03.01.2015 Views

Computer (matrix) version of the stiffness method 1. The computer ...

Computer (matrix) version of the stiffness method 1. The computer ...

Computer (matrix) version of the stiffness method 1. The computer ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Plane frame<br />

x<br />

i<br />

v i<br />

u i<br />

q<br />

n<br />

⎡ui<br />

⎤<br />

⎢ ⎥<br />

=<br />

⎢<br />

v i ⎥<br />

⎢⎣<br />

ϕ ⎥<br />

i ⎦<br />

y<br />

x<br />

z<br />

3D frame<br />

y<br />

u i<br />

ϕ x<br />

ϕ z<br />

ϕ i<br />

i<br />

w i<br />

v i<br />

ϕ x<br />

ϕ y<br />

Plane yz<br />

q<br />

n<br />

⎡ui<br />

⎤<br />

⎢ ⎥<br />

⎢<br />

v i ⎥<br />

⎢w<br />

⎥<br />

i<br />

= ⎢ ⎥<br />

⎢ϕ<br />

x ⎥<br />

⎢ϕ<br />

⎥<br />

y<br />

⎢ ⎥<br />

⎢⎣<br />

ϕz<br />

⎥⎦<br />

Interpretation<br />

<strong>of</strong> <strong>the</strong> rotation angle<br />

<strong>The</strong> displacements presented in <strong>the</strong> above figures are referred to <strong>the</strong> global sets <strong>of</strong> co-ordinates xy<br />

or xyz. In practice it is much easier to form <strong>the</strong> basic equations on <strong>the</strong> level <strong>of</strong> elements, hence, <strong>the</strong><br />

local systems <strong>of</strong> co-ordinates are introduced. <strong>The</strong> values corresponding to <strong>the</strong> local co-ordinates<br />

are additionally denoted with tildes.<br />

<strong>The</strong> slope-defection formulae from <strong>the</strong> classical <strong>stiffness</strong> <strong>method</strong> are replaced by <strong>the</strong> element<br />

<strong>stiffness</strong> <strong>matrix</strong>, which relates <strong>the</strong> element displacements in local co-ordinates to <strong>the</strong> reactions at<br />

<strong>the</strong> element supports in local co-ordinates:<br />

~ K<br />

~ ~<br />

Re<br />

= Keq<br />

~<br />

e e<br />

[ k eij<br />

]<br />

n×<br />

n<br />

where n is <strong>the</strong> number <strong>of</strong> element degrees <strong>of</strong> freedom. <strong>The</strong> elements <strong>of</strong> <strong>the</strong> <strong>stiffness</strong> <strong>matrix</strong><br />

represent reactions at <strong>the</strong> element supports created by unit displacements. For instance, <strong>the</strong><br />

element k ~ eij represents <strong>the</strong> reaction number i created by <strong>the</strong> action <strong>of</strong> <strong>the</strong> displacement q<br />

~ = j 1<br />

First, let us consider <strong>the</strong> plane truss element. In this case <strong>the</strong> vectors <strong>of</strong> element displacements<br />

and reactions have four components<br />

= ~<br />

~ q<br />

~<br />

i<br />

R 1,<br />

1<br />

2<br />

~ R 3,<br />

q<br />

~<br />

3<br />

x ~<br />

k<br />

e<br />

~ ~<br />

l<br />

R 4,<br />

q 4<br />

~ R<br />

~<br />

2,<br />

q<br />

y ~<br />

q<br />

~<br />

e<br />

⎡u<br />

~ ⎤ ⎡ ~<br />

i q1<br />

⎤<br />

⎢ ⎥ ⎢ ⎥<br />

⎢v<br />

~ ~<br />

i ⎥ = ⎢q2<br />

= ⎥<br />

⎢u<br />

~ ⎥ ⎢~<br />

⎥<br />

k q3<br />

⎢ ⎥ ⎢~<br />

⎥<br />

~<br />

⎣v<br />

k<br />

⎦ ⎢⎣<br />

q4<br />

⎥⎦<br />

~<br />

R<br />

e<br />

⎡ ~<br />

R<br />

⎢ ~<br />

⎢R<br />

=<br />

⎢ ~<br />

R<br />

⎢ ~<br />

⎢⎣<br />

R<br />

1<br />

2<br />

3<br />

4<br />

⎤ ⎡−<br />

Ni<br />

⎤<br />

⎥ ⎢ ⎥<br />

⎥ ⎢<br />

−Ti<br />

= ⎥<br />

⎥ ⎢ N ⎥<br />

k<br />

⎥ ⎢ ⎥<br />

⎥⎦<br />

⎣ Tk<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!