03.01.2015 Views

study of solar water heaters based on exergy analysis - YMCA ...

study of solar water heaters based on exergy analysis - YMCA ...

study of solar water heaters based on exergy analysis - YMCA ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong><br />

Trends and Advances in Mechanical Engineering,<br />

<strong>YMCA</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science & Technology, Faridabad, Haryana, Oct 19-20, 2012<br />

STUDY OF SOLAR WATER HEATERS BASED ON EXERGY ANALYSIS<br />

Dilip Johari 1 , Ashok Yadav 2 , Ravi Verma 3<br />

1<br />

M.Tech Student, 2 Asst. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>., Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering, Dayalbagh Educati<strong>on</strong>al University,<br />

Agra, U.P., India<br />

3 Asst. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>., Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering, Graphic Era University, Dehradun, Uttrakhand, India<br />

Email: 1 dilipjohari@gmail.com, 2 ashokyadavaca@gmail.com, 3 raviverma2020@gmail.com<br />

Abstract<br />

Energy applicati<strong>on</strong> from the sun to heat <str<strong>on</strong>g>water</str<strong>on</strong>g> is well known. Solar <str<strong>on</strong>g>water</str<strong>on</strong>g> heater is a device which is used for<br />

heating the <str<strong>on</strong>g>water</str<strong>on</strong>g> for domestic and industrial purposes by utilizing the <str<strong>on</strong>g>solar</str<strong>on</strong>g> energy. Solar energy is the energy<br />

which is coming from sun in the form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> radiati<strong>on</strong>s in infinite amount, when these <str<strong>on</strong>g>solar</str<strong>on</strong>g> radiati<strong>on</strong>s falls <strong>on</strong><br />

absorbing surface, then they gets c<strong>on</strong>verted into the heat, this heat is used for heating the <str<strong>on</strong>g>water</str<strong>on</strong>g>.This paper presents<br />

the <str<strong>on</strong>g>study</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> three procedure theory. Exergy <strong>analysis</strong> is c<strong>on</strong>ducted with the aim <str<strong>on</strong>g>of</str<strong>on</strong>g> providing some methods to<br />

save cost and keep the efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> heater to desired extent and at the same time figuring out related<br />

<strong>exergy</strong> losses. In the Exergy <strong>analysis</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> heater systems, the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> radiati<strong>on</strong> is typically<br />

included within the <strong>analysis</strong>. Exergy <strong>analysis</strong> has been widely used for the optimisati<strong>on</strong> and allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> losses in<br />

energy systems. Exergy is the expressi<strong>on</strong> for loss <str<strong>on</strong>g>of</str<strong>on</strong>g> available energy due to the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy in irreversible<br />

systems or processes. The <strong>exergy</strong> loss in a system or comp<strong>on</strong>ent is determined by multiplying the absolute<br />

temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the surroundings by the entropy increase. Exergy is also a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the maximum useful work that<br />

can be d<strong>on</strong>e by a system interacting with an envir<strong>on</strong>ment. It has been widely used in the design, simulati<strong>on</strong> and<br />

performance evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy systems.<br />

Keywords: Solar <str<strong>on</strong>g>water</str<strong>on</strong>g> heater, Laws <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermodynamics, Exergy Analysis, Three procedure theory<br />

1. Introducti<strong>on</strong><br />

The <str<strong>on</strong>g>solar</str<strong>on</strong>g> energy is the most capable <str<strong>on</strong>g>of</str<strong>on</strong>g> the alternative energy sources. Despite the characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> low density and<br />

unsteady in nature, the research <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> energy has received significant attenti<strong>on</strong> in recent years. Due to increasing<br />

demand for energy and rising cost <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil type fuels (i.e., gas or oil) <str<strong>on</strong>g>solar</str<strong>on</strong>g> energy is c<strong>on</strong>sidered an attractive source<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> renewable energy that can be used for <str<strong>on</strong>g>water</str<strong>on</strong>g> hearing in both homes and industry. Heating <str<strong>on</strong>g>water</str<strong>on</strong>g> c<strong>on</strong>sumes nearly<br />

20% <str<strong>on</strong>g>of</str<strong>on</strong>g> total energy c<strong>on</strong>sumpti<strong>on</strong> for an average family. Solar <str<strong>on</strong>g>water</str<strong>on</strong>g> heating systems are the cheapest and most<br />

easily affordable clean energy available to homeowners that may provide most <str<strong>on</strong>g>of</str<strong>on</strong>g> hot <str<strong>on</strong>g>water</str<strong>on</strong>g> required by a family.<br />

Solar heater is a device which is used for heating the <str<strong>on</strong>g>water</str<strong>on</strong>g>, for producing the steam for domestic and industrial<br />

purposes by utilizing the <str<strong>on</strong>g>solar</str<strong>on</strong>g> energy. Solar energy is the energy which is coming from sun in the form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g><br />

radiati<strong>on</strong>s in infinite amount, when these <str<strong>on</strong>g>solar</str<strong>on</strong>g> radiati<strong>on</strong>s falls <strong>on</strong> absorbing surface, then they gets c<strong>on</strong>verted into the<br />

heat, this heat is used for heating the <str<strong>on</strong>g>water</str<strong>on</strong>g>. This type <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal collector suffers from heat losses due to radiati<strong>on</strong><br />

and c<strong>on</strong>vecti<strong>on</strong>. Such losses increase rapidly as the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the working fluid increases.<br />

Exergy is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the maximum useful work that can be d<strong>on</strong>e by a system interacting with an envir<strong>on</strong>ment<br />

which is at a c<strong>on</strong>stant pressure and temperature. Exergy is the expressi<strong>on</strong> for loss <str<strong>on</strong>g>of</str<strong>on</strong>g> available energy due to the<br />

creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy in irreversible processes. The <strong>analysis</strong> is <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the three procedure theory given by Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor<br />

Hua Ben. The three different procedures <str<strong>on</strong>g>of</str<strong>on</strong>g> this theory are: C<strong>on</strong>versi<strong>on</strong> procedure, utilizati<strong>on</strong> procedure, and<br />

recycling procedure.<br />

2. Problem Statement<br />

In today’s modern world, where new technologies are introduced every day, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> renewable energy is<br />

increasing quickly particularly petroleum fuel. Quickly depleting reserve <str<strong>on</strong>g>of</str<strong>on</strong>g> petroleum and decreasing air quality<br />

raise questi<strong>on</strong> about the future. The fact that n<strong>on</strong> renewable energy resources will be available at the present usage<br />

level <strong>on</strong>ly for a limited period has been accepted worldwide. As a c<strong>on</strong>sequence, the need for renewable energy<br />

resources becomes very urgent. As an absolutely clean energy, <str<strong>on</strong>g>solar</str<strong>on</strong>g> energy is <str<strong>on</strong>g>of</str<strong>on</strong>g> most importance and has been<br />

most emphasized <strong>on</strong> so far.<br />

1


Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong><br />

Trends and Advances in Mechanical Engineering,<br />

<strong>YMCA</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science & Technology, Faridabad, Haryana, Oct 19-20, 2012<br />

Solar <str<strong>on</strong>g>water</str<strong>on</strong>g> heater technology is a method <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> energy utilizati<strong>on</strong>. It has been well developed and can be easily<br />

implemented at a low cost. But, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> heating system not familiar in India and the people in India<br />

still not realize about the practical <str<strong>on</strong>g>of</str<strong>on</strong>g> using <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> heating systems.<br />

Earlier studies <strong>on</strong> <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>heaters</str<strong>on</strong>g> were <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the First law <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermodynamics which tells us that energy is a<br />

c<strong>on</strong>served quantity; “Energy can neither be created nor destroyed, <strong>on</strong>ly transformed from <strong>on</strong>e form to another”.<br />

Perhaps then we should stop worrying about “energy saving” and “energy c<strong>on</strong>servati<strong>on</strong>” and instead focus <strong>on</strong><br />

recycling all this energy which will always be here Unfortunately, Thermodynamics has a Sec<strong>on</strong>d law which states<br />

that processes occur in a certain directi<strong>on</strong>, and that energy has quality as well as quantity. So, it is necessary to<br />

evaluate <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>heaters</str<strong>on</strong>g> from the point <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>of</str<strong>on</strong>g> the Sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> thermodynamics because, as we know, it is<br />

the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> energy that is important not the quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> energy.<br />

3. Solar Water Heating System<br />

SWH systems are generally very simple using <strong>on</strong>ly sunlight to heat <str<strong>on</strong>g>water</str<strong>on</strong>g>. A working fluid is brought into c<strong>on</strong>tact<br />

with a dark surface exposed to sunlight which causes the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluid to rise. This fluid may be the <str<strong>on</strong>g>water</str<strong>on</strong>g><br />

being heated directly, also called a direct system, or it may be a heat transfer fluid such as a glycol/<str<strong>on</strong>g>water</str<strong>on</strong>g> mixture<br />

that is passed through some form <str<strong>on</strong>g>of</str<strong>on</strong>g> heat exchanger called an indirect system. These systems can be classified into<br />

three main categories:<br />

(a) Active systems<br />

(b) Passive systems<br />

(c) Batch systems<br />

3.1 Active Systems<br />

Active systems use electric pumps, valves, and c<strong>on</strong>trollers to circulate <str<strong>on</strong>g>water</str<strong>on</strong>g> or other heat-transfer fluids through the<br />

collectors. So, the Active systems are also called forced circulati<strong>on</strong> systems and can be direct or indirect. The active<br />

system is further divided into two categories:<br />

(a) Open-loop (Direct) Active System<br />

(b) Closed-loop (Indirect) Active System<br />

3.1.1 Open-Loop Active Systems<br />

Open-loop active systems use pumps to circulate <str<strong>on</strong>g>water</str<strong>on</strong>g> through the collectors. This design is efficient and lowers<br />

operating costs but is not appropriate if the <str<strong>on</strong>g>water</str<strong>on</strong>g> is hard or acidic because scale and corrosi<strong>on</strong> quickly disable the<br />

system. These open-loop systems are popular in n<strong>on</strong>freezing climates.<br />

Fig1. Open-Loop Active Systems<br />

3.1.2 Closed-Loop Active Systems<br />

These systems pump heat-transfer fluids (usually a glycol-<str<strong>on</strong>g>water</str<strong>on</strong>g> antifreeze mixture) through collectors. Heat<br />

exchangers transfer the heat from the fluid to the household <str<strong>on</strong>g>water</str<strong>on</strong>g> stored in the tanks. Closed-loop glycol systems<br />

are popular in areas subject to extended freezing temperatures because they <str<strong>on</strong>g>of</str<strong>on</strong>g>fer good freeze protecti<strong>on</strong>.<br />

2


Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong><br />

Trends and Advances in Mechanical Engineering,<br />

<strong>YMCA</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science & Technology, Faridabad, Haryana, Oct 19-20, 2012<br />

Fig2. Closed loop Active System<br />

3.2 Passive Systems<br />

Passive systems simply circulate <str<strong>on</strong>g>water</str<strong>on</strong>g> or a heat transfer fluid by natural c<strong>on</strong>vecti<strong>on</strong> between a collector and an<br />

elevated storage tank (above the collector). The principle is simple, as the fluid heats up its density decreases. The<br />

fluid becomes lighter and rises to the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the collector where it is drawn to the storage tank. The fluid which has<br />

cooled down at the foot <str<strong>on</strong>g>of</str<strong>on</strong>g> the storage tank then flows back to the collector. Passive systems can be less expensive<br />

than active systems, but they can also be less efficient. Thermosiph<strong>on</strong> system is the best example <str<strong>on</strong>g>of</str<strong>on</strong>g> passive systems.<br />

3.2.1 Thermosiph<strong>on</strong> Systems<br />

In the thermosyph<strong>on</strong> system, <str<strong>on</strong>g>water</str<strong>on</strong>g> comes from the over head tank to bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> collector by natural circulati<strong>on</strong><br />

and <str<strong>on</strong>g>water</str<strong>on</strong>g> circulates from the collector to storage tank as l<strong>on</strong>g as the absorber keeps absorbing heat from the sun and<br />

<str<strong>on</strong>g>water</str<strong>on</strong>g> gets heated in the collector. The cold <str<strong>on</strong>g>water</str<strong>on</strong>g> at the bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> storage tank run into the collector and replaces the<br />

hot <str<strong>on</strong>g>water</str<strong>on</strong>g>, which is then forced inside the insulated hot <str<strong>on</strong>g>water</str<strong>on</strong>g> storage tank. The process <str<strong>on</strong>g>of</str<strong>on</strong>g> the circulati<strong>on</strong> stops when<br />

there is no <str<strong>on</strong>g>solar</str<strong>on</strong>g> radiati<strong>on</strong> <strong>on</strong> the collector. Thermosiph<strong>on</strong> system is simple and requires less maintenance due to<br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trols and instrumentati<strong>on</strong>. Efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> a collector depends <strong>on</strong> the difference between collector<br />

temperature and ambient temperature and inversely proporti<strong>on</strong>al to the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> radiati<strong>on</strong>.<br />

Fig3. Thermosiph<strong>on</strong> System<br />

3.3 Batch systems<br />

Batch System (also known as integral collector storage systems) are simple passive systems c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e or<br />

more storage tanks placed in an insulated box that has a glazed side facing the sun. Batch systems have combined<br />

collecti<strong>on</strong> and storage functi<strong>on</strong>s. Depending <strong>on</strong> the system, there is no requirement for pumps or moving parts, so<br />

they are inexpensive and have few comp<strong>on</strong>ents in other words, less maintenance and fewer failures.<br />

3


Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong><br />

Trends and Advances in Mechanical Engineering,<br />

<strong>YMCA</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science & Technology, Faridabad, Haryana, Oct 19-20, 2012<br />

Fig4. Batch System<br />

4. Comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> Solar Water Heater<br />

SWH generally c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>solar</str<strong>on</strong>g> radiati<strong>on</strong> collector panel, a storage tank, a pump, a heat exchanger, piping units,<br />

and auxiliary heating unit. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> important comp<strong>on</strong>ents are described in the next secti<strong>on</strong>s.<br />

4.1 Solar Collectors<br />

The choice <str<strong>on</strong>g>of</str<strong>on</strong>g> collector is determined by the heating requirements and the envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s in which it is<br />

employed. There are mainly three types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> collectors like flat plate <str<strong>on</strong>g>solar</str<strong>on</strong>g> collector, evacuated tube <str<strong>on</strong>g>solar</str<strong>on</strong>g><br />

collector, c<strong>on</strong>centrated <str<strong>on</strong>g>solar</str<strong>on</strong>g> collector.<br />

4.1.1 Flat Plate Collectors<br />

Flat-plate collectors are used extensively for domestic <str<strong>on</strong>g>water</str<strong>on</strong>g> heating applicati<strong>on</strong>s. It is simple in design and has no<br />

moving parts so requires little maintenance. It is an insulated, weatherpro<str<strong>on</strong>g>of</str<strong>on</strong>g>ed box c<strong>on</strong>taining a dark absorber plate<br />

under <strong>on</strong>e or more transparent covers. They collect both direct and diffuse radiati<strong>on</strong>. Their simplicity in c<strong>on</strong>structi<strong>on</strong><br />

reduces initial cost and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. A more detailed picture <str<strong>on</strong>g>of</str<strong>on</strong>g> these systems is <str<strong>on</strong>g>of</str<strong>on</strong>g> interest and is<br />

presented in the following secti<strong>on</strong>.<br />

.<br />

Fig5. Flat plate collector al<strong>on</strong>g with heat loss mechanism.<br />

4.1.2 Evacuated-Tube Collectors<br />

Evacuated-Tube Collectors are made up <str<strong>on</strong>g>of</str<strong>on</strong>g> rows <str<strong>on</strong>g>of</str<strong>on</strong>g> parallel, transparent glass tubes. Each tube c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a glass<br />

outer tube and an inner tube, or absorber, covered with a selective coating that absorbs <str<strong>on</strong>g>solar</str<strong>on</strong>g> energy well but inhibits<br />

radiative heat loss. The air is withdrawn (“evacuated”) from the space between the tubes to form a vacuum, which<br />

4


Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong><br />

Trends and Advances in Mechanical Engineering,<br />

<strong>YMCA</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science & Technology, Faridabad, Haryana, Oct 19-20, 2012<br />

eliminates c<strong>on</strong>ductive and c<strong>on</strong>vective heat loss. They are most suited to extremely cold ambient temperatures or in<br />

situati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sistently low-light. They are also used in industrial applicati<strong>on</strong>s, where high <str<strong>on</strong>g>water</str<strong>on</strong>g> temperatures or<br />

steam need to be generated where they become more cost effective.<br />

Fig6. Evacuated-Tube Collectors<br />

4.1.3 C<strong>on</strong>centrating Collectors<br />

C<strong>on</strong>centrating collectors use mirrored surfaces to c<strong>on</strong>centrate the sun's energy <strong>on</strong> an absorber called a receiver. A<br />

heat-transfer fluid flows through the receiver and absorbs heat. These collectors reach much higher temperatures<br />

than flat-plate collectors and evacuated-tube collectors, but they can do so <strong>on</strong>ly when direct sunlight is available.<br />

However, c<strong>on</strong>centrators can <strong>on</strong>ly focus direct <str<strong>on</strong>g>solar</str<strong>on</strong>g> radiati<strong>on</strong>, with the result being that their performance is poor <strong>on</strong><br />

hazy or cloudy days.<br />

Fig7. C<strong>on</strong>centrating Collectors<br />

4.2 Storage Tank<br />

Most commercially available <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>heaters</str<strong>on</strong>g> require a well-insulated storage tank. Thermal storage tank is made<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> high pressure resisted stainless steel covered with the insulated fiber and aluminum foil. Some <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>heaters</str<strong>on</strong>g><br />

use pumps to recirculate warm <str<strong>on</strong>g>water</str<strong>on</strong>g> from storage tanks through collectors and exposed piping. This is generally to<br />

protect the pipes from freezing when outside temperatures drop to freezing or below.<br />

4.3 Heat Transfer Fluid<br />

A heat transfer fluid is used to collect the heat from collector and transfer to the storage tank either directly or with<br />

the help <str<strong>on</strong>g>of</str<strong>on</strong>g> heat exchanger. In order to have an efficient SHW c<strong>on</strong>figurati<strong>on</strong>, the fluid should have high specific heat<br />

capacity, high thermal c<strong>on</strong>ductivity, low viscosity, and low thermal expansi<strong>on</strong> coefficient, anti-corrosive property<br />

5


Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong><br />

Trends and Advances in Mechanical Engineering,<br />

<strong>YMCA</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science & Technology, Faridabad, Haryana, Oct 19-20, 2012<br />

and above all low cost. Am<strong>on</strong>g the comm<strong>on</strong> heat transfer fluids such as <str<strong>on</strong>g>water</str<strong>on</strong>g>, glycol, silic<strong>on</strong> oils and hydrocarb<strong>on</strong><br />

oils, the <str<strong>on</strong>g>water</str<strong>on</strong>g> turns out to be the best am<strong>on</strong>g the fluids. Water is the cheapest, most readily available and thermally<br />

efficient fluid but does freeze and can cause corrosi<strong>on</strong>.<br />

5. Exergy Analysis<br />

To provide an efficient and effective use <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels, it is essential to c<strong>on</strong>sider the quality and quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy<br />

used to achieve a given objective. In this regard, the first law <str<strong>on</strong>g>of</str<strong>on</strong>g> thermodynamics deals with the quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> energy<br />

which states that energy cannot be created or destroyed, whereas the sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> thermodynamics deals with the<br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> energy, i.e., it is c<strong>on</strong>cerned with the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> energy to cause change, degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy during a<br />

process. First and sec<strong>on</strong>d law efficiencies are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten called energy and <strong>exergy</strong> efficiencies, respectively. It is expected<br />

that <strong>exergy</strong> efficiencies are usually lower than the energy efficiencies, because the irreversibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> the process<br />

destroy some <str<strong>on</strong>g>of</str<strong>on</strong>g> the input <strong>exergy</strong>.<br />

Exergy <strong>analysis</strong> method is employed to detect and evaluate quantitatively the causes <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermodynamic<br />

imperfecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the process. Exergy is also a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the maximum useful work that can be d<strong>on</strong>e by a system<br />

interacting with an envir<strong>on</strong>ment which is at a c<strong>on</strong>stant pressure and temperature. Exergy is the expressi<strong>on</strong> for loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

available energy due to the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy in irreversible processes. The <strong>exergy</strong> loss in a system or comp<strong>on</strong>ent<br />

is determined by multiplying the absolute temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the surroundings by the entropy increase. The c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>exergy</strong>, available energy, and availability are essentially similar. The c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>exergy</strong> destructi<strong>on</strong>, <strong>exergy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong>, irreversibility, and lost work are also essentially similar.<br />

5.1 Three Procedure Theory<br />

An energy <strong>analysis</strong> entitled ‘Three Procedure Theory’ can be c<strong>on</strong>veniently c<strong>on</strong>ducted as presented by Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Hua<br />

Ben. Compared with other theories <str<strong>on</strong>g>of</str<strong>on</strong>g> energy <strong>analysis</strong>, three procedure theory furnishes us a good platform to<br />

perform energy <strong>analysis</strong>. The three different procedures <str<strong>on</strong>g>of</str<strong>on</strong>g> this theory are: C<strong>on</strong>versi<strong>on</strong> procedure, utilizati<strong>on</strong><br />

procedure, and recycling procedure. A schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> three procedure theory for the <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> heater is<br />

shown in Fig 8. In Three procedure theory energy c<strong>on</strong>versi<strong>on</strong> procedure takes places at the sun. The nuclear reacti<strong>on</strong><br />

in the sun makes it possible for the sun to emit a great quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> power, which is transmitted in the form <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electromagnetic waves. Energy utilizati<strong>on</strong> is carried out in the collector. Solar radiati<strong>on</strong> penetrates the cover and is<br />

incident <strong>on</strong> the black-color plate where it heats <str<strong>on</strong>g>water</str<strong>on</strong>g> flowing through the pipe. Energy recycling procedure takes<br />

places between the collector and the storage tank which corresp<strong>on</strong>ds to the storage tank keep hot <str<strong>on</strong>g>water</str<strong>on</strong>g> is pumped to<br />

users and cold <str<strong>on</strong>g>water</str<strong>on</strong>g> fills the storage tank from the bottom pipe simultaneously.<br />

Fig8. Three procedure theory for the <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> heater<br />

6


Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong><br />

Trends and Advances in Mechanical Engineering,<br />

<strong>YMCA</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science & Technology, Faridabad, Haryana, Oct 19-20, 2012<br />

Energy balance equati<strong>on</strong>s:<br />

At Collector:<br />

(1)<br />

Where,<br />

= Energy from Sun (input Energy) (W)<br />

= Energy from storage tank to collector associated with <str<strong>on</strong>g>water</str<strong>on</strong>g> recycle (W)<br />

= Energy losses due to imperfectly thermal insulati<strong>on</strong> in collector (W)<br />

= Energy from collector to storage tank (W)<br />

At Storage Tank:<br />

(2)<br />

Where,<br />

= Energy losses due to imperfectly thermal insulati<strong>on</strong> in storage tank (W)<br />

= Energy from storage tank to user (output Energy) (W)<br />

Exergy balance equati<strong>on</strong>s:<br />

At Collector:<br />

(3)<br />

Where,<br />

= Exergy from sun (input power) (W)<br />

= Exergy from storage tank to collector associated with <str<strong>on</strong>g>water</str<strong>on</strong>g> recycle (W)<br />

= Exergy losses due to imperfectly thermal insulati<strong>on</strong> in collector (W)<br />

= Exergy from collector to storage tank (W)<br />

At Storage Tank:<br />

(4)<br />

Where,<br />

= Exergy losses due to imperfectly thermal insulati<strong>on</strong> in storage tank (W)<br />

= Exergy from storage tank to user (output <strong>exergy</strong>) (W)<br />

= Exergy losses due to irreversibility in storage tank<br />

In utilizati<strong>on</strong> procedure, we assume the change in kinetic energy are very small since the <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> heater is driven<br />

by the difference <str<strong>on</strong>g>of</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g>, namely no great decrease in pressure is involved, so we can calculate <strong>exergy</strong><br />

from collector to storage tank ( ) by use the following equati<strong>on</strong>. [23]<br />

(5)<br />

Where,<br />

= Mass flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> (kg/s)<br />

= Outlet temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> from collector to storage tank (K)<br />

= Ambient temperature (K)<br />

= Specific heat <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> {J/(kg.K)}<br />

7


Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong><br />

Trends and Advances in Mechanical Engineering,<br />

<strong>YMCA</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science & Technology, Faridabad, Haryana, Oct 19-20, 2012<br />

Assuming the temperature distributi<strong>on</strong> in the storage tank is linear (∆T α ∆L), where L is the height <str<strong>on</strong>g>of</str<strong>on</strong>g> the storage<br />

tank), we get;<br />

Where T x , T L and T 0 are the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> at positi<strong>on</strong> X, L and O from the bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> the storage tank. Then<br />

we obtain the <strong>exergy</strong> from storage tank to users ( ) by use the following equati<strong>on</strong>:<br />

(6)<br />

6. C<strong>on</strong>clusi<strong>on</strong><br />

The <str<strong>on</strong>g>study</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> heater <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>exergy</strong> <strong>analysis</strong> is d<strong>on</strong>e in this paper. the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> radiati<strong>on</strong> in<br />

the evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> direct-<str<strong>on</strong>g>solar</str<strong>on</strong>g> systems leads to extremely high <strong>exergy</strong> losses in the direct <str<strong>on</strong>g>solar</str<strong>on</strong>g> systems.<br />

Subsequently, the optimisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these systems should be oriented so as to reduce the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>exergy</strong> losses in<br />

the c<strong>on</strong>versi<strong>on</strong> device. Exergy efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> systems is highly dependent <strong>on</strong> the daily <str<strong>on</strong>g>solar</str<strong>on</strong>g> radiati<strong>on</strong> and<br />

radiati<strong>on</strong> intensity. To improve the <strong>exergy</strong> efficiency, we must select the material and design the number layer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transparent cover and a judicious choice <str<strong>on</strong>g>of</str<strong>on</strong>g> the length <str<strong>on</strong>g>of</str<strong>on</strong>g> pipe is necessary. It is a good way to find out to design a<br />

new style <str<strong>on</strong>g>of</str<strong>on</strong>g> storage tank, because large <strong>exergy</strong> losses in the storage tank.<br />

7. Suggesti<strong>on</strong>s for Future work<br />

• In this <str<strong>on</strong>g>study</str<strong>on</strong>g>, the flat plate collector is c<strong>on</strong>sidered for <strong>analysis</strong> and it would be a good initiative to explore the<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> other types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> collector such as an evacuated tube or a c<strong>on</strong>centrated collector.<br />

• In this paper, <strong>on</strong>ly two comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> heater are analyzed. Other comp<strong>on</strong>ents such as pump and<br />

piping system could also be c<strong>on</strong>sidered. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> other comp<strong>on</strong>ents would help in calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure<br />

drop across the system in order to select the pump and optimize the piping size.<br />

References<br />

1. Xiaowu, W. and Ben, H., “Exergy <strong>analysis</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> domestic-scale <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>heaters</str<strong>on</strong>g>”, Renewable and Sustainable<br />

Energy Reviews 9(2005), 638 – 645.<br />

2. Kor<strong>on</strong>eos,C., Spachos, T.and Moussiopoulos,N., “Exegy <strong>analysis</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> renewable energy sources”, Renewable<br />

Energy, 2003 ; 28 ; 295 - 310.<br />

3. R. Saidur, G. Boroumand Jazi, S. Mekhlif, M. Jameel, “Exergy <strong>analysis</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> energy applicati<strong>on</strong>s”,<br />

Renewable and Sustainable Energy Reviews 16 (2012) 350– 356<br />

4. Arif Hepbasli, “A key review <strong>on</strong> exergetic <strong>analysis</strong> and assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> renewable energy resources for a<br />

sustainable future”, Renewable and Sustainable Energy Reviews 12 (2008) 593–661<br />

5. Onder Ozgener, Arif Hepbasli, “A review <strong>on</strong> the energy and <strong>exergy</strong> <strong>analysis</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> assisted heat pump<br />

systems”, Renewable and Sustainable Energy Reviews 11 (2007) 482–496<br />

6. Saidur R, Masjuki HH, Jamaluddin MY. “An applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy and <strong>exergy</strong> <strong>analysis</strong> in residential sector <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Malaysia”. Energy Policy 2007; 35(2):1050–63.<br />

7. M. Sheffer, “Solar Water Heating: A Viable Technology Alternative”, Energy User News, (19:9), p. 44,<br />

September 1994.<br />

8. B. Keisling, “The Homeowner’s Handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> Solar Water Heating Systems”, Rodale Press, 1983.<br />

9. Ahmad asyraf bin ramli, “Theoretical <strong>analysis</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> heating system”. A project report, December,<br />

2010<br />

10. Sambo, A.S. and Bello, M.B. “An Experimental Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Collector Units for Thermosyph<strong>on</strong> Solar Water<br />

Heater”. Nig. J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Solar Energy. (1990) 9:223-238.<br />

11. Braun, J.E., Klein, S.A., Pears<strong>on</strong>, K.A., “An improved design method for <str<strong>on</strong>g>solar</str<strong>on</strong>g> <str<strong>on</strong>g>water</str<strong>on</strong>g> heating systems”. Solar<br />

Energy 31 (1983), 597–604.<br />

12. Buckles, W.E., Klein, S.A., “Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solar</str<strong>on</strong>g> domestic hot <str<strong>on</strong>g>water</str<strong>on</strong>g> <str<strong>on</strong>g>heaters</str<strong>on</strong>g>”. Solar Energy 25 (1980), 417–424.<br />

(7)<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!