06.01.2015 Views

TITLE MARCH 2012 - Pakistan Academy of Sciences

TITLE MARCH 2012 - Pakistan Academy of Sciences

TITLE MARCH 2012 - Pakistan Academy of Sciences

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

54 M.K. Aouf et al<br />

function w(z)<br />

in U with w( z)<br />

z for all<br />

z U , such that ( z)<br />

f ( w(<br />

z))<br />

g , denoted<br />

g f <strong>of</strong> g( z)<br />

f ( z)<br />

. In case f (z)<br />

is univalent<br />

in U we have that the subordination g( z)<br />

f ( z)<br />

is equivalent to g( 0) f (0)<br />

and g( U)<br />

f ( U)<br />

(see [4]; see also [5],[6, p. 4]).<br />

For the functions f j<br />

( z)<br />

( j 1,2)<br />

defined by<br />

<br />

p<br />

k<br />

p<br />

f<br />

j<br />

( z)<br />

z ak<br />

p,<br />

jz<br />

( p)<br />

(1.6)<br />

k1<br />

we denote the Hadamard product (or convolution)<br />

<strong>of</strong> f 1(<br />

z ) and f ( z)<br />

by 2<br />

<br />

p<br />

k<br />

p<br />

f f )( z)<br />

z a a z . (1.7)<br />

(<br />

1 2<br />

k<br />

p,1<br />

k<br />

p,<br />

2<br />

k1<br />

Let M be the class <strong>of</strong> analytic functions<br />

(z) in U normalized by ( 0) 1, and let S be<br />

the subclass <strong>of</strong> M consisting <strong>of</strong> those functions<br />

(z) which are univalent in U and for which<br />

(U) is convex and Re ( z)<br />

0 ( zU)<br />

.<br />

Making use <strong>of</strong> the principle <strong>of</strong> subordination<br />

between analytic functions, we introduce the<br />

subclasses S ( ),<br />

K ( )<br />

and C ( ,<br />

) <strong>of</strong> the<br />

p<br />

p<br />

class A ( p)<br />

for , S , which are defined by<br />

<br />

zf (<br />

z)<br />

<br />

S p<br />

( )<br />

f : f A(<br />

p)<br />

and (<br />

z)<br />

in U ,<br />

<br />

pf ( z)<br />

<br />

<br />

1 zf ( z)<br />

<br />

<br />

K p<br />

( )<br />

f : f A(<br />

p)<br />

and 1<br />

(<br />

z)<br />

in U ,<br />

<br />

p f (<br />

z)<br />

<br />

<br />

f : f A( p) and h <br />

<br />

<br />

Cp<br />

( , ) f()<br />

z<br />

.<br />

<br />

K p ( ) s. t. ( z) in U<br />

h()<br />

z<br />

<br />

<br />

<br />

p<br />

1<br />

z <br />

Kp<br />

Kp<br />

,<br />

1<br />

z <br />

p ( p 2 )<br />

z <br />

K p<br />

K p( ) (0 p),<br />

1<br />

z <br />

1z<br />

1z Cp<br />

, Cp<br />

,<br />

1z<br />

1z<br />

p ( p 2 ) z p ( p 2 )<br />

z <br />

Cp<br />

, Cp( , ) (0 , p).<br />

1z<br />

1z<br />

<br />

<br />

Furthermore, for the function classes S p<br />

[ A,<br />

B,<br />

]<br />

and K p<br />

[ A,<br />

B,<br />

]<br />

investigated by Aouf ([9, 10], it is<br />

easily seen that<br />

1[<br />

B(<br />

AB)(1<br />

)]<br />

<br />

p <br />

S<br />

p<br />

1<br />

Bz S<br />

p[<br />

A,<br />

B,<br />

] ( 1<br />

B A 1;0<br />

p)<br />

<br />

(see Aouf [9]),<br />

And<br />

1[<br />

B(<br />

AB)(1<br />

)]<br />

p <br />

K<br />

p<br />

1<br />

Bz K<br />

p[<br />

A,<br />

B,<br />

] ( 1<br />

B A 1;0<br />

p)<br />

<br />

(see Aouf [10]).<br />

For real or complex number a , b,<br />

c other than<br />

0,<br />

1, 2,...<br />

, the hypergeometric series is defined<br />

by<br />

( a)<br />

k<br />

( b)<br />

k k<br />

2<br />

F1<br />

( a,<br />

b;<br />

c;<br />

z)<br />

<br />

z ,<br />

(1.8)<br />

k0<br />

( c)<br />

(1)<br />

k<br />

where ( x)<br />

k<br />

is Pochhammer symbol defined by<br />

k<br />

(<br />

x k)<br />

x(<br />

x 1)...(<br />

x k 1)<br />

( k N;<br />

xC),<br />

( x)<br />

k<br />

<br />

(<br />

x)<br />

1<br />

( k 0; k C<br />

\{0}).<br />

We note that the series (1.8) converges<br />

We note that for p 1, the classes<br />

S<br />

<br />

1<br />

( )<br />

S<br />

<br />

( ),<br />

K1(<br />

)<br />

K(<br />

)<br />

and<br />

C1 ( ,<br />

C(<br />

,<br />

) are investigated by Ma and<br />

Minda [7] and Kim et al [8].<br />

Obviously, for special choices for the<br />

functions and involved in the above<br />

definitions, we have the following relationships:<br />

1<br />

z <br />

Sp<br />

Sp<br />

,<br />

1<br />

z <br />

p ( p 2 )<br />

z <br />

S p<br />

S p( ) (0 p),<br />

1<br />

z <br />

absolutely for all z U so that it represents an<br />

analytic function in U (see, for details, [11,<br />

Chapter 14]).<br />

Now we set<br />

p<br />

z<br />

f , p(<br />

z)<br />

<br />

p<br />

(1 z)<br />

( p)<br />

(1.9)<br />

and define f , p(<br />

z)<br />

by means <strong>of</strong> the Hadamard<br />

product<br />

( 1)<br />

p<br />

f , p( z)<br />

f,<br />

p<br />

( z)<br />

z<br />

2F1<br />

( a,<br />

b;<br />

c;<br />

z)<br />

( zU)<br />

, (1.10)<br />

This leads us to a family <strong>of</strong> linear operators

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!