19.01.2015 Views

New π-Extended Watersoluble Squaraines as Singlet Oxygen ...

New π-Extended Watersoluble Squaraines as Singlet Oxygen ...

New π-Extended Watersoluble Squaraines as Singlet Oxygen ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>New</strong> π-<strong>Extended</strong> <strong>Watersoluble</strong> <strong>Squaraines</strong> <strong>as</strong><br />

<strong>Singlet</strong> <strong>Oxygen</strong> Generators<br />

Luca Beverina, Alessandro Abbotto, Mirko Landenna, Michele Cerminara, Riccardo Tubino,<br />

Francesco Meinardi and Giorgio A. Pagani*<br />

Experimental<br />

Supporting Information<br />

1 H and 13 C NMR spectra were recorded using a Bruker AMX-500 spectrometer operating at<br />

500 and 125.70 MHz, respectively. The spectral parameters and calibrations have been previously<br />

reported. 1 Coupling constants are presented in Hz. Absorption spectrometry w<strong>as</strong> performed using a<br />

j<strong>as</strong>co V570 spectrophotometer. Anhydrous N,N-dimethylformamide (DMF) w<strong>as</strong> supplied by<br />

FLUKA and stored over molecular sieves. Anhydrous acetonitrile w<strong>as</strong> supplied by Aldrich and<br />

stored under nitrogen. Dry solvents were dried overnight on Na 2 SO 4 and filtered immediately<br />

before use. All other commercial chemicals were supplied by Aldrich and used without purification.<br />

Melting points are uncorrected.<br />

1-(3,6,9-trioxadecyl)-pyrrole-2-carbaldehyde (5b). A solution of pyrrole-2-carbaldehyde (10.00<br />

g, 105.15 mmol) in anhydrous DMF (100 ml) w<strong>as</strong> added dropwise under nitrogen atmosphere and<br />

at 0°C to a suspension of NaH (4.40 g of a 60 % mineral oil suspension, 110.00 mmol). The<br />

resulting white suspension w<strong>as</strong> stirred for 30 min. A solution of 3,6,9-trioxadecyl-4-<br />

toluenesulfonate 2 (44.75 g, 106.00 mmol) in anhydrous DMF (50 ml) w<strong>as</strong> added dropwise and the<br />

reaction mixture w<strong>as</strong> stirred at ambient temperature over a week end. The mixture w<strong>as</strong> poured into<br />

500 ml of icy brine to give a brown suspension that w<strong>as</strong> w<strong>as</strong>hed with hexane (100 ml) and<br />

extracted with AcOEt (4 x 200 ml). The combined organic ph<strong>as</strong>e w<strong>as</strong> w<strong>as</strong>hed with brine (4 x 200<br />

ml), dried over Na 2 SO 4 and evaporated to give a yellow, viscous oil that w<strong>as</strong> further purified by<br />

chromatography (SiO 2 , AcOEt) yielding the pure product <strong>as</strong> a light yellow oil (21.00 g, 66.0 mmol,<br />

83.0 %). 1 H NMR (CDCl 3 ) δ 9.51 (1H, s), 7.07 (1H, m, broad), 6.94 (1H, m, broad), 6.21 (1H, m,<br />

broad), 4.50 (2H, t, J = 6.1 Hz), 3.75 (2H, t, J = 6.1 Hz), 3.52-3.55 (8H, m), 3.37 (3H, s). Anal.<br />

Calcd for C 12 H 19 NO 4 : C, 59.73; H, 7.94; N, 5.81; Found: C, 59.38; H, 7.91; N, 6.23.<br />

1


2-(N,N-diphenylhydrazonomethyl)-1-methyl-pyrrole (6a). A mixture of N,N-diphenylhydrazine<br />

hydrochloride (4.19 g, 19.00 mmol) and N-methylpyrrole-2-carboxaldehyde 5a (2.03 g, 18.62<br />

mmol) w<strong>as</strong> suspended in deg<strong>as</strong>sed THF (80 ml) and refluxed under nitrogen atmosphere for 1h. The<br />

Color turned gradually from yellow to deep green and a dark precipitate w<strong>as</strong> formed. The<br />

suspension w<strong>as</strong> cooled and filtered, the solution w<strong>as</strong> evaporated to give a blue sticky solid that w<strong>as</strong><br />

taken up with a CH 2 Cl 2 and filtered through a pad of florisil. Evaporation of the solvent gave a<br />

waxy off-white solid that w<strong>as</strong> readily air oxidized turning dark and that w<strong>as</strong> used directly without<br />

further purification (3.35 g, 12.17 mmol, 65.3 %). 1 H NMR (DMSO-d 6 ) δ 7.45 (4H, t, J = 7.9 Hz),<br />

7.18 (2H, t, J = 7.3 Hz), 7.14 (1H, s), 7.09 (4H, d, J = 7.2 Hz), 6.87 (1H, t, J = 2.1 Hz), 6.18 (1H,<br />

dd, J = 3.6, 1.52 Hz), 6.00 (2H, t, J = 3.5 Hz), 3.92 (3H, s).<br />

2-(N,N-diphenylhydrazonomethyl)-1-(3,6,9-trioxadecyl)-pyrrole (6b). A mixture of N,Ndiphenylhydrazine<br />

hydrochloride (1.24 g, 5.60 mmol) and aldehyde 5b (1.35 g, 5.60 mmol) w<strong>as</strong><br />

suspended in deg<strong>as</strong>sed THF (50 ml) and refluxed under nitrogen atmosphere for 1h. The color<br />

turned gradually from yellow to black. The suspension w<strong>as</strong> cooled and the solvent evaporated to<br />

give a dark oil that w<strong>as</strong> taken up with a AcOEt and filtered through a pad of Florisil. Evaporation of<br />

the solvent gave the product <strong>as</strong> a brown oil that w<strong>as</strong> used directly without further purification (1.56<br />

g, 3.80 mmol, 68.0 %). 1 H NMR (DMSO-d 6 ) δ 7.44 (4H, t, J = 7.9 Hz), 7.18 (2H, t, J = 7.3 Hz),<br />

7.14 (1H, s), 7.09 (4H, d, J = 7.7 Hz), 6.92 (1H, m, broad), 6.19 (1H, m, broad), 6.02 (2H, t, J = 3.3<br />

Hz), 4.49 (2H, t, J = 6.1 Hz), 3.77 (2H, t, J = 6.1 Hz), 3.52-3.55 (8H, m), 3.23 (3H, s). 13 C (acetoned<br />

6 ) δ 145.9, 132.7, 131.7, 129.9, 128.4, 126.0, 124.2, 115.7, 109.7, 73.7, 72.5, 72.3 (2C), 72.1, 59.8,<br />

50.2.<br />

2-(N,N-dimethylhydrazonomethyl)-1-(3,6,9-trioxadecyl)-1H-pyrrole (6c). A mixture of N,Ndimethylhydrazine<br />

(1.27 g, 21.13 mmol) p-toluenesulphonic acid (3.29 g, 21.13 mmol) and<br />

aldehyde 5b (5.13 g, 21.13 mmol) w<strong>as</strong> suspended in deg<strong>as</strong>sed THF (100 ml) and refluxed under<br />

nitrogen atmosphere for 30 min. A second aliquot of N,N-dimethylhydrazine (1.27 g, 21.13 mmol)<br />

w<strong>as</strong> added and the reflux maintained for an additional 30 min. The solvent w<strong>as</strong> removed and the<br />

residue taken up with AcOEt and purified by filtration through a short silica gel column.<br />

Evaporation of the solvent afforded a yellow-brown viscous oil that w<strong>as</strong> used directly without<br />

further purification (3.90 g, 13.8 mmol, 65.3 %).<br />

2


2-(N-(4-bromophenylhydrazonomethyl)-1-methylpyrrole (6d). A mixture of 4-<br />

bromophenylhydrazine hydrochloride (3.00 g, 13.42 mmol) and 5a (1.47 g, 13.42 mmol) w<strong>as</strong><br />

suspended in deg<strong>as</strong>sed THF (50 ml) and stirred at room temperature for 6 h under nitrogen<br />

atmosphere. The color turns from light yellow to dark blue. The solvent w<strong>as</strong> removed and the black<br />

sticky residue purified by chromatography (SiO 2, CH 2 Cl 2 ) to give the pure compound <strong>as</strong> a yellow<br />

powder (1.02 g, 3.67 mmol, 33 %). 1 H NMR (CDCl 3 ) δ 7.68 (1H, s), 7.34 (2H, d, J = 8.8 Hz), 6.88<br />

(2H, d, J = 8.8 Hz), 6.71 (1H, t, J = 2.2 Hz), 6.34 (1H, dd, J = 3.7, 1.8 Hz), 6.14 (1H, dd, J = 3.6,<br />

2.6), 3.96 (3 H, s).<br />

1-[4-pyridyl]-2-(N-(3,6,9-trioxadecyl)-2-pyrrolyl)ethylene (7a). tBuOK (2.56 g, 22.80 mmol)<br />

w<strong>as</strong> added portionwise under nitrogen atmosphere to a solution of 4-picoline (1.93 g, 20.70 mmol)<br />

and 5b (5.00 g, 20.74 mmol) in anhydrous DMF (20 ml). The resulting red solution w<strong>as</strong> stirred at<br />

80 °C for 1 h and at room temperature overnight. The reaction mixture w<strong>as</strong> poured into 200 ml of<br />

crushed ice to give a yellow suspension that w<strong>as</strong> extracted with AcOEt (3 x 200 ml). The combined<br />

organic ph<strong>as</strong>e w<strong>as</strong> w<strong>as</strong>hed with brine (4 x 200 ml), dried over Na 2 SO 4 and evaporated affording the<br />

product <strong>as</strong> a dark yellow oil that w<strong>as</strong> used directly without further purification in the subsequent<br />

step (5.00 g, 15.80 mmol, 76.3 %). 1 H NMR (DMSO-d 6 ) δ 8.49 (2H, d, J = 5.5 Hz), 7.27 (2H, d, J =<br />

5.5 Hz), 7.24 (1H, d, J = 16.1 Hz), 6.77 (1H, s, broad), 6.73 (1H, d, J = 16.1 Hz), 6.58 (1H, d, J =<br />

3.5 Hz), 6.17 (1H, t, J = 3.2 Hz), 4.16 (2H, t, J = 5.6 Hz), 3.72 (2H, t, J = 5.6 Hz), 3.59-3.53 (6H,<br />

m), 3.47 (2H, m), 3.23 (3H, s).<br />

1-[4-quinolyl]-2-(N-(3,6,9-trioxadecyl)-2-pyrrolyl)ethylene (7b). tBuOK (1.12 g, 10.01 mmol)<br />

w<strong>as</strong> added portionwise under nitrogen atmosphere to a solution of 4-methylquinoline (1.30 g, 9.10<br />

mmol) and 5b ( 2.20 g, 9.12 mmol) in anhydrous DMF (15 ml). The resulting red fluorescent<br />

solution w<strong>as</strong> stirred at 80 °C for 1 h and at room temperature overnight. The reaction mixture w<strong>as</strong><br />

poured into 200 ml of crushed ice to give a red-orange suspension that w<strong>as</strong> extracted with AcOEt (3<br />

x 200 ml). The combined organic ph<strong>as</strong>e w<strong>as</strong> w<strong>as</strong>hed with brine (4 x 200 ml), dried over Na 2 SO 4 and<br />

evaporated affording a red oil that w<strong>as</strong> purified by chromatography (SiO 2 AcOEt) to give the<br />

product <strong>as</strong> an orange oil (1.92 g, 5.50 mmol, 60.0 %). 1 H NMR (CDCl 3 ) δ 8.85 (1H, d, J = 4.7 Hz),<br />

8.21 (1H, d, J = 8.3 Hz), 7.72 (1H, t, J = 8.5 Hz), 7.55 (1H, d, J = 5.1 Hz), 7.57 (1H, d, J = 8.5 Hz),<br />

7.58 (1H, d, J = 15.8 Hz), 7.31 (1H, d, J = 15.8 Hz), 6.83 (1H, dd, J = 2.5, 1.7 Hz), 6.72 (1H, dd,<br />

3


3.8, 1.5 Hz), 6.24 (1H, t, J = 3.5 Hz), 4.22 (2H, t, J = 5.7 Hz), 3.77 (2H, t, J = 5.7 Hz), 3.75-3.35<br />

(8H, m), 3.23 (3H, s).<br />

Preparation of squaraine 1a. Squaric acid (0,510 g, 4.50 mmol) w<strong>as</strong> added <strong>as</strong> a solid to a<br />

refluxing solution of compound 6a (2,600 g, 9.44 mmol) in absolute ethanol (150 ml). The colour<br />

immediately turned deep green. After 1 h at the reflux temperature, the green suspension w<strong>as</strong><br />

cooled at 0°C and the precipitate filtered at reduced pressure. The crude product w<strong>as</strong> w<strong>as</strong>hed with<br />

hot EtOH (80 ml) and crystallized from AcOH to give the pure compound <strong>as</strong> a powder with golden<br />

luster (0,800 g, 1.27 mmol, 28.3 %). M.p. > 300 °C (dec.) 1 H NMR (CD 2 Cl 2 ) δ 7.66 (2H, d, J = 4.4<br />

Hz), 7.41 (8H, t, J = 7.7 Hz), 7.22 (4H, t, J = 7.3 Hz), 7.15 (8H, d, J = 7.9 Hz), 7.07 (2H, s), 6.69<br />

(2H, dd, J = 4.5 Hz), 4.26 (6H, s); 13 C (CDCl 3 ) 168.3, 168.2, 143.8, 142.4, 131.9, 130.1, 125.8,<br />

125.0, 123.8, 122.4, 117.1, 36.0. Anal. Calcd for C 40 H 32 N 6 O 2 : C, 76.41; H, 5.13; N, 13.37; Calcd<br />

for C 40 H 32 N 6 O 2 x ½ H 2 O: C, 75.33; H, 5.22; N, 13.18; Found: C, 75.33; H, 5.19; N, 12.88.<br />

Preparation of squaraine 1b. A suspension of squaric acid (0.140 g, 1.22 mmol) and hydrazone<br />

6b (1.000 g, 2.45 mmol) in a 1:1 BuOH/toluene mixture (120 ml) w<strong>as</strong> refluxed in a Dean-Stark<br />

apparatus for 3 h. The solvent w<strong>as</strong> removed and the deep green oily residue w<strong>as</strong> w<strong>as</strong>hed with water<br />

(50 ml) and dissolved in boiling isopropanol (60 ml). The solvent evaporation afforded a golden,<br />

shiny solid that w<strong>as</strong> taken up with Et 2 O and filtered at reduced pressure. (0.530 g, 0.59 mmol, 48.6<br />

%). M.p. [EtOH] 127-130 °C. 1 H NMR (DMSO-d 6 ) δ 7.62 (2H, d, J = 4.6 Hz), 7.52 (8H, t, J = 7.8<br />

Hz), 7.31 (4H, t, J = 7.4 Hz), 7.26 (2H, s), 7.23 (8H, d, J = 7.8 Hz), 7.06 (2H, d, J = 4.6 Hz), 4.79<br />

(4H, t, J = 4.8 Hz), 3.61 (4H, t, J = 5.2 Hz), 3.43-3.31 (16H, m), 3.15 (6H, s). 13 C (DMSO-d 6 ) 166.8,<br />

166.7, 144.5, 141.9, 130.1, 130.0, 125.6, 125.0, 122.6, 122.1, 116.0, 71.1, 70.5, 69.8, 69.7, 69.5,<br />

57.9, 46.7. Anal. Calcd for C 52 H 56 N 6 O 8 : C, 69.94; H, 6.32; N, 9.41; Found: C, 70.18; H, 6.45; N,<br />

9.32.<br />

Preparation of squaraine 1c. A suspension of squaric acid (0.370 g, 3.25 mmol) and hydrazone 6c<br />

(1.850 g, 6.54 mmol) in a 1:1 BuOH/toluene mixture (120 ml) w<strong>as</strong> refluxed in a Dean-Stark<br />

apparatus for 3 h. The solvent w<strong>as</strong> removed and the deep green oily residue w<strong>as</strong> taken up with<br />

deionised water (100 ml) and extracted with AcOEt (3 x 150 ml). The combined organic ph<strong>as</strong>e w<strong>as</strong><br />

dried over Na 2 SO 4 and evaporated to give a dark oil. Addition of 10 ml of toluene started the<br />

4


crystallization of a golden solid that w<strong>as</strong> filtered and further crystallized from EtOH (0.420 g, 0.65<br />

mmol, 20.0 %). M.p. [EtOH] 121-122 °C. 1 H NMR (DMSO-d 6 ) δ 7.52 (2H, d, J = 4.5 Hz), 7.26<br />

(2H, s), 6.75 (2H, d, J = 4.5 Hz), 4.94 (4H, t, J = 5.0 Hz), 3.67 (4H, t, J = 5.2 Hz), 3.47-3.32 (16H,<br />

m), 3.19 (6H, s), 3.11 (12H, s). 13 C (DMSO-d 6 ) 163.4, 157.9, 146.0, 128.9, 122.2, 120.1, 113.5,<br />

71.1, 70.7, 70.0, 69.7, 69.5, 57.9, 46.1, 42.4. Anal. Calcd for C 32 H 48 N 6 O 8 : C, 59.61; H, 7.50; N,<br />

13.03; Found: C, 59.76; H, 7.59; N, 12.99.<br />

Preparation of squaraine 1d. A suspension of hydrazone 6d (0.500 g, 1.80 mmol) and squaric<br />

acid (0.103 g, 0.90 mmol) in absolute ethanol (80 ml) w<strong>as</strong> refluxed for 3 h. Upon cooling a dark<br />

green precipitate w<strong>as</strong> formed and filtered at reduced pressure. Crystallization form AcOH gave the<br />

pure compound <strong>as</strong> a green powder (0.306 g, 0.48 mmol, 53.6 %). M.p. > 300 °C (dec.). 1 H NMR<br />

(DMSO-d 6 ) δ 7.93 (2H, s), 7.61 (2H, d, J = 4.6 Hz), 7.44 (4H, d, J = 8.8 Hz), 7.09 (4H, d, J = 8.8<br />

Hz), 7.0 (2H, d, J = 4.6 Hz), 4.30 (6H, s). The 13 C NMR could not be recorded because of<br />

insufficient solubility. Anal. Calcd for C 28 H 22 Br 2 N 6 O 2 : C, 53.02; H, 3.50; N, 13.25; Found: C,<br />

53.54; H, 3.79; N, 13.23.<br />

Preparation of squaraine 2a. A suspension of squaric acid (0.230 g, 2.01 mmol), pyridine (0.320<br />

g, 4.03 mmol) and chromophore 7a (1.400 g, 4.42 mmol) in a 1:1 toluene/BuOH mixture (40 ml)<br />

w<strong>as</strong> refluxed in a Dean-Stark apparatus for 1.5 h. The resulting deep green solution w<strong>as</strong> chilled at<br />

0°C overnight. A golden precipitate w<strong>as</strong> formed and filtered at reduced pressure. Crystallization<br />

from EtOH/H 2 O gave the pure compound <strong>as</strong> a golden green powder (0.600 mg, 0.84 mmol, 20 %).<br />

M.p. 172-173 °C. 1 H NMR (DMSO-d 6 ) δ 8.72 (4H, d, J = 6.4 Hz), 7.90 (4H, d, J = 6.4 Hz), 7.87<br />

(2H, d, J = 16.1 Hz), 7.74 (2H, d, J = 4.6 Hz), 7.60 (2H, d, J = 16.1 Hz), 7.33 (2H, d, J = 4.7 Hz),<br />

4.60 (4H, t, J = 4.4 Hz), 3.70 (4H, t, J = 4.7 Hz), 3.44 (4H, m), 3.34 (4 H, m), 3.29 (4H, m), 3.23<br />

(4H, m), 3.12 (6 H, s); 13 C (DMSO-d 6 ) 193.2, 170.4, 147.5, 146.7, 146.4, 130.7, 130.6, 123.5,123.4,<br />

122.1, 116.0, 71.0, 70.9, 70.1, 70.0, 69.5, 57.8, 46.3. Anal. Calcd for C 40 H 46 N 4 O 8 : C, 67.59; H,<br />

6.52; N, 7.88; Calcd for C 40 H 46 N 4 O 8 x 2/3 H 2 O: C, 65.11; H, 6.69; N, 7.59; Found: C, 65.26; H,<br />

6.80; N, 8.13.<br />

Preparation of squaraine 2b. A suspension of squaric acid (0.078 g, 0.68 mmol), pyridine (0.108<br />

g, 1.36 mmol) and chromophore 7b (0.500 g, 1.36 mmol) in a 1:1 toluene/BuOH mixture (40 ml)<br />

5


w<strong>as</strong> refluxed in a Dean-Stark apparatus for 4 h. The resulting deep green solution w<strong>as</strong> chilled at 0°C<br />

overnight and the formed golden precipitate collected by suction filtration. Crystallization from<br />

EtOH gave the pure compound <strong>as</strong> a golden green powder (0.100 mg, 0.12 mmol, 18.1 %). M.p.<br />

169-170 °C. 1 H NMR (DMSO-d 6 ) δ 8.94 (2H, J = 4.7 Hz), 8.57 (2H, d, J = 8.4 Hz), 8.34 (2H, d, J =<br />

15.8 Hz), 8.06 (2H, d, J = 8.3 Hz), 7.98 (2H, d, J = 4.7 Hz), 7.81 (2H, d, J = 15.8 Hz), 7.79 (2H, t, J<br />

= 8.3 Hz), 7.77 (2H, d, J = 4.7 Hz), 7.69 (2H, t, J = 7.9 Hz), 7.62 (2H, d, J = 4.6 Hz), 5.12 (4H, t, J =<br />

4.8 Hz), 3.74 (4H, t, J = 4.8 Hz), 3.47 (4H, m), 3.35 (4H, m), 3.27 (4H, m), 3.16 (4H, m), 3.05 (6H,<br />

s). Anal. Calcd for C 48 H 50 N 4 O 8 : C, 71.09; H, 6.21; N, 6.91; Found: C, 70.64; H, 6.19; N, 6.83.<br />

Preparation of squaraine 3. A suspension of 2-methylindolizine 3 (1.680 g, 12.81 mmol) and<br />

squaric acid (0.730 g, 6.40 mmol) in a 1:1 mixture of BuOH/toluene (75 ml) w<strong>as</strong> refluxed for 2h in<br />

a Dean-Stark apparatus. Upon cooling a dark green precipitate w<strong>as</strong> formed and collected by suction<br />

filtration. Crystallization from CH 3 CN afforded the pure compound <strong>as</strong> a green powder (0.101 g,<br />

0.25 mmol, 26 %). M.p. > 300 °C (dec). 1 H NMR (CD 2 Cl 2 ) δ 10.27 (2H, d, J = 6.9 Hz), 7.26 (2H,<br />

d, J = 8.5 Hz), 7.11 (2H, t, J = 8.0 Hz), 6.81 (2H, t, J = 6.6 Hz), 6.46 (2H, s), 2.76 (6H, s); 13 C<br />

(CDCl 3 ) 176.3, 166.5,143.0, 139.2, 135.0, 127.5, 122.5, 117.7, 113.8, 111.9, 15.4. Anal. Calcd for<br />

C 22 H 16 N 2 O 2 : C, 77.63; H, 4.74; N, 8.23; Anal. Calcd for C 22 H 16 N 2 O 2 x ¼ H 2 O: C, 76.62; H, 4.82;<br />

N, 8.12; Found: C, 76.90; H, 4.72; N, 7.63.<br />

N<br />

O<br />

O<br />

H 3 C<br />

N<br />

CH 3<br />

3<br />

Squaraine 3 structure w<strong>as</strong> <strong>as</strong>signed on the b<strong>as</strong>is of its 1 H NMR spectrum. 2-methylindolizine 1 H<br />

NMR spectrum (DMSO-d 6 ) in fact shows two singlets in the high field aromatic region at 7.31 ppm<br />

and 6.18 ppm corresponding respectively to the H 3 and H 1 protons. Squaraine 3 1 H NMR spectrum<br />

(CD 2 Cl 2 ) only displays one singlet at 6.46 ppm. According to the electron withdrawing nature of the<br />

squaraine core, and so with the expected low field shift of the indolizine signals in the squaraine,<br />

the 6.46 ppm singlet can be unambiguously <strong>as</strong>signed to the position 1 of a 3 substituted 2-<br />

methylindolizine, hence the <strong>as</strong>signed condensation regiochemistry.<br />

Indolizine numbering:<br />

6


7<br />

6<br />

8<br />

N<br />

4<br />

5<br />

1<br />

3<br />

2<br />

DPBF degradations.<br />

ABS<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0 min<br />

3 min<br />

6 min<br />

9 min<br />

12 min<br />

15 min<br />

20 min<br />

25 min<br />

30 min<br />

35 min<br />

40 min<br />

46 min<br />

50 min<br />

55 min<br />

60 min<br />

0,0<br />

300 400 500 600 700 800 900<br />

Wavelength (nm)<br />

Figure S1. Time evolution of the UV-Vis spectrum of a DPBF (50 µM) and 2b (5 µM) CH 2 Cl 2<br />

solution.<br />

7


1,2<br />

1,0<br />

0,8<br />

415<br />

727,5<br />

0 min<br />

15 min<br />

25 min<br />

40 min<br />

55 min<br />

70 min<br />

85 min<br />

100 min<br />

ABS<br />

0,6<br />

0,4<br />

0,2<br />

400 500 600 700 800<br />

Wavelength [nm]<br />

Figure S2. Time evolution of the UV-Vis spectrum of a DPBF (50 µM) and 1b (5 µM) CH 2 Cl 2<br />

solution.<br />

ABS<br />

1,0<br />

0,8<br />

0,6<br />

0 min<br />

15 min<br />

30 min<br />

45 min<br />

60 min<br />

75 min<br />

90 min<br />

120 min<br />

150 min<br />

180 min<br />

210 min<br />

0,4<br />

0,2<br />

0,0<br />

400 500 600 700 800<br />

Wavelength [nm]<br />

Figure S3. Time evolution of the UV-Vis spectrum of a DPBF (50 µM) and 1c (5 µM) CH 2 Cl 2<br />

solution.<br />

8


ABS<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

DPBF<br />

1d<br />

0 min<br />

3 min<br />

6 min<br />

9 min<br />

12 min<br />

15 min<br />

20 min<br />

25 min<br />

30 min<br />

35 min<br />

40 min<br />

45 min<br />

50 min<br />

55 min<br />

60 min<br />

0,4<br />

0,2<br />

0,0<br />

300 400 500 600 700 800 900<br />

Wavelength (nm)<br />

Figure S4. Time evolution of the UV-Vis spectrum of a DPBF (50 µM) and 1d (5 µM) CH 2 Cl 2<br />

solution.<br />

ABS<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

00 min<br />

03 min<br />

06 min<br />

09 min<br />

12 min<br />

15 min<br />

20 min<br />

25 min<br />

30 min<br />

35 min<br />

40 min<br />

45 min<br />

50 min<br />

55 min<br />

60 min<br />

0,0<br />

300 400 500 600 700 800 900<br />

Wavelength (nm)<br />

9


Figure S5. Time evolution of the UV-Vis spectrum of a DPBF (50 µM) and 2a (5 µM) CH 2 Cl 2<br />

solution.<br />

ABS<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

00 min<br />

03 min<br />

06 min<br />

09 min<br />

12 min<br />

15 min<br />

20 min<br />

25 min<br />

30 min<br />

35 min<br />

40 min<br />

45 min<br />

50 min<br />

55 min<br />

0,0<br />

300 400 500 600 700 800<br />

Wavelength (nm)<br />

Figure S6. Time evolution of the UV-Vis spectrum of a DPBF (50 µM) and 3 (5 µM) CH 2 Cl 2<br />

solution.<br />

10


ABS<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0 min 14 min<br />

1 min 16 min<br />

2 min 18 min<br />

3 min 20 min<br />

4 min 26 min<br />

5 min 30 min<br />

6 min 34 min<br />

8 min 38 min<br />

10 min 42 min<br />

12 min<br />

0,4<br />

0,2<br />

0,0<br />

350 400 450 500<br />

Wavelenght [nm]<br />

Figure S7. Time evolution of the UV-Vis spectrum of a DPBF (50 µM) and TPP (5 µM) CH 2 Cl 2<br />

solution. The TPP spectrum h<strong>as</strong> been subtracted from all the spectra.<br />

References<br />

1 Abbotto, A.; Alanzo, V.; Bradamante, S.; Pagani, G. A. J. Chem. Soc., Perkin Trans. 2 1991, 481.<br />

2 Lottner, C.; Bart, K.; Bernhardt, G.; Brunner, H. J. Med. Chem. 2002, 45, 2079<br />

3 Chichibabin, A. E. Chem. Ber. 1927, 60, 1607.<br />

11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!