypotenuse is the longest side of the tri<strong>an</strong>gle. The longest side is always the side<br />

opposite the right <strong>an</strong>gle.<br />

The legs are the two shorter sides of the tri<strong>an</strong>gle. The legs are adjacent to the right<br />

<strong>an</strong>gle.<br />

Right Tri<strong>an</strong>gle<br />

hypotenuse<br />

leg<br />

right <strong>an</strong>gle<br />

leg<br />

From the activity:<br />

The two squares built on the legs of the right tri<strong>an</strong>gle c<strong>an</strong> be cut apart <strong>an</strong>d used<br />

to fill the square built on the hypotenuse of the right tri<strong>an</strong>gle.<br />

What does this tell us about the area of the squares?<br />

When the areas of the squares built on the legs are added together, it is equal to the<br />

area of the square built on the hypotenuse.<br />

page 3<br />

17


Check it out!<br />

What is the length of the leg<br />

AC? 3<br />

What is the length of the leg<br />

CB? 3<br />

The area of the two smaller squares is 3²<br />

The area of the larger square is 3² + 3² = c²<br />

9 + 9 = 18 The area of the larger square is 18.<br />

What is the length of the hypotenuse AB?<br />

The length of the hypotenuse is c. Estimate the square root of c² to f<strong>in</strong>d c.<br />

c² = 18 The square root of 18 is 4.24<br />

The length of the hypotenuse is 4.24<br />

Review – How to f<strong>in</strong>d a square root on the calculator.<br />

Record the key strokes <strong>for</strong> f<strong>in</strong>d<strong>in</strong>g the square root of 18 below.<br />

2 nd x² 18 ) enter<br />

Us<strong>in</strong>g your calculator f<strong>in</strong>d the follow<strong>in</strong>g (round to the nearest tenth):<br />

√5 = 2.2 √12 = 3.5 √22 = 4.7 √154 = 12.4 √41 = 6.4<br />

18


page 4<br />

How c<strong>an</strong> we use the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>? The <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> allows us to<br />

f<strong>in</strong>d the length of a side of a right tri<strong>an</strong>gle if we know the lengths of the other two<br />

sides.<br />

F<strong>in</strong>d the length of the hypotenuse of the tri<strong>an</strong>gles below.<br />

a = 5 25 + 64 = 100<br />

b = 8 c²= 89<br />

c = ?<br />

c = √89<br />

Substitute <strong>in</strong>to the <strong>for</strong>mula c = 9.433981132<br />

8 5² + 8² = c²<br />

f<strong>in</strong>d the length of the hypotenuse<br />

5<br />

a = 5 25 + 100 = 125<br />

b = 10 c² = 125<br />

10 Substitute <strong>in</strong>to the <strong>for</strong>mula c = √125<br />

5² + 10² = c² c = 11.18033989<br />

F<strong>in</strong>d the length of the hypotenuse<br />

5<br />

The legs of a tri<strong>an</strong>gle are 6 <strong>an</strong>d 7.<br />

Label the tri<strong>an</strong>gle at the right <strong>an</strong>d<br />

f<strong>in</strong>d the hypotenuse. Round to the<br />

nearest 100 th . 9.22<br />

19


F<strong>in</strong>d the length of the miss<strong>in</strong>g leg on the tri<strong>an</strong>gles below.<br />

Page 5<br />

a = 5 25 + b² = 81<br />

9 b = ? 25 + b² – 25 = 81 – 25<br />

5 c = 9 b² = 56<br />

Substitute <strong>in</strong>to the <strong>for</strong>mula b = √56<br />

5² + b² = 9² b = 7.483314774<br />

F<strong>in</strong>d the length of the miss<strong>in</strong>g leg.<br />

a = ? a² + 400 = 484<br />

b = 20 a² + 400 – 400 = 484 - 400<br />

c = 22 a² = 84<br />

20 22 Substitute <strong>in</strong>to the <strong>for</strong>mula a = √84<br />

a² + 20 = 22 a = 9.16515139<br />

F<strong>in</strong>d the length of the miss<strong>in</strong>g leg.<br />

The tri<strong>an</strong>gle at the right has a leg<br />

of 12 <strong>an</strong>d a hypotenuse of 23.4.<br />

Label the tri<strong>an</strong>gle at the right <strong>an</strong>d<br />

f<strong>in</strong>d the miss<strong>in</strong>g leg. Round to the<br />

nearest 100 th . 20.09<br />

20


Day 3<br />

Lesson – Apply<strong>in</strong>g the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong><br />

Objectives:<br />

Students will be able to:<br />

state the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong><br />

use a calculator to estimate a square root<br />

use the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to solve problems <strong>in</strong> context<br />

Materials:<br />

Textbook, tr<strong>an</strong>sparencies of questions 8 pp 362, 19 <strong>an</strong>d 20 pp 363, <strong>an</strong>d 20 pp 367, calculators,<br />

several rect<strong>an</strong>gular boxes <strong>an</strong>d tri<strong>an</strong>gles cut from construction paper which fit diagonally <strong>in</strong>side the<br />

box, copies of activity directions<br />

Outl<strong>in</strong>e of Activities:<br />

1. Review the <strong>for</strong>mula <strong>for</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> <strong>an</strong>d how to use the calculator to estimate a<br />

square root. Have students draw a right tri<strong>an</strong>gle on a piece of paper <strong>an</strong>d label the legs. Have<br />

students exch<strong>an</strong>ge papers <strong>an</strong>d f<strong>in</strong>d the length of the hypotenuse. Students c<strong>an</strong> return the papers<br />

so the orig<strong>in</strong>ator c<strong>an</strong> determ<strong>in</strong>e if the <strong>an</strong>swer is correct.<br />

2. Discuss with class question 8 pp362 <strong>in</strong> textbook us<strong>in</strong>g overhead tr<strong>an</strong>sparency. Draw a tri<strong>an</strong>gle<br />

<strong>an</strong>d label the legs <strong>an</strong>d hypotenuse. Emphasize that the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> only works <strong>for</strong><br />

right tri<strong>an</strong>gles <strong>an</strong>d that the legs are always a <strong>an</strong>d b <strong>an</strong>d the hypotenuse is always c. What length<br />

is miss<strong>in</strong>g? A leg. Answer 10 ft.<br />

3. Discuss with class question 19 pp 363 <strong>in</strong> textbook us<strong>in</strong>g overhead tr<strong>an</strong>sparency. Draw a tri<strong>an</strong>gle<br />

<strong>an</strong>d label the legs <strong>an</strong>d hypotenuse. Emphasize that the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> only works <strong>for</strong><br />

right tri<strong>an</strong>gles <strong>an</strong>d that the legs are always a <strong>an</strong>d b <strong>an</strong>d the hypotenuse is always c. What length<br />

is miss<strong>in</strong>g? A leg. Answer 12 ft.<br />

4. Discuss with class question 20 pp 363 <strong>in</strong> textbook us<strong>in</strong>g overhead tr<strong>an</strong>sparency. Draw a<br />

rect<strong>an</strong>gle. Review what a diagonal is with the class <strong>an</strong>d that diagonal divides a rect<strong>an</strong>gle <strong>in</strong>to<br />

two right tri<strong>an</strong>gles. Ask students which sides of the newly created tri<strong>an</strong>gles are the legs <strong>an</strong>d<br />

which side is the hypotenuse. Discuss why the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> c<strong>an</strong> be used to determ<strong>in</strong>e<br />

the length of the diagonal. Draw a diagonal <strong>an</strong>d label the legs <strong>an</strong>d hypotenuses of the right<br />

tri<strong>an</strong>gles. What length is miss<strong>in</strong>g? The hypotenuse. Answer 10 ft.<br />

5. Discuss with class question 20 pp 367 <strong>in</strong> textbook us<strong>in</strong>g overhead tr<strong>an</strong>sparency. Draw a square.<br />

Review what a diagonal is with the class <strong>an</strong>d that diagonal divides a square <strong>in</strong>to two right<br />

tri<strong>an</strong>gles. Ask students which sides of the newly created tri<strong>an</strong>gles are the legs <strong>an</strong>d which side is<br />

the hypotenuse. Discuss why the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> c<strong>an</strong> be used to determ<strong>in</strong>e the length of<br />

the diagonal. Draw a diagonal <strong>an</strong>d label the legs <strong>an</strong>d hypotenuses of the right tri<strong>an</strong>gles. What<br />

length is miss<strong>in</strong>g? A leg. Answer a 12 <strong>in</strong>, b about 17 <strong>in</strong>. Students who work ahead <strong>an</strong>d solve<br />

these problems on their own c<strong>an</strong> work on additional activities.<br />

21


6. Divide students <strong>in</strong>to groups of three or four. Give each group a rect<strong>an</strong>gular box with the<br />

dimensions of the box clearly labeled. Ask students to f<strong>in</strong>d the length of the longest rod that will<br />

completely fit <strong>in</strong>side the box to the nearest quarter of <strong>an</strong> <strong>in</strong>ch. Some students are go<strong>in</strong>g to<br />

require extra help with this activity. Have tri<strong>an</strong>gles cut from construction paper which fit<br />

diagonally <strong>in</strong>side the box to help students visualize the length they need to f<strong>in</strong>d.<br />

Answers will vary depend<strong>in</strong>g on the box, students will have to first f<strong>in</strong>ds the length of the<br />

diagonal of the bottom of the box <strong>an</strong>d then f<strong>in</strong>d the dist<strong>an</strong>ce from a lower corner to the opposite<br />

upper corner.<br />

7. Review the <strong>for</strong>mula <strong>for</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>. Demonstrate how to f<strong>in</strong>d the length of the<br />

longest rod that will completely fit <strong>in</strong>side the box. First f<strong>in</strong>d the length of the diagonal of the<br />

bottom of the box <strong>an</strong>d then f<strong>in</strong>d the dist<strong>an</strong>ce from a lower corner to the opposite upper corner.<br />

Assign students additional activities as needed.<br />

Homework:<br />

In textbook pp 366 14, 15, 16<br />

Answers 14) 671 meters 15) 65 meters 16) .5 meters<br />

22


Name: ______________________________<br />

Activity:<br />

F<strong>in</strong>d the length of the longest rod that will fit <strong>in</strong>side the box.<br />

Materials: a rect<strong>an</strong>gular box, calculator<br />

1. Exam<strong>in</strong>e the box <strong>an</strong>d f<strong>in</strong>d its dimensions.<br />

2. Determ<strong>in</strong>e where <strong>in</strong> the box the rod will go.<br />

3. Decide which tri<strong>an</strong>gles you will use to determ<strong>in</strong>e the length of the rod.<br />

4. Identify the miss<strong>in</strong>g side of the tri<strong>an</strong>gles <strong>an</strong>d use the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to<br />

determ<strong>in</strong>e the side length. <strong>Use</strong> your calculator as necessary.<br />

5. Label the box below with the dimensions found <strong>in</strong> your group. Show all your<br />

work on this sheet.<br />

6. Each student from the group must complete <strong>an</strong>d turn <strong>in</strong> the activity sheet.<br />

H<strong>in</strong>t: You will need to use the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> twice.<br />

23


Day 4<br />

Lesson – Identify<strong>in</strong>g Right Tri<strong>an</strong>gles<br />

Objectives<br />

Students will be able to:<br />

identify the legs <strong>an</strong>d hypotenuse of a right tri<strong>an</strong>gle<br />

state the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong><br />

use the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to determ<strong>in</strong>e if a tri<strong>an</strong>gle is a right tri<strong>an</strong>gle<br />

Materials:<br />

Calculator, str<strong>in</strong>g, tape, copies of practice 8-6 from workbook<br />

Outl<strong>in</strong>e of Activities:<br />

1. Go over the homework problems. <strong>Use</strong> this as <strong>an</strong> opportunity to review how to use the<br />

<strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to f<strong>in</strong>d miss<strong>in</strong>g side lengths.<br />

2. Review right tri<strong>an</strong>gle vocabulary <strong>an</strong>d the <strong>for</strong>mula <strong>for</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>. Ask students, if<br />

the side lengths of a tri<strong>an</strong>gle do not reflect the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>, does this me<strong>an</strong> that the<br />

tri<strong>an</strong>gle is not a right tri<strong>an</strong>gle?<br />

3. Students should beg<strong>in</strong> <strong>an</strong>cient Egypti<strong>an</strong> survey<strong>in</strong>g activity. It may be necessary to demonstrate<br />

how to divide the str<strong>in</strong>g <strong>in</strong>to twelve equal sections. Fold str<strong>in</strong>g <strong>in</strong> half, fold haves <strong>in</strong> half, divide<br />

quarters <strong>in</strong>to thirds by trial <strong>an</strong>d error. Have a student demonstrate the solution on the overhead.<br />

Ask students aga<strong>in</strong>, if the side lengths of a tri<strong>an</strong>gle do not reflect the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>, does<br />

this me<strong>an</strong> that the tri<strong>an</strong>gle is not a right tri<strong>an</strong>gle?<br />

4. Demonstrate us<strong>in</strong>g the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to identify a non-right tri<strong>an</strong>gle. Is a tri<strong>an</strong>gle with<br />

sides 7, 25, 20 a right tri<strong>an</strong>gle? <strong>Use</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> a² + b² = c². Is 7² + 20² = 25² ? 49<br />

+ 400 ≠ 625 This tri<strong>an</strong>gle is not a right tri<strong>an</strong>gle. Is a tri<strong>an</strong>gle with sides 5, 15, 30 a right tri<strong>an</strong>gle?<br />

<strong>Use</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> a² + b² = c². Is 5² + 15² = 18² ? 25 + 225 ≠ 324 This tri<strong>an</strong>gle is not<br />

a right tri<strong>an</strong>gle.<br />

5. Write the follow<strong>in</strong>g side lengths on the board <strong>an</strong>d have students determ<strong>in</strong>e whether or not the<br />

tri<strong>an</strong>gles are right tri<strong>an</strong>gles. Which of these tri<strong>an</strong>gles are right tri<strong>an</strong>gles? 12,16,20 right tri<strong>an</strong>gle<br />

8,15,17 right tri<strong>an</strong>gle 12,9,16 not a right tri<strong>an</strong>gle 4,7,8 not a right tri<strong>an</strong>gle 9,8,12 not a right<br />

tri<strong>an</strong>gle 20,21,29 right tri<strong>an</strong>gle <strong>Use</strong> this as <strong>an</strong> opportunity to work with students who are hav<strong>in</strong>g<br />

difficulties.<br />

6. Summarize <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> Unit. Ask students to identify the legs <strong>an</strong>d hypotenuse of a<br />

right tri<strong>an</strong>gle. Ask students <strong>for</strong> the <strong>for</strong>mula <strong>for</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>. Ask students how the<br />

<strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> c<strong>an</strong> be used.<br />

Assign students additional activities as needed.<br />

Homework:<br />

Practice 8-6 Explor<strong>in</strong>g the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> <strong>for</strong>m workbook.<br />

24


Answers 1) 22 cm 2) 51 <strong>in</strong> 3) 16 ft 4) 25 m 5) 111 yds 6) 18 mi<br />

7) yes 8) no 9) yes 10) no 11) no 12) yes<br />

13) 60 ft 14) 10 ft 15) no 16) yes<br />

25


Name: ___________________________________<br />

Activity: Ancient Egypti<strong>an</strong> Survey<strong>in</strong>g<br />

The Nile River flooded <strong>an</strong>nually destroy<strong>in</strong>g property boundaries <strong>in</strong> <strong>an</strong>cient Egypt. The<br />

<strong>an</strong>cient Egypti<strong>an</strong>s used the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to make a l<strong>an</strong>d survey<strong>in</strong>g tool which<br />

they used to reestablish boundaries.<br />

1. <strong>Use</strong> a pen or marker to divide your str<strong>in</strong>g <strong>in</strong>to 12 equal segments. Tape the ends of<br />

the str<strong>in</strong>g together to <strong>for</strong>m a loop.<br />

2. Try to <strong>for</strong>m a right tri<strong>an</strong>gle with the side lengths that are whole numbers.<br />

If you are hav<strong>in</strong>g difficulty, ask someone to help you hold your str<strong>in</strong>g. <strong>Use</strong> the<br />

corner of a sheet of paper to measure your <strong>an</strong>gle.<br />

What are the side lengths of the tri<strong>an</strong>gle you <strong>for</strong>med?<br />

Do these side lengths reflect the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>?<br />

Demonstrate your <strong>an</strong>swer.<br />

Do you th<strong>in</strong>k a 6, 8, 10 tri<strong>an</strong>gle is a right tri<strong>an</strong>gle?<br />

Expla<strong>in</strong> your <strong>an</strong>swer.<br />

Check your <strong>an</strong>swer us<strong>in</strong>g the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>.<br />

26


Name: _<strong>an</strong>swer key_____________________________<br />

Activity: Ancient Egypti<strong>an</strong> Survey<strong>in</strong>g<br />

The Nile River flooded <strong>an</strong>nually destroy<strong>in</strong>g property boundaries <strong>in</strong> <strong>an</strong>cient Egypt. The<br />

<strong>an</strong>cient Egypti<strong>an</strong>s used the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to make a l<strong>an</strong>d survey<strong>in</strong>g tool which<br />

they used to reestablish boundaries.<br />

3. <strong>Use</strong> a pen or marker to divide your str<strong>in</strong>g <strong>in</strong>to 12 equal segments. Tape the ends of<br />

the str<strong>in</strong>g together to <strong>for</strong>m a loop.<br />

4. Try to <strong>for</strong>m a right tri<strong>an</strong>gle with the side lengths that are whole numbers.<br />

If you are hav<strong>in</strong>g difficulty, ask someone to help you hold your str<strong>in</strong>g. <strong>Use</strong> the<br />

corner of a sheet of paper to measure your <strong>an</strong>gle.<br />

What are the side lengths of the tri<strong>an</strong>gle you <strong>for</strong>med? 3, 4, <strong>an</strong>d 5<br />

Do these side lengths reflect the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>?<br />

yes<br />

Demonstrate your <strong>an</strong>swer.<br />

3² + 4² = 5²<br />

9 + 16 = 25<br />

Do you th<strong>in</strong>k a 6, 8, 10 tra<strong>in</strong>gle is a right tri<strong>an</strong>gle?<br />

yes<br />

Expla<strong>in</strong> your <strong>an</strong>swer. 6,8,10 are multiples of 3,4,5<br />

Check your <strong>an</strong>swer us<strong>in</strong>g the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>.<br />

6² + 8² = 10²<br />

36 + 64 = 100<br />

27


Additional Activities<br />

Activity 1:<br />

Investigate the area of squares proof us<strong>in</strong>g The Geometer’s Sketchpad.<br />

Teacher Directions<br />

Set up a station with a computer <strong>an</strong>d GSP<br />

Build squares on the sides of a right tri<strong>an</strong>gle, follow the directions below.<br />

1. construct a l<strong>in</strong>e<br />

2. construct a po<strong>in</strong>t not on the l<strong>in</strong>e<br />

3. construct a l<strong>in</strong>e perpendicular to the po<strong>in</strong>t <strong>an</strong>d the first l<strong>in</strong>e<br />

4. construct the <strong>in</strong>tersection of the l<strong>in</strong>es<br />

5. construct one po<strong>in</strong>t on each of the l<strong>in</strong>es <strong>an</strong>d label the po<strong>in</strong>ts<br />

6. hide the l<strong>in</strong>es <strong>an</strong>d the po<strong>in</strong>ts used to construct the l<strong>in</strong>es<br />

7. construct segments between the rema<strong>in</strong><strong>in</strong>g three po<strong>in</strong>ts<br />

8. construct squares on each side of the tri<strong>an</strong>gle<br />

9. construct the <strong>in</strong>terior of each square<br />

10. name the squares A, B, <strong>an</strong>d C<br />

11. measure the area of each square<br />

12. add the areas of the two smaller squares<br />

28


Name: ________________________<br />

Activity 1:<br />

Investigate the area of squares proof us<strong>in</strong>g The Geometer’s Sketchpad.<br />

<strong>Use</strong> the cursor to move po<strong>in</strong>t A <strong>an</strong>d po<strong>in</strong>t B. Notice that the sizes of the figures ch<strong>an</strong>ge but not<br />

the shapes.<br />

F<strong>in</strong>d where the areas of the squares are located on the computer screen.<br />

Record the areas you found <strong>for</strong> five different positions of po<strong>in</strong>ts A <strong>an</strong>d B <strong>in</strong> the table below.<br />

Area of square A Area of square B Area of square C Area of squares<br />

A + B<br />

What do you notice about the relationships of the areas of the squares?<br />

Does the area of square on the longest side always equal the areas of the squares on the two<br />

shorter sides?<br />

29


Name: _____________________________<br />

Activity 2<br />

We used the relationship between squares built on the sides of a right tri<strong>an</strong>gle to discover the<br />

<strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>. Does the same relationship apply if we draw half circles on the sides of<br />

the right tri<strong>an</strong>gle?<br />

4<br />

5<br />

3<br />

F<strong>in</strong>d the area of each half circle.<br />

How are the areas of the half circles related?<br />

30


Name:_______________________________<br />

Activity 3<br />

There are m<strong>an</strong>y proof <strong>for</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong>. <strong>Use</strong> the diagram below to develop <strong>an</strong><br />

algebraic proof.<br />

b<br />

a<br />

a<br />

c<br />

c<br />

b<br />

a + b<br />

b<br />

c<br />

c<br />

a<br />

a<br />

b<br />

The area of the large square is equal to the area of the small square <strong>an</strong>d the areas of all four<br />

tri<strong>an</strong>gles.<br />

Write <strong>an</strong> equation<br />

Area of the large square = area of the small square + area of the 4 tri<strong>an</strong>gles<br />

___________________ = ___________________ + __________________<br />

Multiply<br />

Simplify<br />

31


Name: ____________________________<br />

Activity 4:<br />

Search the <strong>in</strong>ternet to f<strong>in</strong>d President Garfield’s proof <strong>an</strong>d list the website where you found it.<br />

____________________________________________________________________<br />

What quadrilateral is Garfield’s proof based on?<br />

_________________________________<br />

Search the <strong>in</strong>ternet to f<strong>in</strong>d out about James Garfield. Write a brief report about what you found<br />

out. Include where <strong>an</strong>d when Garfield was born, how he was educated, how long his<br />

presidency lasted <strong>an</strong>d at least one other th<strong>in</strong>g you found notable. <strong>Use</strong> complete sentences. List<br />

the website where you found your <strong>in</strong><strong>for</strong>mation.<br />

_____________________________________________________________________<br />

__________________________________________________________________________<br />

__________________________________________________________________________<br />

__________________________________________________________________________<br />

__________________________________________________________________________<br />

__________________________________________________________________________<br />

__________________________________________________________________________<br />

__________________________________________________________________________<br />

__________________________________________________________________________<br />

__________________________________________________________________________<br />

__________________________________________________________________________<br />

__________________________________________________________________________<br />

__________________________________________________________________________<br />

32


Name:_____________________________<br />

Activity 5<br />

<strong>Use</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to f<strong>in</strong>d the lengths of segment AB, segment CD, segment EF<br />

segment GH <strong>an</strong>d segment JK.<br />

B<br />

C<br />

A<br />

F<br />

G<br />

D<br />

E<br />

J<br />

H<br />

K<br />

Length of segment AB<br />

5 10<br />

Length of segment CD<br />

Length of segment EF<br />

Length of segment GH<br />

Length of segment JK<br />

33


Name: _______________________________<br />

Activity 6<br />

The Theodosi<strong>an</strong> Spiral beg<strong>in</strong>s with a tri<strong>an</strong>gle which has legs measur<strong>in</strong>g 1 unit. Each new tri<strong>an</strong>gle is<br />

drawn us<strong>in</strong>g the hypotenuse of the previous tri<strong>an</strong>gle as one leg with a second leg measur<strong>in</strong>g 1 unit.<br />

This creates a spiral which w<strong>in</strong>ds around counterclockwise.<br />

<strong>Use</strong> the <strong>Pythagore<strong>an</strong></strong> <strong>Theorem</strong> to f<strong>in</strong>d the length of each hypotenuse <strong>in</strong> the Theodosi<strong>an</strong> Spiral. Label<br />

the spiral below. Express the lengths us<strong>in</strong>g √ symbol.<br />

1<br />

1<br />

1<br />

1<br />

1<br />

2<br />

1<br />

1<br />

1<br />

1<br />

Add the next two tri<strong>an</strong>gles to the spiral. Label the length of the sides.<br />

Describe the method you used. (<strong>Use</strong> complete sentences)<br />

34


Answer key <strong>for</strong> the activities.<br />

Activity 1:<br />

Student’s <strong>an</strong>swers will vary.<br />

Activity 2:<br />

Leg of length 3<br />

Area = ½ π(1.5)² = 3.5 sq units<br />

Leg of length 4<br />

Area = ½ π(2)² = 6.3 sq units<br />

Leg of length 5<br />

Area = ½ π(2.5)² = 9.8 sq units<br />

The sum of the areas of the half circles built on the legs is equal to the area of the half circle<br />

built on the hypotenuse.<br />

Activity 3:<br />

(a + b )² = c² + 4(1/2ab)<br />

a² + ab + ab + b² = c² + 4(1/2)ab<br />

a² + 2ab + b² = c² + 2ab<br />

a² + 2ab – 2ab + b² = c² + 2ab – 2ab<br />

a² + b² = c²<br />

Activity 4:<br />

Garfield’s proof c<strong>an</strong> be found: http://mathworld.wolfram.com/<strong>Pythagore<strong>an</strong></strong><strong>Theorem</strong>.html<br />

Garfield’s proof is based on a trapezoid.<br />

In<strong>for</strong>mation on Garfield c<strong>an</strong> be found: http://www.americ<strong>an</strong>president.org/history/jamesgarfield/<br />

Activity 5:<br />

Length of segment AB<br />

2² + 5² = 29<br />

√29 = 5.385164807<br />

Length of segment CD<br />

2² + 3² = 13<br />

√13 = 3.605551275<br />

Length of segment EF<br />

3² + 5² = 34<br />

√34 = 5.830951895<br />

Length of segment GH<br />

1² + 5² = 26<br />

√26 = 5.09901919514<br />

Length of segment JK<br />

2² + 2² = 8<br />

√8 = 2.828427125<br />

35


Activity 6:<br />

1<br />

1<br />

1<br />

2<br />

3<br />

1<br />

1<br />

6<br />

5<br />

2<br />

1<br />

7<br />

1<br />

1<br />

8<br />

1<br />

3<br />

10<br />

11<br />

1<br />

1<br />

36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!