01.01.2015 Views

W-D. Nowak - INFN

W-D. Nowak - INFN

W-D. Nowak - INFN

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 1<br />

The Angular Momentum Structure of the Nucleon<br />

Perspectives in Hadronic Physics, May 12-16, 2008<br />

Wolf-Dieter <strong>Nowak</strong><br />

DESY, 15738 Zeuthen, Germany<br />

Wolf-Dieter.<strong>Nowak</strong>@desy.de


Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 2<br />

Table of Contents<br />

⊲ 3-dimensional picture of the nucleon<br />

⊲ Proton spin budget in a nutshell<br />

⊲ DIS results: Quark & gluon contributions, QCD fits<br />

⊲ Deeply Virtual Compton Scattering (DVCS)<br />

⊲ Beam-charge and beam-spin asymmetries<br />

⊲ Transverse target-spin asymmetries<br />

⊲ Model-dependent constraints on J u vs. J d<br />

⊲ Summary and Outlook


Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 3<br />

3-dimensional Picture of the Proton<br />

Nucleon momentum in Infinite Momentum Frame: (p γ<br />

∗ + p nucl ) z → ∞<br />

• Form factor<br />

y<br />

• Parton density<br />

δ z<br />

⊥<br />

xp<br />

y<br />

• Generalized parton<br />

distribution at =0<br />

δ z<br />

⊥<br />

xp<br />

y<br />

b ⊥<br />

z<br />

b ⊥<br />

x<br />

z<br />

x<br />

z<br />

x<br />

f ( x)<br />

f ( x, b )<br />

⊥<br />

ρ( b ⊥<br />

)<br />

0<br />

b ⊥<br />

x<br />

1<br />

0<br />

x<br />

1<br />

0<br />

b ⊥<br />

Nucleon’s transv.<br />

charge distribution<br />

given by 2-dim.<br />

Fourier transform<br />

of Form Factor:<br />

⇒ Parton’s<br />

transverse<br />

localization b ⊥<br />

Probability density to<br />

find partons of given<br />

long. mom. fraction x<br />

at resol. scale 1/Q 2<br />

(no transv. inform.)<br />

⇒ Parton’s longitudinal<br />

momentum distribution<br />

function (PDF) f(x)<br />

Generalized Parton Distrib. s<br />

(GPDs) probe simultaneously<br />

transverse localization b ⊥<br />

for a given longitudinal<br />

momentum fraction x.<br />

2nd moment by Ji relation:<br />

J q,g = 1 2 lim t→0<br />

R<br />

x dx<br />

[H q,g (x, ξ, t) + E q,g (x, ξ, t)]


Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 4<br />

Proton Spin Budget in a Nutshell<br />

NO unique and gauge-invariant decomposition of the nucleon spin:<br />

(A) ‘GPD-based’:<br />

1<br />

2 = J q + J g = 1 2 ∆Σ + L q + ̂∆g + L g<br />

Total angular momenta of quarks (J q ) and gluons (J g ) are<br />

gauge-invariant and calculable in lattice gauge theory<br />

Intrinsic spin contribution and orbital angular momentum are gauge<br />

inv. for quarks ( 1 2 ∆Σ and L q), but not for gluons ( ̂∆g and L g )<br />

Probabilistic interpretation only for 1 2∆Σ (well measured)<br />

J q accessible through exclusive lepton nucleon scattering<br />

J g very difficult to access experimentally<br />

(B) Light-cone gauge:<br />

1<br />

2 = J q + J g = 1 2 ∆Σ + L q + ∆g + L g<br />

All 4 terms have a probabilistic interpretation<br />

∆g is gauge invariant (being measured)<br />

⇒ Results from both decompositions must not be mixed, as<br />

L q ≠ L q , ∆g ≠ ̂∆g, L g ≠ L g , even J g ≠ J g !


Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 5<br />

DIS: Kinematics, Cross Sections, Asymmetry<br />

e<br />

N<br />

(E, p)<br />

γ *<br />

(E,<br />

’<br />

p ’)<br />

u<br />

q<br />

u<br />

d<br />

h<br />

h<br />

π<br />

Virtual-photon kinematics:<br />

Q 2 = −q 2 ν = E − E ′<br />

Fraction of nucleon momentum<br />

carried by struck quark: x = Q2<br />

2Mν<br />

fraction of virtual-photon energy<br />

carried by produced hadron h: z = E h<br />

ν<br />

π +<br />

Hadron transverse momentum: P h⊥<br />

Unpolarized cross section: σ UU ≡ 1 2 (σ →⇐ + σ →⇒ )<br />

Cross section (helicity) difference: σ LL ≡ 1 2 (σ →⇐ − σ →⇒ )<br />

Double-spin asymmetry: A || ≡ σ LL<br />

σ UU<br />

≃ g 1<br />

F 1<br />

(neglecting small g 2 contribution)<br />

Measured asymmetry: A || =<br />

1<br />

〈P B 〉〈P T 〉<br />

( N L ) → ⇐−( N<br />

L ) → ⇒<br />

( N L ) → ⇐+( N<br />

L ) → ⇒<br />

with P B (P T ) : longitudinal beam (target) polarization


Direct determination of quark spin contribution ∆Σ<br />

Most precise g d 1 result: Hermes inclusive data [PRD75(2007)012007,hep-ex/0609039]:<br />

x⋅g 1<br />

d<br />

0.03<br />

0.02<br />

HERMES<br />

E143<br />

E155<br />

SMC<br />

COMPASS<br />

Method:<br />

NNLO leading twist analysis in<br />

MS scheme<br />

0.01<br />

assume SU 3 flavor symmetry in<br />

hyperon decay<br />

0<br />

observe saturation of<br />

Γ 1 = ∫ dx g d 1(x) for x < 0.04<br />

-0.01<br />

0.01 0.1 1.0<br />

Data for Q 2 > 1 GeV 2 :<br />

Result at Q 2 = 5 GeV 2 (all data points evolved):<br />

∆Σ = 0.330 ± 0.011 theor. ± 0.025 exp. ± 0.028 evol.<br />

x<br />

assume no significant contribution<br />

of small-x region<br />

evaluate Γ d 1(Q 2 = 5 GeV 2 ) = 0.021<br />

∫ 0.9 dx g<br />

d<br />

1 (x)<br />

where ‘exp.’ includes stat., syst. and parameterization uncertainties<br />

Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 6


Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 7<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Next-to-leading Order QCD Fits<br />

Results by AAC [PRD74(2006)014015,hep-ph/0603213]: NLO in α s , MS scheme<br />

0<br />

0.001 0.01 0.1 1<br />

0<br />

-0.1<br />

Q 2 = 1 GeV 2<br />

x∆u v<br />

(x)<br />

x∆d v<br />

(x)<br />

DIS + π 0 (type 1)<br />

DIS (AAC03)<br />

-0.2<br />

0.001 0.01 0.1 1<br />

x<br />

2<br />

1<br />

0<br />

-1<br />

0.001 0.01 0.1 1<br />

0.01<br />

0<br />

-0.01<br />

-0.02<br />

-0.03<br />

-0.04<br />

DIS + π 0 (type 1)<br />

DIS (AAC03)<br />

x∆g(x)<br />

x∆q(x)<br />

0.001 0.01 0.1 1<br />

x<br />

Assumptions:<br />

Flavor-symmetric ∆q sea<br />

Integrals of ∆qu<br />

val and ∆qd<br />

val fixed<br />

by weak decay constants F and D<br />

Input experimental data:<br />

A p,d<br />

1<br />

from COMPASS,JLAB,HERMES<br />

A π0<br />

LL<br />

from PHENIX<br />

Results at Q 2 = 1 GeV 2 :<br />

∆Σ = 0.25 ± 0.10<br />

∆G = 0.47 ± 1.08 (DIS alone)<br />

∆G = 0.31 ± 0.32 (DIS+PHENIX)<br />

Impact of recent CLAS and COMPASS data [PRD75(2007)074027,hep-ph/0612360]:<br />

Fit with ∆g > 0 : ∆G = 0.13 ± 0.17 Fit with ∆g < 0 : ∆G = −0.20 ± 0.41<br />

Impact of recent PHENIX and STAR data (Q 2 = 10 GeV 2 ) {DSSV, arXiv:0804.0422 [hep-ph]}:<br />

Clear indication for flavor-asymmetric sea. For 0 < x < 1 : ∆G = −0.084<br />

For 0.001 < x < 1 : ∆G = 0.013 with +0.106<br />

−0.120 for ∆χ2 = 1; +0.702<br />

−0.314 for ∆χ2 /χ 2 = 2%


Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 8<br />

Determination of Gluon Contribution to Nucleon Spin<br />

High-p t hadron pairs or single hadrons quasi-real photoprod.: 〈Q 2 〉 ≈ 0.1 GeV 2<br />

Sensitivity through γ ∗ g ‘direct’ hard scattering or ‘resolved-photon’ process<br />

left graphs: direct processes; right graphs: resolved-photon processes [COMPASS analysis]<br />

PGF<br />

R<br />

Extraction heavily relies on<br />

PYTHIA simulation (LO only !)<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

QCDC<br />

*<br />

γ<br />

g→qq<br />

*<br />

γ<br />

q→qg<br />

*<br />

γ<br />

q→q<br />

Leading<br />

qq’→qq’<br />

qg→qg<br />

gg→gg<br />

low p<br />

T<br />

Processes:<br />

Hard scale µ 2 ≃ 3 GeV 2<br />

only ‘loosely’ correlated<br />

with x g (〈x g 〉 ≃ 0.1)<br />

COMPASS: Open-charm production (γ ∗ g → c¯c) and hadron pairs<br />

HERMES: Single high-p t hadrons. Pairs in old analysis (all Q 2 , 〈x g 〉 ≃ 0.17<br />

[PRL84 (2000) 2584] ∆g<br />

g = 0.41 ± 0.18 stat ± 0.03 sys−exp (±unknown sys−Model )<br />

RHIC: A LL in inclusive direct γ & π 0 production, inclusive jet production


Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 9<br />

Δ g/g<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-2<br />

10<br />

Results on Gluon Helicity Distribution ∆g<br />

g (x)<br />

COMPASS, open charm (this work)<br />

COMPASS, high p<br />

, Q<br />

1 (GeV/c)<br />

T<br />

2<br />

fit with<br />

ΔG>0, µ<br />

=3(GeV/c)<br />

2<br />

fit with<br />

ΔG 1 GeV 2 (〈x g 〉 ≃ 0.13)<br />

= 0.06 ± 0.31 stat ± 0.06 syst<br />

∆g<br />

g<br />

{prel.: K.Kurek,DIS06,hep-ex/0607061}<br />

COMPASS open charm:<br />

∆g<br />

g<br />

= −0.47 ± 0.44 stat ± 0.15 syst<br />

(〈x g 〉 ≃ 0.11) {arXiv:0802.3023[hep-ex]}<br />

Q 2 ≃ 0; (〈x g 〉 ≃ 0.22): ∆g<br />

g = 0.071 ± 0.034 stat ± 0.010 sys−exp ± 0.127<br />

0.105 sys−Models<br />

PHENIX: Confidence limits for fits with different ∆g<br />

g<br />

assumptions


Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 10<br />

Deeply Virtual Compton Scattering<br />

e<br />

e ′ e e ′ e e ′<br />

γ<br />

γ ∗ γ<br />

γ<br />

γ ∗ γ ∗<br />

p p ′ p p ′ p p ′<br />

(a)<br />

Same final state in DVCS and Bethe-Heitler ⇒ Interference!<br />

dσ(eN → eNγ) ∝ |T BH | 2 + |T DV CS | 2 + T BH T ∗ DV CS + T ∗ BHT DV CS<br />

} {{ }<br />

I<br />

T BH is parameterized in terms of Dirac and Pauli Form Factors F 1 , F 2 ,<br />

calculable in QED.<br />

T DV CS is parameterized in terms of Compton form factors H, E, ˜H, Ẽ<br />

(which are convolutions of resp. GPDs H, E, ˜H, Ẽ)<br />

(Certain Parts of) interference term I can be filtered out by forming<br />

certain cross section differences (or asymmetries)<br />

(b)<br />

⇒ GPDs H, E,<br />

˜H, Ẽ indirectly accessible via interference term I


Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 11<br />

Azimuthal Asymmetries in DVCS<br />

DVCS–Bethe-Heitler Interference term I induces differences or<br />

azimuthal asymmetries A in the measured cross-section:<br />

Beam-charge asymmetry A C (φ) [BCA] :<br />

dσ(e + , φ) − dσ(e − , φ) ∝ Re[F 1 H] · cos φ<br />

Beam-spin asymmetry A LU (φ) [BSA] :<br />

dσ( → e , φ) − dσ( ← e , φ) ∝ Im[F 1 H] · sin φ<br />

z<br />

y<br />

⃗ k<br />

′<br />

⃗ k<br />

⃗q<br />

⃗p γ<br />

x<br />

φ S<br />

φ<br />

uli<br />

Long. target-spin asymmetry A UL (φ) :<br />

dσ( ⇐ P , φ) − dσ( ⇒ P , φ) ∝ Im[F 1 ˜H] · sin φ [LTSA]<br />

Transverse target-spin asymmetry A UT (φ, φ s ) [TTSA]:<br />

dσ(φ, φ S ) − dσ(φ, φ S + π) ∝ Im[F 2 H − F 1 E] · sin (φ − φ S ) cos φ<br />

+ Im[F 2 ˜H − F1 ξẼ] · cos (φ − φ S) sin φ<br />

(F 1 , F 2 are the Dirac and Pauli elastic nucleon form factors)


HERMES Combined BSA & BCA Analysis<br />

Various asymmetry amplitudes A contribute to polarized cross section σ LU :<br />

σ LU (φ; P l , e l ) = σ UU (φ)[1 + e l A C (φ) + e l P l A I LU (φ) + P lA<br />

DV CS<br />

LU<br />

L: longitudinally polarized lepton beam of charge e l & polarization P l ; U: unpolarized proton target<br />

BCA: A C (φ) = 1<br />

σ UU<br />

c I 1 cos φ + · · ·<br />

BSA (interference term): A I LU (φ) = 1<br />

σ UU<br />

s I 1 sin φ + · · ·<br />

BSA (DVCS term):<br />

DV CS<br />

ALU (φ) = 1<br />

DV CS<br />

σ UU<br />

s<br />

(φ)]<br />

c I 1 ∝ √ −t<br />

Q F 1ReH + [· · · ]<br />

s I 1 ∝ √ −t<br />

Q F 1ImH + [· · · ]<br />

1 sin φ (small at HERMES energy)<br />

Unpolarized cross section: σ UU = σ BH + σ DV CS + σ I<br />

F 1 : Dirac elastic nucleon form factor<br />

H : Compton Form Factor (CFF), embodies GPD H<br />

[· · · ] : kinematically suppressed CFFs ( ˜H, E) embodying GPDs ˜H, E<br />

Fit to data: A C (φ) = ∑ 3 nφ<br />

n=0<br />

Acos<br />

C<br />

A I LU (φ) = ∑ 2<br />

A<br />

DV CS<br />

LU<br />

m=1<br />

Asin<br />

mφ<br />

LU,I<br />

cos nφ<br />

sin mφ<br />

(φ) = A sin φ<br />

LU,DV CS sin φ<br />

Fit results: ‘effective’ asymmetry amplitudes: A<br />

cos nφ<br />

C<br />

, A<br />

sin mφ<br />

LU,I<br />

, Asin φ<br />

LU,DV CS<br />

⇒ well defined in theory, can be compared to GPD models !<br />

Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 12


HERMES Combined BSA & BCA Results<br />

cos 0φ<br />

LU,DVCS<br />

A<br />

sin φ<br />

LU,DVCS<br />

A<br />

sin 2φ<br />

LU,DVCS<br />

A<br />

Res. frac<br />

0.2<br />

0<br />

-0.2<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

3.4 % scale<br />

uncertainty<br />

overall<br />

0.2<br />

0<br />

-0.2<br />

0.2<br />

cos 0φ<br />

LU,I<br />

0<br />

A<br />

-0.2<br />

-0.4<br />

0.4<br />

0.2<br />

sin φ<br />

LU,I<br />

A<br />

0<br />

-0.2<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

HERMES PRELIMINARY<br />

3.4 % scale<br />

uncertainty<br />

0 0.2 0.4 0.6<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

0 0.2 0.4 0.60 0.2 0.1 0.4 0.2 0.6 0.3<br />

0.4<br />

0.4<br />

0.2<br />

0<br />

0.3 0<br />

0.3<br />

0.2<br />

0.2 0<br />

-0.2<br />

0.1 -0.2<br />

0.1<br />

0<br />

0 0.2 0.4 0.6 0<br />

-0.2<br />

-0.4<br />

-0.4<br />

2<br />

sin 2φ<br />

LU,I<br />

A<br />

Res. frac<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

overall<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

cos 0φ<br />

C<br />

A<br />

-t[GeV<br />

0.2<br />

0<br />

-0.2<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

]<br />

VGG Regge, D<br />

VGG Fact., D<br />

HERMES PRELIMINARY<br />

0.1 0.2 0.3<br />

0.2<br />

0<br />

-0.2<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

Dual Regge/Fact.<br />

2 4 6 8 10<br />

0.1 2 0.24 6 0.3 8 10 2 4 6 8 10<br />

0.4<br />

0.2<br />

VGG Regge, D<br />

0<br />

HERMES 0.3 PRELIMINARY<br />

VGG Regge, no D<br />

0.2<br />

0<br />

0.2<br />

0<br />

0<br />

0.1<br />

-0.2<br />

-0.2<br />

0.1 0.3<br />

0<br />

-0.2<br />

-0.4<br />

x b<br />

2 4<br />

-0.2<br />

6 8-0.4<br />

2<br />

10<br />

2<br />

0 0.2 0.4 0.6<br />

0.4<br />

0.4<br />

0.2<br />

0.2<br />

0.3<br />

0.3<br />

0.2<br />

0.2<br />

0<br />

0<br />

0.1<br />

0.1<br />

0<br />

0<br />

0-0.2<br />

0.2 0.4 -0.2 0.6<br />

2<br />

0.1<br />

0.1<br />

cos φ<br />

C<br />

A<br />

cos 2φ<br />

C<br />

A<br />

cos 3φ<br />

C<br />

A<br />

c<br />

0<br />

-0.1<br />

-0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-t[GeV<br />

0<br />

-0.1<br />

-0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

]<br />

VGG Regge, no D<br />

VGG Fact., no D<br />

-0.2<br />

Q [GeV<br />

0.1 0.2 0.3<br />

0.4<br />

0.2<br />

0.3<br />

0.2<br />

0<br />

0.1<br />

0<br />

0.1 0.2 -0.2 0.3<br />

0.1 x b<br />

0 0.2 0.4 0.6<br />

0 0.2 0.4 0.6<br />

0 0.2 0.4 0.6<br />

0<br />

-0.1<br />

-0.2<br />

0.1<br />

0<br />

0.4<br />

0.2<br />

0<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

]<br />

Dual Regge<br />

Dual Fact.<br />

2 4 6 8 10<br />

2 4 6 2<br />

-0.2<br />

0.1<br />

10 2<br />

0.1 0.2 0.3<br />

0.1 0.2 0.3<br />

0.1 0.2 0.3<br />

0.2<br />

Dual Regge<br />

Q [GeV<br />

-0.1<br />

-0.1<br />

0 < −t < 0.7 0.03 < x<br />

-0.2 B < 0.35 1 < Q 2 < 10<br />

-0.2<br />

Wolf-Dieter <strong>Nowak</strong>, 0.4<br />

0.4<br />

0.4<br />

Perspectives 0.4 in Hadronic Physics, May 15, 2008 – p. 13<br />

0<br />

-0.2<br />

0.2<br />

0<br />

-0.1<br />

-0.2<br />

0.1<br />

]<br />

BSA<br />

const.term<br />

∝ F 1 ImH<br />

Dual Fact.<br />

2 4 6 8 10<br />

2 4 6 8 10<br />

2 4 6 8 10<br />

BCA<br />

∝ −A cos φ<br />

C<br />

∝ F 1 ReH<br />

HT<br />

HT


Discussion of Combined BSA & BCA Analysis<br />

!!! Asymmetries of ‘associated (resonance) production’ are unknown !!!<br />

Kinematic dependence of fractions of associated production known from MC:<br />

Average is 12%<br />

Assoc. Prod. (%)<br />

30<br />

20<br />

10<br />

0.5<br />

0 0.2 0.4 0.6<br />

-t (GeV 2 )<br />

0 0.1 0.2 0.3<br />

xB<br />

⇒ In data associated production is part of the signal,<br />

while in models it is not included (still unknown)<br />

5 0 2 4 6 8 10<br />

Q 2 (GeV 2 )<br />

HERMES BSA agrees with Dual model Guzey,(Polyakov),Teckentrup 2006<br />

VGG model Vanderhaeghen, Guichon,Guidal 1999 clearly undershoots HERMES BSA<br />

(Improvement recently proposed Polyakov,Vanderhaeghen arXiv:0803.1271 [hep-ph])<br />

HERMES BCA disfavours factorized t dep., in both models and D-term in VGG<br />

Pure |DVCS| 2 asymmetries found compatible with zero (as models assume)<br />

⇒ HERMES data precise enough to discriminate between models or their variants<br />

⇒ new models eagerly awaited !!!<br />

Müller,Kumericki<br />

Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 14


Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 15<br />

Why TTSA Data Expected to be Sensitive to J q <br />

A UT (φ, φ S ) ∝ Im[F 2 H − F 1 E] sin (φ − φ S ) cos φ + Im[F 2 ˜H − F1 ξẼ] cos (φ − φ S) sin φ<br />

ANSATZ: spin-flip Generalized Parton Distribution E is parameterized as follows:<br />

Factorized ansatz for spin-flip quark GPDs: E q (x, ξ, t) =<br />

E q(x,ξ)<br />

(1−t/0.71) 2<br />

(<br />

t-indep. part via double distr. ansatz: E q (x, ξ) = Eq DD<br />

x<br />

(x, ξ) − θ(ξ − |x|)D q ξ<br />

using double distr. K q : E DD<br />

q (x, ξ) =<br />

1∫<br />

−1<br />

dβ<br />

1−|β|<br />

∫<br />

−1+|β|<br />

with K q (β, α) = h(β, α) e q (β) and e q (x) = A q q val (x) + B q δ(x)<br />

based on chiral QSM<br />

where coeff.s A, B constrained by Ji relation, and<br />

A u , A d , B u , B d are functions of J u , J d<br />

⇒ J u , J d are free parameters when calculating TTSA<br />

dα δ(x − β − αξ) K q (β, α)<br />

+1 ∫<br />

−1<br />

dx e q (x) = κ q<br />

Sensitivity to J u (with J d = 0) studied [EPJ C46, 729 (2006), hep-ph/0506264]<br />

)


-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

0 0.5 0 0.2<br />

0 5 10<br />

0 0.5 0 0.2 0 5 10<br />

0 0.5<br />

0 0.5<br />

0 0.2<br />

0 0.2<br />

0 5 10<br />

Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 16<br />

HERMES: First Measurement of TTSA<br />

A UT (φ, φ S ) = A sin (φ−φ S ) cos φ<br />

UT<br />

A C<br />

cosφ<br />

0.4<br />

0.2<br />

· sin (φ − φ S ) cos φ + A cos (φ−φ S) sin φ<br />

UT<br />

· cos (φ − φ S ) sin φ + ...<br />

PRD75, 011103<br />

this work<br />

DD:Fac,D<br />

DD:Fac,no D<br />

DD:Reg,D<br />

DD:Reg,no D<br />

0<br />

A C<br />

cosφ<br />

0.4<br />

0.2<br />

Dual:Reg<br />

Dual:Fac<br />

0<br />

sin(φ-φ<br />

A s<br />

)<br />

UT<br />

0.2<br />

0<br />

8.1% scale uncertainty<br />

A UT, DVCS<br />

J u<br />

=0.6<br />

0.4<br />

0.2<br />

A UT, I<br />

J u<br />

=0.6<br />

0.4<br />

0.2<br />

-0.2<br />

sin(φ-φ<br />

A s<br />

)cosφ<br />

UT<br />

0.2<br />

0<br />

-0.2<br />

8.1% scale uncertainty<br />

-0.4<br />

overall<br />

0 0.2 0.4 0.6<br />

-t (GeV 2 )<br />

0 0.1 0.2 0.3<br />

x B<br />

5 0 2 4 6 8 10<br />

Q 2 (GeV 2 )


Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 17<br />

J u<br />

1<br />

0.5<br />

0<br />

-0.5<br />

Model-dependent constraints on J u vs J d<br />

HERMES Dual<br />

DFJK<br />

JLab DD<br />

QCDSF<br />

LHPC<br />

HERMES DD<br />

-1<br />

-1 -0.5 0 0.5 1<br />

J d<br />

HERMES analysis method:<br />

[arXiv:0802.2499, subm. to JHEP]<br />

Unbinned maximum likelihood fit<br />

to all possible azimuthal asymmetry<br />

amplitudes at average kinematics:<br />

⇒ ‘combined fit’ of HERMES BCA<br />

and TTSA data against various model<br />

calculations, leaving J u and J d<br />

as free parameters ⇒ model-dep.<br />

1-σ constraints on J u vs. J d :<br />

Double-distribution model: J u + J d /2.8 = 0.49 ± 0.17(exp tot )<br />

[Vanderhaghen,Guichon,Guidal]<br />

Dual model [Guzey, Teckentrup]: J u + J d /2.8 = −0.02 ± 0.27(exp tot )<br />

Lattice gauge theory: QCDSF [Göckeler et al.], LHPC [Hägler et al.]<br />

DFJK model: zero-skewness GPDs extracted from nuclear form factor<br />

data using valence-quark contributions only [Diehl et al.])


Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 18<br />

Summary and Outlook<br />

⊲ No unique and gauge-invariant decomposition of the nucleon spin<br />

⊲ HERMES and COMPASS results on Deep Inelastic Scattering yield intrinsic<br />

quark and gluon contribution to the nucleon spin (in light-cone gauge)<br />

⊲ Total angular momenta of quarks and gluons accessible in context of<br />

Generalized Parton Distributions<br />

⊲ Deeply Virtual Compton Scattering is prime candidate to constrain total<br />

quark angular momenta (no feasible approach known for gluons)<br />

⊲ Pioneering HERMES results on azimuthal asymmetries, and first promising<br />

JLAB results on cross section differences in DVCS, allow us to severely<br />

constrain GPD models<br />

⊲ Increasing theoretical activities on improved and new GPD models<br />

⊲ Short-term future: for DVCS and other exclusive reactions final HERMES<br />

results and many more very precise JLAB 6 GeV data expected<br />

⊲ Medium-term future: hopefully unique COMPASS BCA data, presumably<br />

many very precise JLAB 12 GeV data


Back-up Slides<br />

Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 19


d 4 σ<br />

d 4 Φ > |BH2 | → BSA and Im I/|BH 2 | are not exactly the same over Φ<br />

Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 20<br />

Lab E00-110 Scaling Test of DVCS Cross Section<br />

5.75 GeV e − beam (76% pol.), unpol. LH 2 target, [PRL 97 (2006) 262002]<br />

Detect e ′ by HRS, γ by EM calorimeter, recoil p by scintillator array<br />

3 different kinematic settings with x Bj = 0.36 fixed:<br />

Q 2 = 1.5, 1.9, 2.3 GeV 2 . For each: −t = 0.17, 0.23, 0.28, 0.33 GeV<br />

Measured separately: d4 Σ<br />

d 4 Φ = 1 2 [ d4 σ +<br />

d 4 Φ<br />

⇒ distinct information on GPDs:<br />

d 4 Σ<br />

∝ Im I: as in BSA numer.<br />

d 4 Φ<br />

d 4 σ<br />

d 4 Φ<br />

∝ Re I: same as in BCA<br />

Fit following terms separately:<br />

|BH 2 | (dot-dot-dashed),<br />

twist-2 int. term (dashed),<br />

twist-3 int. term (dot-dashed)<br />

(|DV CS| 2 found below few %)<br />

Twist-3 terms small<br />

− d4 σ −<br />

d 4 Φ ] and d4 σ<br />

d 4 Φ = 1 2 [ d4 σ +<br />

d 4 Φ<br />

+ d4 σ −<br />

d 4 Φ ]


Wolf-Dieter <strong>Nowak</strong>, Perspectives in Hadronic Physics, May 15, 2008 – p. 21<br />

LAS E01-113: High-stat. Beam-spin Asymmetry<br />

1st dedicated Hall-B DVCS exp’t: 5.76 GeV e − beam, pol. 76-82%; unpol. LH 2<br />

CLAS spectrometer upgraded by inner calorimeter to detect γ’s at small angles<br />

→ all 3 final state particles (e ′ N γ) detected !<br />

Broad kinematic coverage at medium x (0.1...0.5), combined with high lumi<br />

→ 3-dim. binning possible. Unpublished (White Paper) preview:<br />

)<br />

2<br />

2<br />

One single (x ,Q ) bin<br />

B<br />

2<br />

One (x ,Q ,t) bin out of five<br />

B<br />

(GeV<br />

2<br />

Q<br />

4<br />

3<br />

2<br />

1<br />

0.1 0.2 0.3 0.4 0.5<br />

x B<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

A LU<br />

2<br />

1.5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!