01.01.2015 Views

Pulse (Energy) & Position Reconstruction in the CMS ECAL - INFN

Pulse (Energy) & Position Reconstruction in the CMS ECAL - INFN

Pulse (Energy) & Position Reconstruction in the CMS ECAL - INFN

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Pulse</strong> (<strong>Energy</strong>) & <strong>Position</strong> <strong>Reconstruction</strong> <strong>in</strong> <strong>the</strong><br />

<strong>CMS</strong> <strong>ECAL</strong><br />

(Testbeam Results from 2003)<br />

Ivo van Vulpen<br />

CERN<br />

On behalf of <strong>the</strong> <strong>CMS</strong> <strong>ECAL</strong> community


Calor 2004 (March 2004) Ivo van Vulpen 2<br />

The Compact Muon Solenoid dectector<br />

The H4 Testbeam at CERN<br />

supermodule<br />

R =129 cm<br />

Testbeam set-up <strong>in</strong> 2003:<br />

∆z = 6,410 cm<br />

Barrel = 61,200 crystals<br />

2 supermodules (SM0/SM1) have<br />

been placed <strong>in</strong> <strong>the</strong> beam (electrons)<br />

Front-end electronics:<br />

FPPA(100) /MGPA(50) crystals equippe


Calor 2004 (March 2004) Ivo van Vulpen 3<br />

Two testbeam periods <strong>in</strong> 2003<br />

Two sets of front-end electronics used: FPPA and MGPA<br />

<strong>the</strong> new 0.25 mm front-end electronics<br />

FPPA<br />

MGPA<br />

# ga<strong>in</strong>s 4 3<br />

SM (# equip. crys.) SM0 (100) SM1 (50)<br />

period long short<br />

Electron energies 20, 35, 50, 80, 120, 150, 180, 200 25, 50, 70, 100<br />

(GeV)<br />

(us<strong>in</strong>g PS heavy ion run)


Calor 2004 (March 2004) Ivo van Vulpen 4<br />

<strong>Pulse</strong> (<strong>Energy</strong>) <strong>Reconstruction</strong><br />

Part 1<br />

A s<strong>in</strong>gle pulse … and how to reconstruct it<br />

(some testbeam specifics & evaluate universalities <strong>in</strong> <strong>the</strong> <strong>ECAL</strong>)<br />

Optimiz<strong>in</strong>g <strong>the</strong> algorithm<br />

Results


A s<strong>in</strong>gle pulse<br />

Calor 2004 (March 2004) Ivo van Vulpen 5<br />

1) Photons detected us<strong>in</strong>g an APD<br />

amplitude<br />

S<strong>in</strong>gle pulse<br />

2) Signal is amplified<br />

S i<br />

3) Digitization at 40 MHz (each 25 ns)<br />

3(4) ga<strong>in</strong> ranges (Energies up to 2 TeV)<br />

4) 14 time samples available offl<strong>in</strong>e<br />

pedestal<br />

Time samples (25 ns)<br />

How to reconstruct <strong>the</strong> amplitude:<br />

=Analytic fit:<br />

In case of large noise -> biases for small pulses<br />

= Digital filter<strong>in</strong>g technique: Fast, possibility to treat correlated noise


Tim<strong>in</strong>g <strong>in</strong>formation<br />

Calor 2004 (March 2004) Ivo van Vulpen 6<br />

<strong>CMS</strong>:<br />

Electronics synchronous w.r.t LHC bunch cross<strong>in</strong>gs<br />

Testbeam: A 25 ns random offset/phase w.r.t <strong>the</strong> trigger<br />

Number of events<br />

Spread <strong>in</strong> Time of maximum response<br />

25 ns<br />

σ(E)/E (%)<br />

Resolution versus mismatch<br />

SM0/FPPA<br />

Normalised T max<br />

T max mismatch (ns)<br />

= Precision on Tmax: <strong>CMS</strong>: jitter < 1 ns Testbeam: < 1 ns (use 1 ns b<strong>in</strong>s)


<strong>Pulse</strong> <strong>Reconstruction</strong> Method<br />

Calor 2004 (March 2004) Ivo van Vulpen 7<br />

~<br />

A = ∑ wi • Si<br />

i<br />

Amplitude weights signal+noise<br />

= Weights computation requires knowledge of <strong>the</strong> average pulse shape<br />

= Optimal weights depend on assumptions on S i


<strong>Pulse</strong> <strong>Reconstruction</strong> Method<br />

Calor 2004 (March 2004) Ivo van Vulpen 8<br />

Average pulse shape<br />

F(t)<br />

How to extract <strong>the</strong> optimal weights:<br />

χ<br />

2<br />

= ( S − A×<br />

F)<br />

T<br />

Cov<br />

−1<br />

( S − A×<br />

F )<br />

Sample heights<br />

Amplitude<br />

Covariance Matrix<br />

Expected sample heights: F(t)<br />

<strong>in</strong>imize χ 2 w.r.t A<br />

assum<strong>in</strong>g<br />

No pedestal<br />

No correlations<br />

w<br />

i<br />

=<br />

∑<br />

i<br />

f<br />

(<br />

i<br />

f<br />

2<br />

i<br />

)<br />

= Tim<strong>in</strong>g: Def<strong>in</strong>e a set of weights for each 1 ns b<strong>in</strong> of <strong>the</strong> TDC offset<br />

= Knowledge of expected shape required: shape itself, tim<strong>in</strong>g <strong>in</strong>fo and ga<strong>in</strong> rati


<strong>Pulse</strong> Shape <strong>in</strong>formation: Average pulse shape<br />

Calor 2004 (March 2004) Ivo van Vulpen 9<br />

25 pulse shapes<br />

superimposed<br />

α<br />

= Analytic description of pulse shape:<br />

f ( t)<br />

=<br />

⎡t<br />

⎢<br />

⎣<br />

− (T<br />

T<br />

max<br />

− T<br />

peak<br />

peak<br />

α<br />

) ⎤<br />

⎥<br />

⎦<br />

e<br />

⎛ t-T<br />

-α<br />

⎜<br />

⎝ T<br />

max<br />

peak<br />

⎞<br />

⎟<br />

⎠<br />

T peak<br />

T max<br />

SM0/FPPA<br />

Time (*25 ns)<br />

Could also use digital representation<br />

Note:<br />

= Shapes (T peak<br />

, α) are similar for large sets of (all) crystals<br />

= T max<br />

: 2 ns spread <strong>in</strong> <strong>the</strong> T max<br />

for all crystals (we account for it)<br />

universal


Calor 2004 (March 2004) Ivo van Vulpen 10<br />

Optimization of parameters<br />

= Optimization depends on particular set-up.<br />

For <strong>the</strong> testbeam:<br />

How many samples<br />

Which samples<br />

= Treatment of (correlated) noise


Optimization of parameters for testbeam operation<br />

Calor 2004 (March 2004) Ivo van Vulpen 11<br />

total # samples<br />

ore samples:<br />

= Precision (depends on noise and a<br />

correct pulse shape description)<br />

ess samples:<br />

σ(E)/E (%)<br />

= Faster & smaller data volume<br />

= Reduce effects from pile-up & noise<br />

SM0/FPPA<br />

which samples<br />

= Variance on scales like sample<br />

heights Use largest samples<br />

Depend on TDC offset (decided per event)<br />

σ(E)/E (%)<br />

SM0/FPPA<br />

Use 5 samples<br />

Start at 1 sample before<br />

<strong>the</strong> expected maximum


Treatment of (correlated) Noise<br />

Calor 2004 (March 2004) Ivo van Vulpen 12<br />

The (correlated) noise that was present <strong>in</strong> 2003 is under <strong>in</strong>vestigation<br />

and is treated off-l<strong>in</strong>e:<br />

orrelations between samples: Extract Covariance matrix (pedestal run)<br />

χ<br />

2<br />

=<br />

( S<br />

−<br />

A×<br />

F)<br />

T<br />

Cov<br />

−1<br />

(<br />

S<br />

−<br />

A×<br />

F )<br />

Covariance Matrix<br />

Pedestals: Use pre-pulse samples and fit Ampl. and Pedestal simultaneously<br />

χ<br />

2<br />

=<br />

( S<br />

−<br />

A×<br />

F<br />

−<br />

P)<br />

T<br />

Cov<br />

−1<br />

(<br />

S<br />

−<br />

A×<br />

F<br />

−<br />

P)<br />

Pedestal<br />

An optimal strategy for this procedure is under <strong>in</strong>vestigation


F<strong>in</strong>al design of front-end electronics<br />

Results us<strong>in</strong>g MGPA electronics<br />

‘empty’ crystal<br />

SM1/MGPA<br />

σ(E)/E (%)<br />

SM1/MGPA<br />

4x4 mm 2 impact region<br />

prelim<strong>in</strong>ary<br />

= ‘No bias at small amplitudes<br />

= Noise » 50 MeV (per crystal)<br />

σ ( E)<br />

E<br />

=<br />

2.4 %<br />

E<br />

⊕<br />

142 MeV<br />

E<br />

⊕ 0.44<br />

%<br />

Calor 2004 (March 2004) Ivo van Vulpen 13


Calor 2004 (March 2004) Ivo van Vulpen 14<br />

Impact <strong>Position</strong> <strong>Reconstruction</strong><br />

Part 2<br />

Determ<strong>in</strong>ation of <strong>the</strong> ‘true’ impact po<strong>in</strong>t<br />

<strong>Reconstruction</strong> of <strong>the</strong> impact po<strong>in</strong>t (2 methods)<br />

Conclusions<br />

SM0 / FPPA


Precision on ‘true’ impact position<br />

A hodoscope system determ<strong>in</strong>es <strong>the</strong> e-trajectory (and impact po<strong>in</strong>t on crystal)<br />

370 mm<br />

2500 mm 1100 mm<br />

Per plane: 2 staggered layers<br />

with 1 mm wide strips<br />

Per orientation 4 po<strong>in</strong>ts:<br />

0.50 mm<br />

σ(x) = σ(y) = 145 µm<br />

1 mm<br />

1 mm<br />

0.04 mm<br />

Calor 2004 (March 2004) Ivo van Vulpen 15


Shower<br />

shape<br />

Incident electron<br />

Crystal size<br />

2.2 x 2.4 cm<br />

Cut-off distribution<br />

5x5 <strong>Energy</strong><br />

Matrix<br />

Impact on crystal centre: 82% <strong>in</strong> central crystal and 96% <strong>in</strong> a 3x3 matrix (use 3x3)<br />

General Idea:<br />

∑ i<br />

∑<br />

= The position of <strong>the</strong> crystal (η i<br />

,ϕ i<br />

) or (x,y)<br />

= Two methods us<strong>in</strong>g different weights: w =<br />

x<br />

=<br />

Calor 2004 (March 2004) Ivo van Vulpen 16<br />

w<br />

i<br />

i • i<br />

w<br />

i<br />

x<br />

i Ei<br />

or<br />

w<br />

i<br />

=<br />

w<br />

0<br />

⎛<br />

+ log⎜<br />

⎜<br />

⎝<br />

∑ j<br />

Ei<br />

E<br />

j


Calor 2004 (March 2004) Ivo van Vulpen 17<br />

Def<strong>in</strong><strong>in</strong>g THE position of <strong>the</strong> crystal:<br />

= Crystals are off-po<strong>in</strong>t<strong>in</strong>g and tilted by <strong>in</strong> h and j <strong>the</strong> characteristic position is<br />

energy dependent<br />

= Depth of shower maximum is energy dependent<br />

As an example: <strong>the</strong> balance po<strong>in</strong>t <strong>in</strong> X<br />

Side view<br />

<strong>Energy</strong> (ADC counts)<br />

Data 120 GeV<br />

Crystal centre<br />

Balance po<strong>in</strong>t<br />

Balance Po<strong>in</strong>t (mm)<br />

1.5 mm<br />

simulation<br />

electron<br />

Impact position (mm)<br />

<strong>Energy</strong> (GeV)


<strong>Reconstruction</strong> Method 1:<br />

L<strong>in</strong>ear weight<strong>in</strong>g<br />

w i = Ei<br />

Calor 2004 (March 2004) Ivo van Vulpen 18<br />

∆Y (reco.–true) mm<br />

uncorrected S-curve<br />

corrected S-curve<br />

E = 120 GeV<br />

Reconstructed (Y) mm<br />

σ=620µm<br />

Resolution versus<br />

impact position<br />

Corrected for<br />

beam profile<br />

st resolution:<br />

ose to crystal edge<br />

∆Y (reco.–true) mm<br />

Worst resolution: max. energy fraction <strong>in</strong> central crystal<br />

= Requires a correction that is f(E,η,ϕ)


Calor 2004 (March 2004) Ivo van Vulpen 19<br />

w<br />

i<br />

=<br />

w<br />

<strong>Reconstruction</strong> Method 2: Logarithmic weight<strong>in</strong>g<br />

0<br />

⎛<br />

+ log⎜<br />

⎜<br />

⎝<br />

∑ j<br />

Ei<br />

E<br />

j<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

(all weights should be ‡ 0.)<br />

M<strong>in</strong>imal (relative) crystal energy <strong>in</strong>cluded <strong>in</strong> computation<br />

Optimal W 0 = 3.80 (m<strong>in</strong>. crystal energy is 2.24% of <strong>the</strong> energy conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> 3x3 matrix<br />

∆Y (reco.–true) mm<br />

uncorrected<br />

Reconstructed (Y) mm<br />

σ=700µm<br />

∆Y (reco.–true) mm<br />

Corrected for<br />

beam profile<br />

= Resolution is now more flat over <strong>the</strong> crystal surface<br />

= no correction needed that is f(E,η,ϕ)


Impact <strong>Position</strong> Resolution versus energy (x, y)<br />

Calor 2004 (March 2004) Ivo van Vulpen 20<br />

Resolution on impact position us<strong>in</strong>g <strong>the</strong> logarithmic weight<strong>in</strong>g method:<br />

Resolution(mm)<br />

Hodoscope contribution subtracted<br />

1 mm<br />

Y-orientation<br />

= Resolution <strong>in</strong> X slightly worse:<br />

Different stagger<strong>in</strong>g of crystals<br />

Different crystal dimensions<br />

10% larger <strong>in</strong> X than <strong>in</strong> Y<br />

Different (effective) angle of<br />

<strong>in</strong>cidence<br />

<strong>Energy</strong> (GeV)<br />

σ 5040<br />

( µ Y<br />

m) = ⊕<br />

E<br />

430


Calor 2004 (March 2004) Ivo van Vulpen 21<br />

Conclusions<br />

= <strong>Pulse</strong> (<strong>Energy</strong>) reconstruction:<br />

<strong>ECAL</strong> strategy to reconstruct pulses <strong>in</strong> <strong>the</strong> testbeam set-up evaluated<br />

Optimized and exist<strong>in</strong>g ‘universalities’ are implemented.<br />

<strong>Energy</strong> resolution reaches target precision us<strong>in</strong>g <strong>the</strong> designed<br />

0.25 mm front-end electronics<br />

= Impact po<strong>in</strong>t reconstruction:<br />

Evaluated two approaches and extracted resolutions us<strong>in</strong>g real data<br />

Above 35 GeV: σ X<br />

& σ Y<br />

< 1 mm


Backup slides<br />

Calor 2004 (March 2004) Ivo van Vulpen 22


A<br />

pure signal<br />

f(t)<br />

A<br />

signal + rema<strong>in</strong><strong>in</strong>g pedestal<br />

Ped<br />

w<br />

i<br />

=<br />

∑<br />

i<br />

f<br />

(<br />

i<br />

f<br />

2<br />

i<br />

)<br />

wi = fi<br />

γ =<br />

( λ + γ<br />

Calor 2004 (March 2004) Ivo van Vulpen 23<br />

λ<br />

−1<br />

=<br />

∑ ( f<br />

i<br />

− λ<br />

n<br />

2<br />

i<br />

∑<br />

i<br />

)<br />

) −<br />

( )<br />

2<br />

fi<br />

∑<br />

i<br />

fi<br />

n samples<br />

/<br />

n

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!