28.12.2014 Views

Using the Soft-Soil tire model

Using the Soft-Soil tire model

Using the Soft-Soil tire model

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Using</strong> <strong>the</strong> <strong>Soft</strong>-<strong>Soil</strong> <strong>tire</strong> <strong>model</strong><br />

Elastic-plastic <strong>tire</strong>-soil contact<br />

9<br />

n<br />

kc<br />

<br />

( ) R0<br />

k<br />

cos( ) cos( <br />

b <br />

<br />

<br />

for<br />

r m<br />

:<br />

<br />

f<br />

)<br />

n<br />

(13)<br />

(<br />

) R<br />

n<br />

0<br />

kc<br />

<br />

b<br />

k<br />

<br />

<br />

<br />

<br />

cos<br />

<br />

<br />

<br />

f<br />

r<br />

<br />

<br />

m<br />

r<br />

( <br />

f<br />

<br />

m<br />

<br />

)<br />

cos( <br />

<br />

f<br />

<br />

) <br />

<br />

n<br />

with b <strong>the</strong> wheel width and R 0 <strong>the</strong> wheel radius.<br />

<br />

The angle m is <strong>the</strong> angle at which <strong>the</strong> maximum normal stress occurs [4]:<br />

<br />

m a0<br />

a1<br />

)<br />

( <br />

f<br />

(14)<br />

The shear stress [5,6] in longitudinal direction is:<br />

( ) ( c (<br />

)tan( ))( 1<br />

e<br />

x x<br />

x<br />

and in lateral direction yields:<br />

j ( ) / k<br />

)<br />

(15)<br />

( ) ( c (<br />

)tan( ))( 1<br />

e<br />

y<br />

jy(<br />

) / k y<br />

)<br />

(16)<br />

In equations 15 and 16 c represents <strong>the</strong> cohesion stress of <strong>the</strong> soil, <strong>the</strong> friction angle of <strong>the</strong> soil and k x<br />

and k y <strong>the</strong> shear deformation moduli. Assuming that <strong>the</strong> wheel has a longitudinal slip , <strong>the</strong> longitudinal<br />

shear displacement along <strong>the</strong> contact area j x in equation 16 can be estimated [5,6] by using <strong>the</strong><br />

longitudinal slip and wheel radius R 0 :<br />

<br />

j ( ) R [ (<br />

1 )(sin( <br />

x<br />

0<br />

f<br />

f<br />

) sin( ))]<br />

(17)<br />

Similar <strong>the</strong> lateral shear displacement j y will depend on <strong>the</strong> slip angle and <strong>the</strong> wheel radius R 0 :<br />

j ( ) R ( 1 )( <br />

y<br />

0<br />

f<br />

)tan( )<br />

(18)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!