06.01.2015 Views

TITLE MARCH 2012 - Pakistan Academy of Sciences

TITLE MARCH 2012 - Pakistan Academy of Sciences

TITLE MARCH 2012 - Pakistan Academy of Sciences

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

M.K. Aouf et al 27<br />

∞<br />

∑ k=2(1 − λ)(k − 1) b k |a k |<br />

and convex in U, we have<br />

<<br />

2(β − 1) − ∑<br />

∞<br />

k=2<br />

|k − (2β − 1)[1 + λ(k − 1)]| b k |a k | < 1.<br />

∞<br />

d k a k z k This completes the pro<strong>of</strong> <strong>of</strong> Lemma 2.<br />

≺ f(z) (a 1 = 1; z ∈ U ).<br />

k=2<br />

Corollary 1. Let the function f(z) defined by<br />

(1.1) be in the class T(g; λ, β), then<br />

2. MAIN RESULTS<br />

2(β − 1)<br />

|a k | ≤<br />

.<br />

{(1 − λ)(k − 1) + |k − (2β − 1)[1 + λ(k − 1)]|}b<br />

Unless otherwise mentioned, we assume<br />

k<br />

(2.3)<br />

throughout this paper that 0 ≤ λ < 1, β > 1, z ∈<br />

U and g(z) is given by (1.7) with b k+1 ≥ The result is sharp for the function<br />

b k (k ≥ 2).<br />

2(β − 1)<br />

f(z) = z +<br />

.<br />

{(1 − λ)(k − 1) + |k − (2β − 1)[1 + λ(k − 1)]|}b<br />

To prove our main result we need the following<br />

k<br />

lemmas.<br />

(2.4)<br />

∞<br />

Lemma 1. [15]. The sequence {d k } k=1 is a<br />

Let T ∗ (g; λ, β) denote the subclass <strong>of</strong> functions<br />

subordinating factor sequence if and only if<br />

f(z) ∈ A whose coefficients satisfy the condition<br />

∞<br />

(2.2). We note that T ∗ (g; λ, β) ⊆ T(g, λ, β).<br />

Re 1 + 2 d k z k > 0. (2.1)<br />

Thereom 1. Let f(z) ∈ T ∗ (g; λ, β). Then<br />

k=1<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

Now, we prove the following lemma which gives<br />

(f ∗ h)(z) ≺ h(z),<br />

2{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 }<br />

a sufficient condition for functions belonging to<br />

(2.5)<br />

the class T(g, λ, β):<br />

for every function h ∈ K, and<br />

Lemma 2. A function f(z) <strong>of</strong> the form (1.1) is Re{f(z)} > − {2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 }<br />

.<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b<br />

said to be in the class T(g, λ, β) if<br />

2<br />

(2.6)<br />

(1 − λ)(k − 1)<br />

[1−λ+|3−2β−λ(2β−1)|]b<br />

∞<br />

∑k=2 k − (2β − 1)<br />

+ <br />

[1 + λ(k − 1)] b k |a k | ≤ 2(β − 1). (2.2)<br />

The constant factor<br />

2<br />

2{2(β−1)+[1−λ+|3−2β−λ(2β−1)|]b 2 }<br />

in the subordination result (2.5) is the best<br />

estimate.<br />

Pro<strong>of</strong>. Assume that the inequality (2.2) holds true.<br />

Then it suffices to show that<br />

Pro<strong>of</strong>. Let f(z) ∈ T ∗ (g; λ, β) and suppose that<br />

∞<br />

z(f ∗ g)′(z)<br />

(1 − λ)(f ∗ g)(z) + λz(f ∗ g)′(z) − 1<br />

h(z) = z + ∑k=2 h k z k ∈ K, then<br />

<br />

< 1.<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b<br />

z(f ∗ g)′(z)<br />

(1 − λ)(f ∗ g)(z) + λz(f ∗ g)′(z) − (2β − 1) 2<br />

(f ∗ h)(z)<br />

2{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 }<br />

∞<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

We have<br />

=<br />

2{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 } z + h k a k z k .<br />

k=2<br />

(2.7)<br />

z(f ∗ g)′(z)<br />

(1 − λ)(f ∗ g)(z) + λz(f ∗ g)′(z) − 1 Thus, by using Definition 3, the subordination<br />

<br />

result holds true if<br />

z(f ∗ g)′(z)<br />

(1 − λ)(f ∗ g)(z) + λz(f ∗ g)′(z) − (2β − 1) ∞<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

<br />

2{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b<br />

∞<br />

∑ k=2(1 − λ)(k − 1) b k |a k ||z| k−1<br />

2 } a k <br />

k=1<br />

≤<br />

2(β − 1) − ∑<br />

∞<br />

k=2<br />

|k − (2β − 1)[1 + λ(k − 1)]| b k |a k ||z| k−1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!