06.01.2015 Views

TITLE MARCH 2012 - Pakistan Academy of Sciences

TITLE MARCH 2012 - Pakistan Academy of Sciences

TITLE MARCH 2012 - Pakistan Academy of Sciences

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

56 M.K. Aouf et al<br />

and<br />

1<br />

Az <br />

K<br />

pa<br />

b,<br />

c;<br />

K<br />

1<br />

Bz <br />

a,<br />

b,<br />

c;<br />

A,<br />

B ( 1<br />

B A 1).<br />

,<br />

,<br />

,<br />

p<br />

<br />

Inclusion properties was investigated by<br />

several authors (e.g. see [18], [19], [20] and [21]).<br />

In this paper, we investigate several inclusion<br />

<br />

properties <strong>of</strong> the classes ( a,<br />

b,<br />

c;<br />

),<br />

S, p<br />

<br />

K p<br />

( a,<br />

b,<br />

c;<br />

) and C p<br />

( a,<br />

b,<br />

c;<br />

,<br />

) associated<br />

, <br />

, <br />

with the general integral operator ( a,<br />

b,<br />

)<br />

I , p<br />

c .<br />

Some applications involving these and other<br />

families <strong>of</strong> integral operators also considered.<br />

2 . INCLUSION PROPERTIES INVOLVING<br />

I ,<br />

p<br />

To establish our main results, we shall need the<br />

following lemmas.<br />

Lemma 1 [22]. Let h be convex univalent in<br />

U with h ( 0) 1<br />

and<br />

Re<br />

h(<br />

z)<br />

0 ( ,<br />

C)<br />

.<br />

If q (z)<br />

is analytic in U with q ( 0) 1, then<br />

zq(<br />

z)<br />

q( z)<br />

h(<br />

z)<br />

( z U)<br />

q(<br />

z)<br />

<br />

implies that q( z)<br />

h(<br />

z)<br />

( z U)<br />

.<br />

Lemma 2 [23]. Let h be convex in U with<br />

h ( 0) 1. Suppose also that Q (z)<br />

is analytic in U<br />

with ReQ<br />

( z)<br />

0 ( zU)<br />

. If q (z)<br />

is analytic in<br />

U with q ( 0) 1, then<br />

q( z)<br />

Q(<br />

z)<br />

zq(<br />

z)<br />

h(<br />

z)<br />

( zU)<br />

implies that q( z)<br />

h(<br />

z)<br />

( z U)<br />

.<br />

Theorem 1. Let p,<br />

a p and p <br />

. Then<br />

<br />

<br />

, p<br />

,<br />

p<br />

S ( a 1, b, c; ) S ( a, b, c; )<br />

<br />

1,<br />

p<br />

S ( a, b, c; ) ( S).<br />

Pro<strong>of</strong>. First <strong>of</strong> all, we show that<br />

<br />

,<br />

p<br />

S ( a 1, b, c; )<br />

<br />

,<br />

p<br />

S ( a, b, c; ) ( S; p; a p; p N).<br />

Let f ( z)<br />

S<br />

<br />

, p(<br />

a 1,<br />

b,<br />

c;<br />

)<br />

and set<br />

<br />

z I<br />

pI<br />

,<br />

p<br />

,<br />

p<br />

<br />

( a,<br />

b,<br />

c)<br />

f ( z)<br />

<br />

<br />

( a,<br />

b,<br />

c)<br />

f ( z)<br />

q(<br />

z)<br />

,<br />

(2.1)<br />

2<br />

where q ( z)<br />

1<br />

q1z<br />

q2z<br />

...<br />

is analytic in U<br />

and q ( z)<br />

0 for all z U . Using the identity<br />

(1.14) in (2.1), we obtain<br />

I,<br />

p(<br />

a 1,<br />

b,<br />

c)<br />

f ( z)<br />

a<br />

pq(<br />

z)<br />

a p .<br />

I ( a,<br />

b,<br />

c)<br />

f ( z)<br />

,<br />

p<br />

(2.2)<br />

Differentiating (2.2) logarithmically with<br />

respect to z , we have<br />

<br />

<br />

I<br />

( a 1,<br />

b,<br />

c)<br />

f ( z)<br />

zI<br />

( a,<br />

b,<br />

c)<br />

f ( z)<br />

<br />

z<br />

I<br />

,<br />

p<br />

,<br />

p<br />

( a 1,<br />

b,<br />

c)<br />

f ( z)<br />

Since<br />

<br />

I<br />

,<br />

p<br />

,<br />

p<br />

( a,<br />

b,<br />

c)<br />

f ( z)<br />

zq(<br />

z)<br />

q(<br />

z)<br />

<br />

.<br />

pq(<br />

z)<br />

a p<br />

zq(<br />

z)<br />

<br />

pq(<br />

z)<br />

a p<br />

(2.3)<br />

a p, ( z)<br />

S<br />

, and f ( z)<br />

S<br />

, p(<br />

a 1,<br />

b,<br />

c;<br />

)<br />

,<br />

from (2.3) we see that<br />

Re<br />

p<br />

( z)<br />

a p 0 ( zU)<br />

and<br />

zq(<br />

z)<br />

q( z)<br />

<br />

(<br />

z)<br />

( z U)<br />

pq(<br />

z)<br />

a p<br />

Thus, by using Lemma 1 and (2.1), we<br />

observe that<br />

q( z)<br />

(<br />

z)<br />

( zU) ,<br />

so that<br />

<br />

f ( z)<br />

S<br />

,<br />

( a,<br />

b,<br />

c;<br />

) .<br />

p<br />

This implies that<br />

<br />

<br />

S, p( a 1, b,<br />

c;<br />

)<br />

S,<br />

p(<br />

a,<br />

b,<br />

c;<br />

) .<br />

To prove the second part, let<br />

<br />

f ( z) S ( a, b, c; ) ( p; a p; p ) and<br />

put<br />

<br />

z I<br />

pI<br />

1,<br />

p<br />

1,<br />

p<br />

,<br />

p<br />

( a,<br />

b,<br />

c)<br />

f ( z)<br />

<br />

<br />

( a,<br />

b,<br />

c)<br />

f ( z)<br />

g(<br />

z)<br />

,<br />

2<br />

where g ( z)<br />

1<br />

d z d z ... is analytic in U<br />

1 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!