06.01.2015 Views

TITLE MARCH 2012 - Pakistan Academy of Sciences

TITLE MARCH 2012 - Pakistan Academy of Sciences

TITLE MARCH 2012 - Pakistan Academy of Sciences

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Inclusion Properties <strong>of</strong> p-Valent Meromorphic Functions 51<br />

f p ; 0;z U .<br />

From (3.1), we observe that<br />

<br />

<br />

<br />

p<br />

f z<br />

<br />

<br />

p, q, s 1 1 1 ,<br />

z( , A , B F ( f )( z))<br />

<br />

p, q, s 1 A1 B1<br />

, , ( ) <br />

<br />

p, q, s 1 1 1 ,<br />

p<br />

( p) , A , B F ( f )( z) 0 .<br />

The pro<strong>of</strong> <strong>of</strong> Theorem 5 below, is much akin<br />

to that <strong>of</strong> Theorem 1, so, we omit it.<br />

Theorem 5. Let S with<br />

p<br />

maxRe{ ( z)}<br />

( 0, 0 <br />

p).<br />

If<br />

zU<br />

p<br />

f ( z) MS ( , A , B ; ; ),<br />

then<br />

<br />

p, q, s 1 1 1<br />

F ( f )( z) MS ( , A , B ; ; ).<br />

<br />

, p<br />

<br />

p, q, s<br />

1 1 1<br />

<br />

Next, we derive an inclusion property<br />

involving F <br />

, which is obtained by applying<br />

, p<br />

(1.11) and Theorem 1.<br />

Theorem 6. Let S with maxRe{ ( z )} <br />

zU<br />

p<br />

p<br />

0, 0 p.<br />

<br />

If f ( z) MK<br />

p, q, s( 1, A1 , B1<br />

; ; ),<br />

<br />

then F<br />

, p<br />

f z MK<br />

p, q, s 1<br />

A1 B1<br />

<br />

( )( ) ( , , ; ; ).<br />

1<br />

Taking ( z) A<br />

1B<br />

( 1 B A 1) and from<br />

Theorems 5 and 6, we have<br />

Corollary 2. Let<br />

1<br />

A<br />

1B<br />

( 0, 0 <br />

p<br />

p<br />

p, 1 B A 1).<br />

Then if f z MS <br />

<br />

, ,<br />

( , A , B ; ; A, B)<br />

(or<br />

then<br />

1 1 1<br />

<br />

p, q, s 1 1 1<br />

<br />

, p<br />

p, q, s<br />

1 1 1<br />

<br />

()<br />

p q s<br />

MK ( , A , B ; ; A, B))<br />

,<br />

F ( f )( z) MS ( , A , B ; ; A, B)<br />

(or<br />

MK ( , A , B ; ; A, B)).<br />

<br />

p, q, s 1 1 1<br />

Finally, we obtain Theorems 7 and 8 below by<br />

using the same techniques as in the pro<strong>of</strong> <strong>of</strong><br />

Theorems 3 and 4.<br />

Theorem 7. Let , S with<br />

p<br />

maxRe{ ( z)}<br />

<br />

zU<br />

p<br />

0, 0 , p. If f z MC <br />

, ,<br />

() p q s<br />

<br />

1 A1 B1<br />

then<br />

, p<br />

p, q,<br />

s<br />

( , , ; , ; , ),<br />

( , A, B; , ; , ).<br />

1 1 1<br />

F ( f )( z)<br />

MC<br />

Theorem 8. Let , S with maxRe{ ( z)}<br />

p<br />

<br />

p<br />

MC<br />

zU<br />

f z <br />

<br />

0, 0 , p. If ()<br />

<br />

p, q, s ( 1 , A1 , B1<br />

; , ; , ),<br />

1 1 1<br />

then F , p ( f )( z)<br />

MC <br />

, ,<br />

( , A, B; , ; , ).<br />

p q s<br />

Remark 1. (i) If we take p 1, A n 1<br />

n 1,...,q and B n 1 n 1,...,s in<br />

the above results <strong>of</strong> this paper, we obtain the<br />

results obtained by Cho and Kim [9];<br />

(ii) If we take p 1 , 1( 1,..., ),<br />

Ai<br />

i q Bi<br />

1( i 1,..., s), q 2, s 1, n 1( n 1) and<br />

2 1 0 in the above results <strong>of</strong><br />

this paper, we obtain the results obtained by Yuan<br />

et al. [28];<br />

(iii) If we take p 1 in the above results <strong>of</strong> this<br />

paper, we obtain the results obtained by Aouf et<br />

al. [4].<br />

Remark 2. Specializing the parameters<br />

p, q, s, Ai<br />

( i 1,..., q), Bi<br />

( i 1,..., s)<br />

and in<br />

the above results <strong>of</strong> this paper, we obtain the<br />

results for the corresponding operators<br />

<br />

n p 1<br />

M ( ), I<br />

<br />

and<br />

which are<br />

p, q, s 1 n p 1, <br />

defined in the introduction.<br />

4. CONCLUSIONS<br />

1<br />

D <br />

In this paper, using the Wright generalized<br />

hypergeometric function we define a new operator<br />

which contains many other operators as special<br />

cases <strong>of</strong> it. Also, we define some classes <strong>of</strong><br />

meromorphic functions associated to this operator<br />

by using the principle <strong>of</strong> subordination and<br />

investigate several inclusion properties <strong>of</strong> these<br />

classes. Some applications involving integral<br />

operator are also considered. Our results<br />

generalize many previous results.<br />

5. ACKNOWLEDGEMENTS<br />

The authors would like to thank the referees <strong>of</strong> the<br />

paper for their helpful suggestions.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!