23.12.2014 Views

BJT Internal Capacitances and High Frequency Model - BITS Pilani

BJT Internal Capacitances and High Frequency Model - BITS Pilani

BJT Internal Capacitances and High Frequency Model - BITS Pilani

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>BITS</strong> <strong>Pilani</strong><br />

presentation<br />

<strong>BITS</strong> <strong>Pilani</strong><br />

Dubai Campus<br />

Dr Jagadish Nayak


<strong>BITS</strong> <strong>Pilani</strong><br />

Dubai Campus<br />

The <strong>BJT</strong> <strong>Internal</strong> <strong>Capacitances</strong> <strong>and</strong><br />

<strong>High</strong> <strong>Frequency</strong> <strong>Model</strong>


<strong>BJT</strong> <strong>Internal</strong> <strong>Capacitances</strong><br />

۞Transistor exhibit charge storage phenomenon that limit the<br />

speed <strong>and</strong> frequency of their operation<br />

۞These charge effects are accounted by adding capacitances<br />

to the hybrid π model.<br />

Base charging or diffusion capacitance C de<br />

۞When the transistor is operating in active or Saturation region<br />

mode, minority carrier charge is stored in the base region.<br />

۞When an npn transistor is operating in active mode, this<br />

charge Q n ia represented by<br />

Q<br />

n<br />

2<br />

W<br />

2D<br />

n<br />

i<br />

C<br />

Where<br />

W<br />

Basewidth<br />

D<br />

n<br />

Eletron Diffusivityin Base<br />

<strong>BITS</strong> <strong>Pilani</strong>, Dubai Campus


<strong>BJT</strong> <strong>Internal</strong> <strong>Capacitances</strong><br />

We can write<br />

Q<br />

F<br />

n<br />

is<br />

2<br />

W<br />

FiC<br />

Where<br />

F<br />

2Dn<br />

called as Forward base<br />

transient<br />

time<br />

Which is the average time a charge carrier (electron) spends in<br />

crossing the base (10ps to 100ps)<br />

۞For the small signals we can define the small signal diffusion<br />

capacitance C de ,<br />

C<br />

de<br />

dQ<br />

dv<br />

n<br />

BE<br />

F<br />

di<br />

dv<br />

C<br />

BE<br />

F<br />

g<br />

m<br />

F<br />

I<br />

V<br />

C<br />

T<br />

<strong>BITS</strong> <strong>Pilani</strong>, Dubai Campus


<strong>BJT</strong> <strong>Internal</strong> <strong>Capacitances</strong><br />

The Base Emitter Junction Capacitance:<br />

(depletion layer capacitance)<br />

Value of C je at zero<br />

voltage<br />

Approximate value<br />

of C je =2 C je0<br />

EBJ Built in voltage<br />

(0.9)<br />

C<br />

je<br />

1<br />

C<br />

je0<br />

V<br />

V<br />

BE<br />

0e<br />

m<br />

Grading coefficient of<br />

EBJ (0.5)<br />

<strong>BITS</strong> <strong>Pilani</strong>, Dubai Campus


<strong>BJT</strong> <strong>Internal</strong> <strong>Capacitances</strong><br />

The Collector-Base Junction capacitance:<br />

In active mode collector base junction is reverse biased <strong>and</strong> its<br />

depletion capacitance<br />

CBJ Built in voltage<br />

(0.75V)<br />

C<br />

1<br />

C<br />

V<br />

V<br />

0<br />

CB<br />

0c<br />

m<br />

Value of C µ at zero<br />

voltage<br />

Grading coefficient of<br />

EBJ (0.2 to 0.5)<br />

<strong>BITS</strong> <strong>Pilani</strong>, Dubai Campus


<strong>High</strong> frequency Hybrid-π<br />

model<br />

Emitter base capacitance<br />

(C de +C je )pfarads<br />

B<br />

Collector base<br />

capacitance<br />

<strong>Model</strong> resistance of<br />

silicon material of<br />

the base region ,<br />

between base B <strong>and</strong><br />

a fictitious internal<br />

or intrinsic, base<br />

terminal B’ (right<br />

under the emitter<br />

region)<br />

<strong>BITS</strong> <strong>Pilani</strong>, Dubai Campus


<strong>High</strong> frequency Hybrid-π<br />

model<br />

Emitter base capacitance<br />

(C de +C je )pfarads<br />

B<br />

B’<br />

Collector base<br />

capacitance<br />

(Few tens of Ωs)<br />

Since r x


Cut off frequency<br />

۞Value of Cπ is not given in the data sheet rather behavior<br />

of β (or hfe) versus frequency is normally given.<br />

۞To find Cπ <strong>and</strong> Cµ , derive an expression for hfe. i.e short<br />

circuit current gain as a function of frequency interms of<br />

hybrid π components.<br />

Consider following model<br />

<strong>BITS</strong> <strong>Pilani</strong>, Dubai Campus


Cut off frequency<br />

Collector is shorted to the emitter at Junction C<br />

E<br />

<strong>BITS</strong> <strong>Pilani</strong>, Dubai Campus


Cut off frequency<br />

E<br />

I<br />

c<br />

I b sC µ V π I c =(g m -sC µ )V π<br />

V<br />

sC V<br />

g<br />

m<br />

V<br />

I<br />

c<br />

g<br />

m<br />

V<br />

sC V<br />

g<br />

m<br />

sC<br />

<strong>BITS</strong> <strong>Pilani</strong>, Dubai Campus


Cut off frequency<br />

I b sC µ V π I c =(g m -sC µ )V π<br />

V π = I b x [Impedence sum<br />

between B’ <strong>and</strong> E]<br />

E<br />

V<br />

1<br />

r<br />

I<br />

I<br />

b<br />

b<br />

[ r<br />

sC sC<br />

||<br />

C<br />

||<br />

C<br />

]<br />

<strong>BITS</strong> <strong>Pilani</strong>, Dubai Campus


Cut off frequency<br />

The model is valid for g m >>>wC µ , we can neglect wC µ in the numerator<br />

h<br />

fe<br />

h<br />

fe<br />

( or<br />

I<br />

c<br />

gmr<br />

0<br />

( or )<br />

I 1 s(<br />

C C ) r 1 s(<br />

C<br />

Low frequency value of β<br />

b<br />

)<br />

I<br />

I<br />

c<br />

b<br />

1<br />

r<br />

g<br />

m<br />

s(<br />

C<br />

sC<br />

w<br />

C<br />

)<br />

( C<br />

1<br />

C<br />

C<br />

) r<br />

) r<br />

This has a single pole response with<br />

3dB frequency at w=w β<br />

Where<br />

<strong>BITS</strong> <strong>Pilani</strong>, Dubai Campus


Cut off frequency<br />

We can observe from the above slope that frequency at which<br />

|h fe | drops to unity is called as unity gain b<strong>and</strong>width w T <strong>and</strong> is<br />

given by w T =β 0 w β<br />

w<br />

T<br />

gm<br />

gm<br />

; fT<br />

( C C ) 2 ( C C<br />

)<br />

f T is some times specified in the<br />

datashet or given as a function of<br />

I c <strong>and</strong> V CE<br />

<strong>BITS</strong> <strong>Pilani</strong>, Dubai Campus

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!