25.01.2015 Views

Evolution of Sesquiterpene Lactones in Angiosperms*

Evolution of Sesquiterpene Lactones in Angiosperms*

Evolution of Sesquiterpene Lactones in Angiosperms*

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Bkx~w-tdca/b'fs/ernat/cs and E~, Vol. 13, No. 2, pp. 145-166, 1985. 0305-1978/85 $3.00+0.00<br />

Pr<strong>in</strong>ted <strong>in</strong> Great Brita<strong>in</strong>.<br />

Pergamon Press Ltd.<br />

<strong>Evolution</strong> <strong>of</strong> <strong>Sesquiterpene</strong> <strong>Lactones</strong> <strong>in</strong> <strong>Angiosperms*</strong><br />

VICENTE DE P. EMERENCIANO'r, MARIA AUXILIADORA C. KAPLAN¢ and OTTO R. GOTTLIEBI"<br />

Tlnstituto de Quimica, Univeraidade de S~o Paulo, 05508 S&o Psulo, SP, Brazil;<br />

tlnstituto de Quimica, Univemidede Federal Flum<strong>in</strong>anse, 24000 Niterbi, R J, Brazil<br />

Key Word Index--Magnollaceae; Lauraceae; Apiaceae; Asteraceae; germacranes; seKluiterpena lectonas; skeletal specialization,<br />

oxidation state; biochemical evolution.<br />

AJ~t~act--The paper attempts to discover an outl<strong>in</strong>e Of the evolutionary tmnde <strong>of</strong> seScluiterpene lactones <strong>in</strong> angiosperms. The<br />

work<strong>in</strong>g method <strong>in</strong>volves the quantification Of skeletal specialization and oxidelJon state <strong>of</strong> the compounds and the assignment <strong>of</strong><br />

evolutionary advancement <strong>in</strong>dices, based on such date, to texa. In the angiosperms as a whole, sesquitarpene lactone evolution<br />

proceeds by divemification <strong>of</strong> structural types and by amplification <strong>of</strong> the oxidation state <strong>of</strong> the molecules. The opposite trend<br />

appears to operate at lower hierarchical level, <strong>in</strong> the Asteracese. In this family, which conta<strong>in</strong>s most <strong>of</strong> the known compounds <strong>of</strong> the<br />

class, sescluiterpene lactone evolution follows two parallel pathways <strong>in</strong> the tribes belong<strong>in</strong>g to two groups <strong>of</strong> the subfamily Asteroideae.<br />

Introduction<br />

Two comprehensive collections <strong>of</strong> distributional<br />

data and plausible biogenetic schemes for<br />

germacrane acid (P) derived sesquiterpene<br />

lactones have been published <strong>in</strong> recent years [2,<br />

3]. An exhaustive discussion <strong>of</strong> the value <strong>of</strong><br />

sesquiterpene lactones as taxonomic characters<br />

<strong>in</strong> the Asteraceae thus became possible [3]. The<br />

present paper attempts to achieve, through<br />

quantification <strong>of</strong> the published data and consideration<br />

<strong>of</strong> the pr<strong>in</strong>ciples <strong>of</strong> micromolecular<br />

systematics [4], a clear outl<strong>in</strong>e <strong>of</strong> the trends<br />

accompany<strong>in</strong>g the evolution <strong>of</strong> sesquiterpene<br />

lactones <strong>in</strong> the angiosperms.<br />

Experimental<br />

Although seSClUiterpene lactona r<strong>in</strong>g closure <strong>in</strong>volves alternatively<br />

carbons 6 and 8, for simplicity only the former cyclization<br />

mode is featured <strong>in</strong> the representation <strong>of</strong> germacranolide (Fig.<br />

1), guelanolide (Fig. 2), eudesmanolide (Fig. 3), eremophilanolide<br />

(Fig. 4) and some rarer (Fig. 5) skeletal types. These types<br />

are codified accord<strong>in</strong>g to their position <strong>in</strong> a biogenetic scheme<br />

(Fig. 6).<br />

It has been emphasized that, although mechanistically<br />

sound, the proposed steps Of the sesquiterpene lactone<br />

*Part XXVII <strong>in</strong> the series "Chemosystematics and Phylogeny'.<br />

For Part XXVI see ref. [1]. Based on the M.Sc. thesis<br />

presented by V. de P. Emerencieno to Universidade de S~o<br />

Paulo (1983).<br />

(Received 23 March 1984)<br />

biosynthetic pathways (Fig. 6) have not been established by<br />

the usual labell<strong>in</strong>g or enzyme studies [3]. Lack <strong>of</strong> detailed<br />

biosynthetic knowledge, however, ceased to be a vulnerable<br />

aspect [5] <strong>of</strong> our methodology [4]. It suffices that precursor<br />

and derivatives be biosynthetically homologous <strong>in</strong> order that<br />

their characteristics, such as skeletal specialization and<br />

oxidation level, may be compared. It is now [1] the structural<br />

difference between the precursor, <strong>in</strong> the present case<br />

compound P, and a particular derivative which is be<strong>in</strong>g<br />

measured, rather than, as previously [4], their biosynthetic<br />

distance, as conveyed by the number <strong>of</strong> reaction steps def<strong>in</strong>ed<br />

<strong>in</strong> the hypothetic biosyntheticel scheme.<br />

The skeletal specialization <strong>of</strong> a compound (per carbon) (S)<br />

with respect to a precursor is determ<strong>in</strong>ed by count<strong>in</strong>g the<br />

number <strong>of</strong> bonds (to C) broken and the number <strong>of</strong> bonds (to C,<br />

or to a heteroatom if this <strong>in</strong>volves formation <strong>of</strong> a new cycle)<br />

formed for each carbon <strong>of</strong> the compound; add<strong>in</strong>g these<br />

counts; and divid<strong>in</strong>g the sum by the number <strong>of</strong> C-atoms <strong>of</strong> the<br />

compound. The E--.Z isomerization <strong>of</strong> a double bond is considered<br />

to <strong>in</strong>volve breakage <strong>of</strong> a bond and formation <strong>of</strong><br />

another. The oxidation state Of a compound (aga<strong>in</strong> per carbon)<br />

(Q is determ<strong>in</strong>ed by count<strong>in</strong>g, for each carbon <strong>of</strong> the<br />

compound, -1 for each bond to H and +1 for each bond to a<br />

heteroatom [6]; add<strong>in</strong>g these counts; and divid<strong>in</strong>g the sum by<br />

the number <strong>of</strong> C-atoms <strong>of</strong> the compound. Loss <strong>of</strong> groups is<br />

considered to operate through oxidized <strong>in</strong>termediates and for<br />

each severed C-C bond which results <strong>in</strong> the loss <strong>of</strong> a molecular<br />

moiety (<strong>in</strong> comparison with the precursor) 3 po<strong>in</strong>ts are added<br />

to the count. Such determ<strong>in</strong>ations are exemplified for five<br />

selected compounds <strong>in</strong> Table 1. Their results for all sesquiterpene<br />

lactones listed <strong>in</strong> references [2] and [3] are given <strong>in</strong><br />

Table 2.<br />

A genus may conta<strong>in</strong> several sesqulterpene iectones (Tables<br />

3--6), each present <strong>in</strong> one or more species and each characterized<br />

by S and 0 values (Table 2). The averages <strong>of</strong> these<br />

values, weighted by the number <strong>of</strong> species <strong>in</strong> which the<br />

compound occurs, are considered to represent the evolu-<br />

145


146 VICENTE DE P. EMERENCIANO, MARIA AUXILIADORA C. KAPLAN AND O1"~'O R. GOI-I'UEB<br />

! 9<br />

~ p 0~/~ ~OH<br />

1.3 1.4 1.6<br />

FIG. 1. SKELETAL TYPES OF GERMACRANOLIDES.<br />

~,<br />

O<br />

! .! .4<br />

FIG. 2. SKELETAL TYPES OF GUAIANOUDES.


SESOUITERPENE LACTONES IN ANGIOSPERMS<br />

147<br />

% ~<br />

0<br />

1.2.2<br />

FIG. 3. SKELETAL TYPES OF EUDESMANOUDES.<br />

~ ~-~0<br />

1.2.1 1.2.1.1<br />

1.2.1.2<br />

~.~0<br />

0 ~ ~ 0<br />

1.2.1.3<br />

1.2.1.4<br />

FIG. 4. SKELETAL TYPES OF EREMOPHILANOLIDES.<br />

•<br />

i<br />

%.7 . 1 ~<br />

i••<br />

i.i~~0 O<br />

FIG. 5. SKELETAL TYPES OF MISCELLANEOUS SESQUITERPENE LACTONES.


148 VICENTE DE P. EMERENClANO, MARIA AUXlLIADORA C. KAPLAN AND OTTO R. Go1-rUEB<br />

1 : 1.1<br />

= 1.2<br />

] = 1.3<br />

~<br />

1.5<br />

- i.~<br />

!.7<br />

1.8<br />

!.~<br />

I.!0<br />

"-'•<br />

i.1.1 -~~ 1.1J.l<br />

- 1.1.2 1.1.1.2<br />

i<br />

I<br />

= i.1.3 1.1.1.3<br />

I = 1.1.4 1.1.1.4<br />

1.2.2 1.2.1.2<br />

I<br />

- 1.2.1.3<br />

~ 1,2.1A<br />

FIG. 6. BIOGENETIC SCHEME FOR SKELETAL TYPES OF C,~RMACRANE<br />

ACID DERIVED SESQUn'ERPENE LACTONES.<br />

t~naW advencemam pamrn~ere (respectively EA s and EAo)<br />

with respect to =escluiterpene lactone~ <strong>of</strong> the ~enem O'abte 7).<br />

The EA s and F-Ao pamn'wtem <strong>of</strong> mxa <strong>of</strong> higher ranks are<br />

calculllm:l is aga<strong>in</strong> <strong>in</strong>dicated <strong>in</strong> Table 7. The ¢on~'ibu0on <strong>of</strong> the<br />

character state <strong>of</strong> a particular cons'dtuem <strong>of</strong> the taxon to the<br />

average is thus proportional to its frequency <strong>of</strong> distribution <strong>in</strong><br />

the taxon. The ~Pmadl between m<strong>in</strong>imal and maximal Sand 0<br />

values <strong>of</strong> compounds <strong>in</strong> texa Ire also given <strong>in</strong> Tabtes 8-10, as<br />

are Spome's ~ i c a l advancement <strong>in</strong>dices [7] <strong>in</strong> Table 8<br />

and basic chromosome numbers [8] <strong>in</strong> Tables 9 and 10.<br />

TABLE 1. EXAMPLES OF THE DETERMINATION OF SKELETAL SPECIALIZATION (S) AND OXIDATION STATE (O) VALUES FOR SESQUITERPENES LAC-<br />

TONES NUMBERED AS IN REF. [3].<br />

Formulae<br />

Carbons with bonds S Numbers <strong>of</strong> bonds O<br />

Broken (b) Formed (~) ~(b+~1 C--H C--O C--C ~ (o+3c--h)<br />

At positions No. <strong>of</strong> C (h) (d (d No. <strong>of</strong> C<br />

1 (C,s) 0<br />

656 (C,s) 0<br />

~0~ (c,~) 4:5<br />

(total 2)<br />

1348 (C,~) 5,6,10,14<br />

(total 4)<br />

1252 (C,,) 2,3,3A,4,15<br />

(total 6)<br />

(6,12) 2/15-0.13 20 4<br />

(total 2)<br />

5,6,10,12 4/15-0 ~.,6 20 4<br />

(total 4)<br />

1,5,5,6,12,15 8/I s--0.53 2o 6<br />

(total 6)<br />

5,5,8,I0,12,14 I0115--0,66 19 3<br />

(total 6)<br />

1,2A,5,5,6,12,15 14/14-1 .oo 17 9<br />

(total 8)<br />

-- -16/15,--1.06<br />

-- -16115,-1.06<br />

-- -14115--0.93<br />

-- -16115--1.06<br />

1 -5/14=--0.36<br />

~ 12<br />

a<br />

~ ~ 0<br />

~ OR<br />

1 566 10~8 1348, R = ,4~e~lte<br />

12~2


SESQUffERPENE LACTONES IN ANGIOSPERMS 149<br />

TABLE 2. OXIDATION STATES (OVALUES) OF SESQUITERPENE LACTONES CLASSIFIED INTO GROUPS ACCORDING TO THEIR SKELETAL SPECIALI-<br />

ZATION (S VALUES). THE NUMBERS 1-1350 AND THE ASTERISKED NUMBERS REFER TO STRUCTURAL FORMULAE LISTED UNDER THE SAME<br />

NUMBERS IN REFS. [3] AND [2] RESPECTIVELY.<br />

No. S O No. S O No. S O No. S O<br />

1 0.13 -1.06 87 0.13 -0.93 114 0.13 -0.80 171 0.13 -0.80<br />

2 0.13 -0.93 ,58 0.13 -0.93 115 0.13 -0.80 172 0.13 -0,80<br />

3 0.13 -0~0 89 0.13 -0.93 116 0.13 -0.80 173 0.13 -0~0<br />

4 0.13 -0.80 60 0.13 -0.93 117 0.13 --0.80 174 0.13 -0.80<br />

5 0.13 -0.80 61 0.13 -0.93 118 0,13 --0.53 175 0.13 -0~0<br />

6 0,13 -0.93 62 0.13 -0.80 119 0.13 -0.66 176 0,13 -0.80<br />

7 0.13 -0~3 63 0.13 -0.80 120 0.13 -0.80 177 0.13 -0.~6<br />

8 0.13 -0.93 64 0.13 -0.80 121 0.13 -0.80 178 0.13 --0.53<br />

9 0.13 -0.93 65 0.13 -0.80 122 0.13 --0~0 179 0.26 -0.53<br />

10 0.13 -0.93 66 0.13 -0.93 123 0.13 -0.66 180 0,13 -0~0<br />

11 0,13 -0.93 67 0.13 -0.93 124 0.13 -0,80 181 0.13 -0.66<br />

12 0.13 -0.93 68 0.13 -0.93 125 0.13 -0~6 182 0.13 -0~0<br />

13 0.13 -0.93 69 0.13 -0.93 126 0.26 -0.26 183 0.26 -0.40<br />

14 0.13 -0.93 70 0.13 -0.80 127 0.26 -0.26 184 0.26 -0.26<br />

15 0.13 -0.93 71 0.13 -0.80 128 0.26 -0.26 185 0.26 -0.13<br />

16 0.13 -0.93 72 0.13 -0~0 129 0.13 -0.80 186 0,13 -0.80<br />

17 0.13 -0.80 73 0,13 -0.66 130 0.13 -0.66 187 0.13 -0.66<br />

18 0.13 -0.80 74 0.13 -0.66 131 0.13 -0.53 188 0.13 -0.80<br />

19 0.13 -0.80 75 0.13 -0.66 132 0.13 -0.53 188.5 0.13 -0.93<br />

20 0.13 -0.80 76 0.13 -0.66 133 0.13 -0.53 189 0,13 -1.20<br />

21 0.13 -0.80 77 0.13 -0.66 134 0.13 -0.66 190 0.13 -1.06<br />

22 0.13 -0.66 78 0.13 -0.66 135 0.13 -0.66 191 0.13 -0.93<br />

23 0,13 -0.66 79 0.13 -0.66 136 0,26 -0.53 192 0.13 -1.06<br />

24 0.13 -0~0 80 0.13 -0.66 137 0.13 -1.20 193 0,26 -0.26<br />

25 0.13 -0.93 81 0.13 -0.66 138 0.13 -1.06 194 0.26 -0.40<br />

26 0.13 -0.93 82 0.13 -0.66 139 0.13 -1.06 195 0.13 -1.06<br />

27 0.13 -0.93 83 0.13 -0.66 140 0.13 --0.93 196 0.13 -0.93<br />

28 0.13 -0.93 84 0.13 -0.93 141 0.13 -1.06 197 0.13 -0.93<br />

29 0.13 -0.80 85 0.13 -0.80 142 0.13 -1.06 198 0.13 -0.93<br />

30 0.13 -0.80 86 0.13 -0.80 143 0.13 -0.93 199 0.13 -0.80<br />

31 0.13 -0.80 87 0.13 -0.80 144 0.13 -0.93 200 0.13 -1.06<br />

32 0.13 -0.80 88 0.13 -0.80 145 0.13 -1.06 201 0.13 -1.20<br />

33 0.13 -0.80 89 0.13 -0.53 146 0.03 -1.06 202 0.40 -0.40<br />

34 0.13 -0.66 90 0.13 -0.53 147 0.13 -0.80 203 0.40 -0.40<br />

35 0.13 -0.93 91 0.13 -0.53 148 0.13 -0.96 204 0.40 -0.40<br />

36 0.13 -0.93 92 0.13 -0.53 149 0.13 -1.06 205 0.40 -0.40<br />

37 0.13 -0.93 93 0.26 -0.40 150 0.13 -0.66 206 0.40 --0.40<br />

38 0.13 -0.93 94 0.26 -0.40 151 0.13 -0.80 207 0.40 -0.40<br />

39 0.13 -0.93 95 0.26 -0.40 152 0.13 -0.93 208 0.40 -0.40<br />

40 0.13 -0.80 96 0.26 -0.40 153 0.13 -0.93 209 0.40 --0.40<br />

41 0.13 --0.66 97 0.26 -0.40 154 0.26 -0,40 210 0,40 -0.40<br />

42 0.13 --0.80 98 0.13 --0.66 155 0.13 -0.80 211 0.40 -0.40<br />

43 0.13 --0.80 99 0.13 --0.53 156 0.13 --0.93 212 0.40 --0.40<br />

44 0.13 --0.93 I00 0.I 3 -0.40 158 0.I 3 -0.80 213 0.40 -0.40<br />

45 0.13 -0.80 101 0.13 -0.53 159 0.13 --0.80 214 0.40 -0.40<br />

46 0.13 -0.80 102 0.13 -0.80 160 0.13 -0.80 215 0.40 -0.40<br />

47 0.13 -0.80 103 0.13 --0.80 161 0.13 -0.80 216 0.40 -0.40<br />

47.5 0.13 -0.66 104 0.13 --0.66 162 0.13 -0.66 217 0.40 -0.40<br />

48 0.13 -0.80 105 0.13 -0.66 163 0,13 --0.05 218 0.40 -0.40<br />

49 0,13 --0.80 106 0.13 -0.66 164 0.13 --0.80 219 0.40 --0.40<br />

50 0.13 -0~0 107 0.13 -0.66 164.5 0.13 --0.80 220 0.40 --0.40<br />

51 0.13 -0.80 108 0,13 -0.66 165 0.13 -0.80 221 0.40 --0.40<br />

52 0.13 -0.80 109 0.26 --0,40 166 0.13 -0.93 222 0.40 -0.40 "<br />

53 0,13 -0.66 110 0.26 -0,40 167 0.13 -0.93 223 0.40 --0.26<br />

54 0.13 -0.66 111 0.26 --0.40 168 0.13 --0.80 224 0.40 -0.53<br />

55 0.13 -0.66 112 0.13 -0.93 169 0.13 --0.80 225 0.40 --0.40<br />

56 0.13 --0,80 113 0.13 --0.80 170 0.13 -0.80 226 0.40 --0.40


150 VICENTE DE P. EMERENCIANO, MARIA AUXIUADORA C. KAPLAN AND OTI'O R. GOI"I"LIEB<br />

TA~,.E 2--CONTINUED<br />

No. S 0 NO. S O No. S O " No. S O<br />

227 0.40 --0.40 281 0.40 -0.80 338 0.53 -0.26 39"7 0.66 -0.93<br />

228 0.40 -0.40 282 0.40 -0.80 339 0.53 -0.26 398 0.66 -0.80<br />

229 293 0.40 -0.80 340 0.53 -0.13 399 0.66 -0.40<br />

230 284 0.40 -0.80 341 0.53 --0.I 3 400 0.66 -0.40<br />

231 0.40 -0.40 285 0.40 -0.80 342 0.53 -0.13 401 0.66 -0.53<br />

232 0.40 -0.46 286 0.40 -0.80 343 0.53 -0.26 402 0.66 -0.53<br />

233 0.40 -0.40 297 0.40 -0.80 344 0.53 -0.26 403 0,66 -0.53<br />

234 0.40 -0.26 288 0.40 -0.80 345 0.53 -0~6 404 0.66 -0.26<br />

235 0.40 -0.26 289 0.40 -0.80 346 0.53 -0.40 405 0,66 -0.26<br />

236 0.40 -0.53 290 0.40 -0.66 347 0.53 -0.26 406 0.66 -0.26<br />

237 0.40 --0.53 291 0.40 -0.66 348 0.53 --0.26 407 0.66 -0.26<br />

238 0.40 -0.53 292 0.40 -0.66 349 0.53 -0.26 40~ 0,66 -0.13<br />

239 0.40 -0.53 263 0.40 -0.80 350 0.53 -0.40 409 0.66 -0.13<br />

240 0.40 -0.53 294 0.40 -0.93 351 0.53 -0~6 410 0.66 -0.26<br />

241 0.40 -0.40 295 0.40 -0.93 352 0.53 -0.26 411 0.66 -0.66<br />

242 0.40 -0.53 296 0.40 -0.93 353 0.53 -0.26 412 0.66 --0.93<br />

243 0.40 -0.53 296.5 0.40 -0.93 354 0.26 -0.26 413 0.13 --0.93<br />

244 0.40 -0.40 297 0.40 -0.66 355 0.53 -0.53 414 0.13 -0.93<br />

245 0.40 -0.53 298 0.40 -0.66 356 0.53 -0.53 415 0.13 -0.80<br />

246 0.40 -0.40 299 0.40 -0.80 357 0.26 -0,66 416 0.13 --0.80<br />

247 0.40 -0.40 300 0.40 -0.80 358 0.26 -0.80 417 0.13 -0.66<br />

248 0.40 -0.40 301 0.40 -0.80 359 0.26 -0,80 418 0.13 -0.80<br />

249 0.40 -0.40 302 0.40 -0.66 360 0.29 -0.53 419 0.13 --0.80<br />

249.5 0.40 -0.40 303 0.40 -0.66 361 0.26 -0.93 420 0.13 -0.66<br />

249.6 0.40 -0.26 304 0.40 -0.53 362 0.40 -0.53 421 0.13 -0.80<br />

249.7 0.40 -0.26 305 0.40 --0.53 363 0.40 -0.66 422 0.13 -I .06<br />

249.8 0.40 -0.40 306 0.40 -0.66 364 0.40 -0.66 423 0.13 -0.93<br />

250 0.40 --0.13 306.5 0.40 -0.66 365 0.40 --0.66 424 0.40 --0.66<br />

251 0.40 -0.13 30 0.40 -0.66 366 0.40 -0.66 425 0.13 -0.66<br />

252 0.40 -0.13 308 0.40 -0.66 367 0.66 -0.46 426 0.13 -0.66<br />

253 0.40 --0.13 309 0.40 -0.66 368 0.66 -0.46 42"7 0.13 -0.93<br />

254 0.40 -0.13 310 0.40 -0.66 369 0.66 -0.46 428 0.13 -0.80<br />

255 0.40 -0.13 311 0.40 -0.66 370 0.66 -0.46 429 0.13 -0.40<br />

255.5 0.40 --0.13 312 0.40 -0.66 371 0.66 -0.46 430 0.13 -0.26<br />

256 0.40 -0.26 313 0.40 -0.66 32 0.66 --0.46 431 0.40 -0.26<br />

25 0.40 -0.26 314 0.40 -0.66 373 0.66 -0.60 432 0.40 -0.26<br />

258 0.40 -0,26 315 0.40 --0.53 374 0.66 -0.60 433 0.40 -0.26<br />

259 0.40 -0.26 316 0.40 -0.40 375 0.66 -0.60 434 0.40 -0.26<br />

260 0.40 -0.26 317 0.40 -0.40 3"76 0.53 -0.26 435 0.13 -0.80<br />

261 0.40 --0.26 318 0.40 -0.40 377 0.53 -0.26 436 0.13 -0.93<br />

262 0.40 -0.13 319 0.53 --0.53 38 0.53 -0.13 437 0.13 --0.93<br />

263 0.40 -0.00 320 0,53 --0.66 379 0.60 -0.20 438 0.13 -0.93<br />

264 0.40 --0.40 321 0.53 -0.53 380 0.53 --0.26 439 0.13 -0.66<br />

265 0.40 -0.53 322 0.53 -0.53 3~I 0.53 -0.26 440 0.13 --0.80<br />

266 0.40 -0.53 323 0.53 -0,53 382 0.53 -0.26 441 0.40 -0.93<br />

267 0.40 --0.40 324 0.53 --0.53 383 0.53 -0.13 442 0.40 -0.80<br />

268 0.40 -0.40 325 0.53 -0.53 384 0.53 -0.13 443 0.40 -0.80<br />

269 0.40 -0.66 326 0.53 -0.53 385 0.53 -0.13 4~, 0.40 -0.66<br />

270 0.40 --0.53 327 0.53 -0.66 386 0.40 --0.80 445 0.40 --0.66<br />

271 0.40 -0.53 328 0.53 -0.53 387 0.53 -0.40 446 0.40 --0.80<br />

272 0.40 -0.80 329 0.53 -0.53 388 0.53 -0.26 447 0.26 -0.66<br />

273 0.40 -0.80 330 0.53 --0.53 389 0.53 --0.40 448 0.26 -0.53<br />

274 0.40 -0.29 331 0.53 -0.40 390 0.53 -0.40 449 0,26 -0.53<br />

275 0.40 -0.26 332 0.53 -0.40 391 0.53 -0.40 450 0.26 -0.53<br />

276 0.40 -0.26 333 0.53 -0.40 392 0.53 -0.26 451 "0.26 -0.93<br />

277 0.40 -0.26 334 0.53 -0.40 393 0.53 -0.40 452 0.13 --0.53<br />

278 0.13 --0.40 335 0.53 -0.40 394 0.53 -0.40 453 0.13 -0.53<br />

279 0.40 -0.93 336 0.53 -0.40 395 0.26 -0.26 454 0,I 3 -0.66<br />

280 0.40 -0.80 337 0.53 -0.40 396 0.66 --0.26 455 0.13 -0.53


SF.SQUffERPENE LACTONES IN ANGIOSPERMS : ; ~:~ 151<br />

TABLE 2--CONTINUED<br />

No. $ 0 No. $ 0 No. S 0 No. $ 0<br />

456 0.13 "-0.53 511 0.40 .-0.66 563 0.66 --0.66 619 0.13 -1.06<br />

457 0.13 --0.53 512 0.40 -0.53 564 0.66 -0.40 619.5 0.13 -I.06<br />

458 0.13 -0.53 512.5 0.40 -0.66 595 0.66 -0.40 620 0,13 -1.06<br />

459 0.13 -0.53 513 0.26 .-0.40 986 0.26 -1.06 621 0,13 -1.06<br />

460 0.13 -0.53 514 0.13 --0.66 567 0.26 --0.93 622 0.13 -1.06<br />

461 0.13 -0.53 515 0.13 -0.53 568 0,26 -0.93 623 0.13 -1.06<br />

462 0.13 -0.40 515.5 0.26 -0.26 989 0.26 -0.93 624 0,13 -%06<br />

463 0.13 -0.40 516 0.13 --0.80 570 0,26 -0.93 625 0.13 -I.06<br />

464 0.13 -0.40 517 0.13 -0.66 571 0~6 -0.93 626 0.13 -I.06<br />

4~5 0.13 -0.40 518 0.26 -0.53 571.5 0.26 -1.06 627 0.13 -0.93<br />

466 0.13 -0.40 519.0 0.13 -0.80 572 0.26 -0.80 628 0.13 --0.93<br />

467 0.13 -0.53 519.1 0.13 .-0.40 573 0,26 -0.80 629 0.13 .-0.93<br />

467.4 0.13 --0.53 519.2 0,13 -0.40 574 0.26 -0,66 629.5 0.13 --1.26<br />

467.5 0.13 -0.53 519,3 0.13 -0.40 575 0.26 -0.66 630 0.13 --1.06<br />

467.6 0.13 -0.53 520 0.13 -0.40 576 0.26 -0.66 631 0.13 --1,00<br />

468 0,26 -0.66 521 0.13 --1.20 577 0.26 -0.66 632 0.13 --1.20<br />

469 0.26 -0.53 522 0.13 --1.06 578 0.26 -0.66 633 0.13 --1.06<br />

470 0.13 -0.80 523 0.13 --1.06 579 0.26 -0.66 634 0.26 -0.80<br />

471 0.13 -0.80 524 0.13 --0.93 580 0.26 -0.66 635 0.26 --1.02<br />

472 0.26 --0.40 525 0.13 -0.80 581 0.26 -0.66 636 0,26 -0.80<br />

473 0.26 -0.40 526 0.13 -0.80 582 0.26 -1.06 637 0.26 -0.80<br />

474 0,26 -0.40 527 0.66 -0.66 583 0.26 -0.80 638 0.26 -1.02<br />

475 0.26 -0,40 528 0.66 ,-0.53 584 0.26 --0.93 639 0.26 -1.02<br />

476 0.26 -0.40 529 0.66 -0.53 585 0.26 -0.80 640 0.26 -0.93<br />

47"/ 0.26 ,-0.40 530 0.13 -0.80 586 0.26 -0.80 641 0.26 -0.93<br />

478 0.26 -0.40 530.5 0.13 -0.80 587 0.26 --0.80 642 0.26 -0.93<br />

478.5 0.26 -0.40 530.6 0.13 -0.80 588 0.26 -0.66 643 0,26 --0.80<br />

479 0.26 -0.66 531 0.13 --0.80 589 0.26 -0.80 644 0.26 -0.80<br />

480 0.26 -0.66 532 0.26 -0.40 590 0.26 -0.80 645 0.26 -0.66<br />

481 0.26 -0.40 533 0.26 -0.40 591 0.26 -0.93 645.5 0.26 -0.80<br />

482 0.26 -0.53 534 0.13 -0.80 592 0.26 -0.80 646 0.26 -0.66<br />

483 0.26 --0.53 535 0.13 --0.53 593 0,26 --1.06 647 0.26 --0.66<br />

484 0.26 -0.53 536 0.13 -0.80 594 0.26 --0.93 648 0.26 -1.20<br />

485 0.26 --0.40 537 0.13 --0.80 595 0.26 --0.80 649 0.26 -1.02<br />

486 0.26 .-0.40 538 0.13 ,-0.80 596 0.26 -0.80 650 0.26 --0.93<br />

487 0.26 -0.40 539 0,13 -0.80 597 0.26 --0.80 651 0.26 -0.93<br />

488 0.26 -0.40 540 0.13 --0,93 598 0.26 -0.80 652 0.26 --0.93<br />

489 0,26 -0.40 641 0.40 -0.66 599 0.26 -0.80 653 0.26 "--0.80<br />

490 0.26 -0.40 642 0A0 -0.66 600 0.26 -0.80 654 0.26 --0.80<br />

491 0.26 -0,40 543 0,40 -0.40 601 0.26 --0.80 655 0.26 --0.66<br />

492 0.26 -0.40 544 0,26 -0.40 602 0.26 -0.80 656 0.26 -1,20<br />

493 0.26 --0,40 645 0.53 -0.13 603 0.26 -0.80 657 0.26 -0.93<br />

4~4 0,26 -0.46 546 0,53 --0.13 604 0.26 -0.80 658 0.26 -0.93<br />

495 0.26 ---0.40 647 0.53 --0.26 6~4.5 0.26 -1.06 659 0.26 -0.93<br />

49~ 0.26 --0.40 548 0.53 --0.26 605 0.26 -0.66 660 0.26 --0.93<br />

497 0,40 --0.53 549 0.53 -0.26 606 0.26 --0.93 661 0.26 -1.02<br />

4~ 0.40 -0.53 550 0.53 -0.26 607 0.26 --0.80 662 0.26 --0.93<br />

498 0.13 --0.53 551 0.53 -0.26 606 0.26 -0.80 663 0.26 -0.93<br />

500 0.13 --0.40 552 0.66 -0.40 609 0.26 -0.66 664 0.26 -0.80<br />

501 0.26 -0.53 553 0A0 -0.26 610 0.26 -0.53 665 0,26 -0.93<br />

502 0.26 -0.66 554 0.40 -0.53 611 0.26 -0.93 666 0.26 -1.02<br />

503 0.26 -0.66 555 0.40 -0.53 612 0.26 -0.80 667 0.26 -0.93<br />

~ 0.26 -0.66 ,556 0.40 -0.53 613 0.26 -1.06 668 0.26 -0.93<br />

~ 0,13 --0.53 557 0.40 -0.53 614 0,26 -1.06 669 0.26 -0.80<br />

506 0.13 -0.53 559 0.40 -0.53 615 0.26 -0.80 670 0.26 -0.93<br />

507 0,40 -0.66 559 0.40 -0.53 616 0.26 -0.80 671 0.26 --0.93<br />

508 0.40 .-0,66 560 0.40 -0.53 617 0.13 -0.66 672 0.26 -0,93<br />

50~ 0,40 -0.53 561 0.40 -0.53 617.5 0.13 -0.93 673 0.26 -0.93<br />

510 0.40 -0.66 562 0.26 -0.80 618 0.13 --1.26 674 0.26 --1.02


152 VICENI~ DE P. EMERENCIANO, MARIA AUXIUADORA C. KAPLAN AND OTTO R. GOTTUEB<br />

TABLE 2--CONTINUED<br />

No. S 0 No. S 0 No. S O No. $ 0<br />

675 0.26 --0.93 731 0.26 --I .02 788.5 0.26 --0.66 845 0.26 -0.66<br />

676 0.26 -0.80 732 0.26 --I .02 789 0.26 -0.80 846 0.26 -0.66<br />

677 0.26 -0.80 733 0.26 -I .02 790 0.26 -0.66 84"/ 0.26 -0~56<br />

678 0.26 -0.93 734 0.26 -0.93 791 0.26 -0.80 848 0.26 -0.66<br />

679 0.26 -0.80 735 0.26 -0.93 792 0.26 -0.80 849 0.26 -0.66<br />

680 0.26 -0.80 736 0.26 -I .02 793 0.26 -0.66 850 0.26 -0.80<br />

681 0.26 -0.66 737 0.26 -1.02 793.5 0.26 I -0.66 851 0.26 -0.93<br />

682 0.26 -0.80 738 0.46 -0.60 794 0.26 -0.66 852 0.26 -0.80<br />

683 0.26 -0.80 739 0.40 -0.80 795 0.26 -0.80 853 0.26 -0.80<br />

683.5 0.26 -033 740 0.40 -0.80 796 0.26 -0.40 854 0.26 -0.80<br />

684 0.26 -0,93 741 0.40 -0.80 797 0.26 -0.40 855 0.26 -0.53<br />

684.5 0.26 -0.93 742 0.40 -0.66 768 0.26 -0.66 856 0.26 -0~0<br />

684.6 0.26 -0.93 743 0.40 -I .02 799 0.26 -0.53 857 0.26 -0~0<br />

685 0.26 -0.66 744 0.66 -0.66 799.5 0.26 -0.53 858 0.26 -0.80<br />

686 0.26 -I .02 "/45 0.53 -0.80 800 0.40 --0.53 859 0.26 --0.53<br />

687 0.26 -0.96 746 0.40 -0.93 801 0.26 -0.40 860 0.26 -0.53<br />

688 0.26 -0.80 74; 0.66 -0.66 802 0.26 -0.40 861 0.26 -0.53<br />

689 0.26 -0.80 746 0.66 -0.68 803 0.26 -0.53 862 0.26 -0.53<br />

690 0.26 -0.93 749 0.66 --0.66 804 0.26 -0.53 863 0.26 -0.80<br />

691 0.26 -0.93 750 0.66 -0.66 805 0.26 --0.40 864 0.26 -0.53<br />

692 0.26 -0.80 751 0.66 -0.66 806 0.26 -0.53 865 0.26 -0.53<br />

683 0.26 -0.80 752 0.66 -0.66 807 0.26 -0.53 866 0.26 -0.53<br />

694 0.26 -0.80 753 0.26 -0.80 80~ 0.26 -0.40 867 0.26 -0.53<br />

695 0.26 -0.80 753.5 0.26 -0.80 809 0.26 -0.66 868 0/,6 --0.53<br />

696 0.26 -0.60 754 " 0.26 -0.53 810 0.26 -0.66 869 0.26 -0.80<br />

697 0.26 -0.93 755 0.26 --0.53 811 0.26 -0.66 870 0.26 -0.66<br />

698 0.26 -0.93 756 0.26 -0.66 812 0.40 --0.26 8";I 0.26 -0.66<br />

699 0.26 -0.93 757 0.26 -0.66 813 0.26 -0.93 872 0.26 -0.40<br />

700 0.26 -0.66 758 0.26 -0.66 814 0.26 -0.26 873 0.26 -0.40<br />

701 0.26 -0.80 759 0.26 -0.66 815 0.26 -0.40 874 0.26 -0.53<br />

702 0.26 -0.80 760 0.26 -0.66 816 0.26 -0.40 875 0.26 -0.80<br />

703 0.26 -0.80 761 0.26 -0.66 817 0.26 -0.40 876 0.26 -0.80<br />

704 0.26 -1.06 762 0.26 -0.53 818 0.26 -0.40 877 0.26 -0.93<br />

705 0.26 -1.06 763 0.26 -0.53 819 0.26 -0.26 878 0.26 --0.53<br />

706 0.26 -1,06 754 0.26 -0.66 820 0.26 -0.40 879 0.26 -0.53<br />

707 0.26 -0.93 765 0.26 -0.40 821 0.26 -0.26 880 0.26 -0.80<br />

708 0.26 - 1.06 766 0.26 -0.26 822 0.26 -0.26 881 0.26 -0.80<br />

709 0.26 --0.80 767 0.26 -0.66 823 0.40 -0.26 882 0.26 -0.80<br />

710 0.26 --0.80 768 0.26 -0.66 824 0.40 --0.26 683 0.26 --0.53<br />

711 0.26 -0.80 769 0.26 -0.80 825 0.26 -0.66 884 0.26 --0.53<br />

712 0.26 -0.93 770 0.26 -0.66 826 0.26 --0.53 884.5 0.26 -0.53<br />

713 0.26 --0.66 771 0,26 -0.53 827 0.26 -0.53 885 0.26 -0.40<br />

714 0.26 -0.66 772 0~26 -0.53 828 0.26 -0.53 886 0.26 -0.40<br />

715 0.26 -0.66 773 0.26 -0.40 829 0.26 -0.53 887 0.40 -0.53<br />

716 0.40 --0.66 774 0.26 -0,40 830 0.26 -0.53 888 0.40 --0.40<br />

717 0.26 -0.66 775 0.26 -0.66 631 0.26 --0.53 889 0.40 -0.53<br />

718 0.26 --0.66 776 0.26 --0.53 832 0.26 -0.53 890 0.26 -0.26<br />

719 0.26 --0.93 777 0.26 -0.66 833 0.26 -0.53 891 0.26 -0,40<br />

720 0.26 -0.93 778 0.26 --0.66 834 0.26 --0,93 892 0.26 -0.66<br />

721 0.26 -0.93 779 0.26 -0.53 835 0.26 --0.80 893 0.26 -0.53<br />

722 0.26 --0.80 780 0.26 -0.53 836 0.26 -0.80 894 0.26 --0.53<br />

723 0.26 -1.20 781 0.26 -0.26 837 0.26 -0.80 895 0.26 --0.53<br />

724 0.26 -1.06 782 0.26 -0.93 838 0.26 -0.80 896 0.26 -0.40<br />

725 0.26 -1.20 783 0.26 -0.80 83~ 0.26 --0.80 897 0.26 --0.40<br />

726 0.26 .-0.93 784 0.26 -0.80 840 0.26 -0.80 898 " 0.26 --0.93<br />

727 0.26 -0.93 795 0.26 --0.80 841 0.26 -0.66 899 0.26 -0.93<br />

726 0.26 -0.80 786 0.26 -0.80 842 0.26 --0.80 900 0.26 -0.80<br />

729 0.26 -1.02 787 0.26 -0.66 843 0.26 -0,80 901 0.26 -0.93<br />

730 0.26 --0.93 788 0.26 -0.66 844 0.26 --0.66 902 0.26 -0.93


SESQUITERPENE LACTONES IN ANGIOSI~RMS .... 153<br />

TABLE 2--CONTINUED<br />

No. $ 0 No. S 0 No. $ 0 No. S 0<br />

903 0.26 --0.80 961 0.26 --0.93 1018 0.40 --0.80 1073.6 0.40 -0.53<br />

904 0.26 --0.66 962 0.26 -0.93 1019 0.40 -0.80 1074 0.40 -0.40<br />

905 0.26 -0.66 963 0.40 --0.73 1020 0.40 -0.93 1075 0.40 -0.40<br />

906 0.26 -0.66 964 0.40 -0.93 1021 0.13 -0.80 1076 0.40 -0A0<br />

907 0.26 -0.53 965 0.40 --0.93 1021.5 0.13 -1.20 1077 0.40 -0,40<br />

90e 0,26 -0.53 966 0.53 -0.53 1022 0.40 -0.93 1078 0.40 -0.40<br />

S0~) 0~6 -0.53 967 0.40 -1.06 1023 0A0 -0.93 1079 0.40 -0A0<br />

~10 0.26 -0.53 968 0.40 -0.80 1024 0.40 --0~0 1080 0.40 --0.40<br />

911 0.26 -0.93 969 0A0 -0.66 1025 0A0 -0~0 1061 0.40 -0A0<br />

911.5 0~,6 -1.06 970 0.40 -0.80 1026 0A0 -0.66 1062 0.40 --0.40<br />

912 0.26 -0.80 971 0.40 -0.66 1027 0~0 -0.80 1083 0A0 -0.40<br />

913 0.26 -0.66 972 0.26 -0.40 1026 0A0 -0.93 1084 0.40 -0.40<br />

914 0.26 -0.66 973 0.26 -0.53 1029 0.40 -0.93 1085 0.66 -0,40<br />

915 0~6 -0.66 974 0.26 -0.66 1030 0.40 -1.06 I0~6 0.53 -0.53<br />

916 0.26 -0.80 975 0.26 -0.53 1031 0.40 -0.93 1067 0.53 -0.40<br />

917 0.26 -0.80 976 0.26 -0.53 1032 0.40 --0.93 1088 0.40 -I .06<br />

918 0.26 -0.80 976.5 0.26 -0.53 1033 0.40 -0.93 1089 0.40 -I .06<br />

919 0.26 -0.80 977 0.26 -0.66 1034 0.40 -0.80 1090 0.40 -I .06<br />

920 0.26 -0.80 978 0.26 -0.66 1035 0.40 -I .06 1091 0.40 -1.06<br />

921 0~6 -0.66 979 0.26 -0.80 1036 0.40 -0.80 1092 0.40 -0.66<br />

922 0.26 -0.66 980 0~ -0.80 1037 0.40 -0.93 1093 0.40 -0.80<br />

923 0.26 -0.66 981 0.26 -0.93 1038 0.40 -1.06 1094 0.40 -0.80<br />

924 0.26 -0.53 982 0.40 -0.66 1039 0.40 -0.93 1095 0.40 -0.93<br />

925 0.26 -0.53 983 0.26 -0.66 1040 0.40 -0.93 1096 0.40 -I ~0<br />

926 0.26 -0.53 984 0.26 -0.53 1041 0.40 -0.93 1097 0.40 -0.40<br />

927 0.26 -0.53 985 0.26 -0.80 1042 0.40 -0.80 I0~ 0.53 -0.93<br />

928 0.26 -0.93 986 0.26 -0.80 1043 0.40 -0.80 1099 0.53 -0.80<br />

929 0.26 -0.66 987 0.26 -0.93 1044 0.40 -0.80 1100 0.53 -0.66<br />

930 0.26 -0.66 988 0.26 -0.53 1045 0.53 -1.06 1101 0.53 -0.66<br />

931 0.26 --0.66 989 0.26 -0.80 1046 0.40 -0.93 1102 0.53 -0.66<br />

932 0.26 -0,93 990 0.26 -0.80 1047 0.93 -0,53 1103 0,53 -0.80<br />

933 0.26 -0.80 991 0.26 -0.66 1048 0.93 -0.66 1104 0.53 -0.80<br />

934 0.26 -0.66 992 0.26 -0.93 1049 0.53 -0.93 1104.5 0.53 -0.66<br />

935 0,26 -0,53 993 0.26 -1.06 1049.5 0.53 -0.93 1105 0.53 -0.80<br />

936 0.26 -0,80 994 0.26 -0.40 1050 0A0 --1.20 1106 0.53 -0.80<br />

937 0.26 --0,40 995 0,26 -0.80 1051 0,40 --1.06 1107 0.53 -0,80<br />

938 0.26 -0.40 996 0.26 -0.93 1052 0,53 -1.06 1108 0.53 -0.80<br />

939 0.26 -0.80 997 0.26 -0.80 1053 0.40 -0.80 1109 0.53 --0.90<br />

940 0.26 -0.93 998 0.26 --0,93 1054 0.40 -0.80 1110 0.66 -0.53<br />

941 0.26 -0.93 999 0.26 --0,66 1055 0.40 --0.93 1111 0.53 --0.80<br />

942 0.26 -0.80 1000 0.26 -0.93 1056 0.40 -0.80 1112,5 0.53 -0.66<br />

943 0.26 -0.80 1001 0.26 --0.93 1057 0.40 --0.66 1113 0.53 -0.66<br />

944 0.26 -0.66 1002 0.26 -0.80 1058 0.53 -0.40 1114 0.53 -0.53<br />

945 0,26 -0.80 1003 0.26 -0.80 1059 0,53 -0.40 1115 0.53 -0.66<br />

946 0.26 -1.06 1004 0,26 -0,80 1060 0.53 -0,13 1116 0,53 -0.66<br />

947 0.26 --1.06 1005 0.26 -1.06 1061 0.53 -0.66 1117 0.53 -0.80<br />

948 0.26 -0.66 1006 0.26 -0.66 1062 0.40 -1.20 1118 0.53 -0.93<br />

949 0.26 -0.66 1007 0.26 -0,93 1063 0.40 "-0.93 1119 0.53 -0.93<br />

950 0.26 -0.66 1008 0.26 -0,93 1064 0.40 -0.93 1120 0,53 -1.06<br />

951 0.26 -0.66 1009 0.26 -0.93 1065 0.40 -0.93 1121 0.53 -0.80<br />

952 0,26 -0.80 1010 0.26 -0.93 1066 0.40 -1.06 1122 0.53 -0.80<br />

953 0.26 -0.93 1011 0,26 -0.80 1067 0.53 -0.40 1123 0.53 --0.80<br />

994 0.26 -0.93 1012 0.26 -0.80 1068 0.53 -0.40 1124 0.53 -0.80<br />

955 0.26 -0,93 1013 0.26 -0.80 1069 0.66 -0.26 1125 0.53 -0.93<br />

9~6 0.26 -0.93 1013.5 0,26 -0.80 1070 0.40 -0.53 1126 0.53 -0.93<br />

957 0.26 -0.80 1014 0.26 --0.80 1071 0.40 -0.53 1127 0.53 -0.66<br />

958 0.26 -0.80 1015 0.26 -0.93 1072 0.40 -0,53 1126 0.53 -0.93<br />

959 0.26 -0.80 1016 0.26 -0.80 1073 0A0 -0.53 1129 0.53 -0.93<br />

960 0.26 -0.80 1017 0.26 -0.66 1073.5 0.40 -0.53 1130 0.53 --1.06


154 V1CENTE DE P. EMERENCIANO, MARIA AUXlLIADORA C. KAPLAN AND OTtO R. GO1-1"LIEB<br />

rABLE 2--CONTINUED<br />

~Vo. S O No. $ O No. S O No. S O<br />

1131 0.53 -0.93 1186 0.53 -0.66 1244 0.80 -0.66 1300 0.80 -1.06<br />

1132 0.53 -0.93 1187 0.53 -0,53 1245 0.80 -0,80 1301 0.80 -I .06<br />

1132,5 0.53 -0.93 1188 0.53 -0,66 1246 0.80 -0.80 1302 0.53 -0.66<br />

1133 0.53 -0.93 1189 0.53 --0.93 1247 0.80 -0.93 1303 O. 53 -0.66<br />

1134 0.53 -0.80 1190 0.53 -0.68 1248 0.80 -1.20 1309 0.66 -0.93<br />

1135 0.53 -0.66 1191 0.53 -0,66 1249 0.80 -0.93 1310 0.66 -0.66<br />

1136 0.53 -0.80 1192 0.53 -0.80 1250 0.60 --0.73 1311 0.26 -1.06<br />

1137 0.53 -0.93 1193 0.66 -0.66 1251 0.60 -0.66 1312 0.26 -0.80<br />

1138 0.53 -0.93 1194 0.53 -0.80 1252 1.00 -0.36 1313 0.26 -0.93<br />

1139 0.53 -0.93 1195 0.53 -0.66 1253 0.53 -0.53 1314 0.26 -0.93<br />

1140 0.53 -0.93 1196 0.53 -0,66 1254 0.53 -0,66 1315 0.26 "-0.53<br />

1141 0.53 -0.93 1197 0.53 -0.66 1255 0.66 -.0.93 1316 0.26 -0.80<br />

1142 0.53 -0.93 1198 0.53 -0,66 1256 0.66 -0.93 1317 0.26 -0.80<br />

1143 0.53 -0.93 1199 0.53 -0.53 1257 0.71 -0.47 1318 0.26 -0.80<br />

t144 0.53 -1.06 1200 0,53 -0.66 1258 0.71 -0.60 1319 0.26 -0.80<br />

1145 0.53 -0.80 1201 0.53 -0.66 1259 0.53 -1.06 1320 0.26 -1.06<br />

1146 0.53 -1.06 1202 0,53 "-0.93 1260 0.53 -1.06 1321 0.26 -0.80<br />

1147 0.53 -0,93 1203 0.53 -0.80 1261 0.53 -1,20 1322 0.26 -0.93<br />

1148 0.53 -0.93 1204 0.53 -0.93 1261,5 0.40 -1.06 1325 0.53 -1.33<br />

1149 0.53 -0.93 1205 0.53 -0.93 1261,6 0.40 -1.06 1326 0.53 -1,20<br />

1149.5 0.66 -0.53 1205.5 0.53 -0.80 1261.7 0.40 -1.20 1327 0.53 -1.06<br />

1150 0.80 -0.66 1206 0.53 -0.80 1262 0.53 -0.80 1328 0.53 -1.06<br />

1151 0.80 -0.66 1207 0.53 -0,80 1263 0.53 -0.66 1329 0.53 -1.06<br />

1151.5 0.80 -0.80 1208 0.53 -0.80 1264 0.53 -0.66 1330 0,53 -1.06<br />

1152 0,80 -0.80 1209 0.53 -0.80 1265 0.53 -0.66 1331 0.53 -0.93<br />

1153 0.80 -0.66 1210 0.53 -0.80 1266 0.53 -0.66 1332 0.53 -0.80<br />

1154 0.66 -0.66 1211 0.53 -0.80 1267 0.53 -0.93 1333 0.53 -1.20<br />

1155 0.80 -0.40 1212 0.53 -0.80 1268 0.53 -0.80 1334 0.53 -0.93<br />

1156 0.80 -0.40 1213 0,53 -0.80 1269 0.53 -0.80 1335 0.53 -0.80<br />

1157 0.80 -0.66 1214 0.53 -0.66 1270 0,53 -0.80 1336 0.53 -1.20<br />

1158 0.93 -0,66 1215 0.53 -0.93 1271 0.53 - 1.20 1337 0.53 -0.93<br />

1159 0.53 -0.93 1216 0,53 -0.80 1272 0.53 -1.06 1338 0.53 -0.80<br />

1160 0.53 -0.80 1217 0.53 -0.80 1273 0.53 -1.06 1339 0.53 -0.80<br />

1161 0,53 -0,80 1218 0.53 -0.93 1274 0.53 - 1.06 1340 0.53 -0.80<br />

1162 0,53 -0,53 1219 0,53 -0.93 1275 0.53 -1,06 1341 0.66 "-0.93<br />

1163 0.53 -0.80 1220 0.66 -0.80 1276 0.53 -1.06 1342 0.66 -0.93<br />

1164 0.53 -0.53 1221 0.53 -0.93 1277 0.53 --0.93 1343 0.66 -0.80<br />

1165 0.53 -0.53 1222 0.53 -0.80 1278 0,53 -1.06 1344 0,66 -0.80<br />

1166 0.53 -0,53 1223 0.53 -0.40 1279 0.53 -1.06 1345 0,66 -0.66<br />

1167 0.53 -0,53 1224 0.53 -040 1280 0.53 -0.93 1346 0.53 -1.20<br />

1168 0.53 -0.53 1225 0.66 -0.53 1281 0.53 -0.93 1347 0.40 --0.93<br />

1169 0.53 --0.66 1226 0.53 --0.66 1282 0.66 -0.66 1348 0,66 --1.06<br />

1169.5 0.53 -0.80 1227 0.53 -0.80 1283 0.66 -0.53 1349 0.53 -1.06<br />

1170 0.53 -0.66 1228 0.53 -0.93 1284 0.53 -0.80 1350 0.53 - 1.06<br />

1171 0.53 --0.66 1229 0.53 --0.66 1285 0.53 -0.80 17* 0.13 -1.06<br />

1172 0.53 -0,80 1230 0,53 -0.80 1286 0.53 -0.80 38" 0.13 -0.93<br />

1173 0.53 -0.93 1231 0.53 -0,80 1287 0.66 -0.80 39" 0.13 -0.93<br />

1174 0.53 --0.80 1232 0.53 -0,80 1288 0.66 --0.53 80 ° 0.13 --0,80<br />

1175 0.53 --0.66 1233 0.53 --0.80 1289 0.66 -0,40 83" 0.13 --0.80<br />

1176 0.53 --0.80 1234 0.53 --0,80 1290 0.60 --1.00 93* 0.13 -0.93<br />

1177 0.53 -0.80 1235 0,53 --0.80 1291 0.60 --1.00 105" 0.13 --0.93<br />

1178 0.53 --0.66 1236 0.53 -0.66 1292 0.80 --1.20 233" 0.26 --0.66<br />

1179 0.53 -0.66 1237 0.80 --0.80 1293 0.80 --0.93 234* 0.26 --0.53<br />

1180 0.53 --0.66 1238 0.80 --0,80 1294 0.80 --0.93 235" 0.26 --0.66<br />

1181 0.53 --0.80 1239 0.80 --0.80 1295 0.80 --0.93 236" 0.26 -0.53<br />

1182 0.53 --0.80 1240 0.80 -0.80 1296 0.80 -0.93 237" 0,26 --0.53<br />

1183 0.53 --0.80 1241 0.80 -0,66 1297 0.80 --0.93 238" 0.26 --0.53<br />

1184 0.53 -0.66 1242 0.80 --0,66 1298 0.80 -0.93 239 ° 0.26 --0.40<br />

1185 0.53 --0.66 1243 0.80 --0.66 1299 0.80 --1.06 240" 0.26 --0.26


SESQUITERPENE LACTONES IN ANGIOSPERMS 155<br />

TABLE 2--CONTINUED<br />

No. S O No. S O No. S O No. S 0<br />

241 * 0~6 -'0.40 398" 0.26 --I .06 623* 0~6 --0.53 700" 0.26 -0~0<br />

242* 0~6 -0.26 3~9" 0.26 --I.06 624" 0.26 -0,53 728* 0.26 -0~6<br />

243* 0.26 -0.53 408°a 0.26 -0.66 625," 0.26 -0.53 "/29 ° 0.26 -0.66<br />

244" 0.26 --0.40 414" 0.26 -0.93 633," 0.26 --I.06 793" 0.40 -0.93<br />

246 ° 0.13 -0.93 415" 0.26 -0.80 634* 0.26 -0.66 807* 0.40 --I.06<br />

248" 0.13 -0.93 428* 0~6 -0.93 635* 0~6 -0.53 808* 0.40 --0.93<br />

249* 0~6 -1.06 429* 0.26 --0.93 626" 0.26 -0.53 809' 0.40 -0.66<br />

253" 0,13 -0,66 430" 0.26 -0.66 63"/* 0.26 -0.53 810" 0.40 --0.53<br />

2M* 0.13 "--0.66 434" 0.26 -0.80 649* 0.26 -0.53 1005" 0,53 -0.80<br />

3~2" 0.40 -0.66 478," O.Z~ -0.93 659* 0.26 -0.93 1146" 0.13 -0.80<br />

354* 0.40 -'0.93 479* 0.26 -0.80 660" 0.26 -0.93 1217" O~ -0.66<br />

365* 0.26 -0.93 483* 0~6 -0.80 666 ° 0.26 -0.80 1227" 0.26 -0.93<br />

370"a 0.Z,6 -0.80 577" 0,26 -0.80 667* 0.26 -0.66 1240" 0~,6 --1.06<br />

374* 0~6 -0.93 587* 0.26 -0.66 692" 0~6 --1.06 1242" 0.26 -0.80<br />

384* 0~6 -0.66 5~2" 0.26 -0.66 696" 0.26 -0.53 1254" 0.53 -0.80<br />

385* 0.26 -0.80 613" 0.26 --0.93 658* 0.26 -0.80 1261 = 0.29 -0.80<br />

397* 0~,6 --1.06 621 * 0.26 -0.53 699* 0.26 -0.80<br />

TABLE 3. OCCURRENCE OF SESQUITERPENE LACTONES IN GENERA OF<br />

MAGNOLIACEAE INDICATED BY ASTERISKED NUMBERS WHICH REFER<br />

TO STRUCTURAL FORMULAE GIVEN IN REF. [2]/NUMBERS OF SPECIES<br />

IN WHICH THE COMPOUND HAS BEEN FOUND<br />

Liriodendn~38=ll, 3S*ll, 83*ll, 93*ll, 254"11,3"/0a*/I;<br />

,Y,~gno~il~O*/1, 246"11, 248"11.253"11,365"11, 374"11; Mk:he//a17*11,<br />

80°11,249"11,385"12,374=12, 1149"11, 1227"/I, 1240°11.<br />

TABLE 4. OCCURRENCE OF SESQUITERPENE LACTONES IN GENERA OF<br />

LAURACEAE INDICATED AS IN TABLE 3<br />

L<strong>in</strong>dera 233= /1, 235"/1, 238"/1, 262"/1, 354"/1, 478"11, 4"/9"/1, 483"/1,<br />

807"/1, 808"/1; Neo/~ea 234"/1, 236"/1, 237"/1, 239"/1, 240"/1,<br />

241 ,'/1, 242"/1, 243=/1o 244=/1, 809"/1, ~10"/1; Ocorea 126'/1.<br />

TABLE 5. OCCURRENCE OF SESOUITERPENE LACTONES IN GENERA OF<br />

APIACEAE INDICATED AS IN TABLE 3<br />

Feru/a 384"12, 385"12, 3~9=12, 414*11, 415"12, 432*11,433*11, 434"11,<br />

621"11. 623"11, 633°11, 634"11, 635=11, 636"11, 637°11, 728"11, 729*11;<br />

Laser 429*11, 696"/I, 793"11 ; Laserpitium428*ll, 613=11, 621 °11, 624"11,<br />

625*11, 649*11, 698"11, 700"11, 1242*11 ; Me/anosenium 397"11, 398°11,<br />

408a*11, 430"11 ; Smyrnium 1005"/I, 1254"11.<br />

Results<br />

The distribution <strong>of</strong> sesquiterpene lactones, classified<br />

<strong>in</strong>to structural types, <strong>in</strong> taxa <strong>of</strong><br />

angiosperms is given <strong>in</strong> Tables 11, 12 and 13.<br />

Presence (-t-) signs are <strong>in</strong>serted whenever a<br />

structural type, although not actually represented<br />

by an isolated derivative, must<br />

nevertheless be present, even if only transitorily, _<br />

s<strong>in</strong>ce it functions as a biosynthetic <strong>in</strong>termediate<br />

to an isolated metabolite.<br />

Only the most common structural types 1, 1.1<br />

and 1.2 <strong>of</strong> sesquiterpene lactones have so far<br />

been located <strong>in</strong> Magnoliaceae (Table 11). Diversification<br />

<strong>of</strong> types occurs from here on <strong>in</strong> two<br />

directions, one towards the Lauraceae which<br />

produce characteristically furanogermacranolides<br />

(1 F) and one towards the<br />

Apiaceae-Asteraceae which both develop<br />

ma<strong>in</strong>ly the guaianolide and eudesmanolide<br />

themes. A correlation <strong>of</strong> the EA s and EA o<br />

parameters (Fig. 7) also can best be <strong>in</strong>terpreted<br />

<strong>in</strong> the light <strong>of</strong> this two-directional evolution <strong>of</strong><br />

sesquiterpene lactones. Clearly the Magnoliaceae<br />

conta<strong>in</strong> biosynthetically much simpler and<br />

less oxidized compounds <strong>of</strong> this class than the<br />

Lauraceae on one hand and the Apiaceae-<br />

Asteraceae on the other (Fig. 7). Indeed the EA s<br />

and EA o values, and perhaps even better the/~s<br />

and/~o values (Fig. 8), for sesquiterpene lactones<br />

<strong>of</strong> these families correlate well with their evolutionary<br />

advancement, as measured by Sporne<br />

<strong>in</strong>dices [7] based on morphological criteria.<br />

The distribution <strong>of</strong> sesquiterpene lactones <strong>in</strong><br />

the Asteraceae is quite heterogeneous (Table 12).<br />

Only the common types 1, 1.1 and 1.2 have<br />

been found <strong>in</strong> the Cichorioideae, a subfamily<br />

which <strong>in</strong> this respect resembles the Magnoliaceae<br />

or, more closely, if EA s and EA o values are<br />

also considered (cf. Table 8 and 9), the Apiaceae.<br />

The subfamily Asteroideae group 1 [9] which


156 VICENTE DE P. EMERENCIANO. MARIA AUXlUADORA C. KAPLAN AND O'1-1"O R. GOI"t'LIEB<br />

TABLE 6. OCCURRENCE OF SESQUITERPENE LACTONES IN GENERA, CLASSIFIED IN TRIBES. OF ASTERACEAE INDICATED BY NUMBERS WHICH<br />

REFER TO SI~UCTURAL FORMULAE GIVEN IN REF. [3J/NUMBER OF SPECIES IN WHICH "rile COMPOUND HAS BEEN FOUND<br />

I. Lactuceae<br />

C4~orkzm 97211' 97311; H),pochoer/s 63911, 083/I, 26411' 004.511, 90311' 91211, 262/1' 9~311; L.acluca 76311' 97213, 973•3; Picridium 77711, 90512,<br />

936/2; ,,~onchus 60~/1' 63512, 26314; 7ar~x~um 9811' 14711' 66011, 66111, 97311; Urosperrnum 9011, 9111.<br />

2. Arcototeae<br />

A~tob~s 112/2, 82512, 55911, 95211. 96611, 96811; Berkhe, ya 4811; G~zan/a 60611' 60711; P/atycarpha 5711, 14611 ; I/~u~/um 87011.<br />

3, Liabeae<br />

~ 753.5/1' 778/1, 788/1' 7~8.5/1, 79011' 79311; Fen~y~n=hu~ 97911; G/echom~ 20011; L~bum 112, 26611' 83411; Mumm=~ 43611.<br />

4. Muti$ieae<br />

C-ochnati<strong>in</strong>ae and Mutils<strong>in</strong>ae<br />

~ 7011, 79/1, 83711; D~coma 17711. 17811, 55611, 64811; D/no$er~ 706; Cm~tm~ 1~/1' 17011, 17211,173/1. 174/1, 17~/1, 41111; M ~<br />

~11, 61311. 648/1; Pert~ ~5~1; Wunder/~h~ 161/1.<br />

5. Cardueae<br />

Cardu<strong>in</strong>ae<br />

Ac~oliton~2~ll, ~2911, ~3311, ~511, 26211, 26811; Am~m 4914, 50/1; ~mB3411' 94611; Cy~re82611, 84112, 870/1; Ju~b~ 4~/1, 53/1, 5511,<br />

r=611,19111, ~28/1, ~30/1, ~3/1, 93911, 95711; Onopordurn 50/3, 6411' 6511, 10~4/1, 10~5/1; PCTo,~n ~32/2, 94412; S~aBum~ 111' 11711, ~4/1'<br />

~41/1, ~67/1, 946/1, 97711, g7~12. 106211.<br />

Centaure<strong>in</strong>ae<br />

Atrdmt~me ~41 I1, 844/1, ~63/1, r/o/l, 95411. 95511, ~/1; Cen~uma 111, 48/1, 5216, 11711. 16~/1, 17011. 17614, 19112, 61212, ~2~/1' 929/9, ~33/1,<br />

84112, ~4411, ~47/1, 848/4, B49/9, B/2, ~60/2, ~6112, ~62/9, ~64/1. 86511, 86611, 94~/1, 94911, 95611, 1053/1, 10~/2, 1063/1, 10~1/4; C/~u~ 4~/1,<br />

52/1.<br />

Cad<strong>in</strong>eae<br />

A~ac~#ode$1349/1, 135011; Xeranthemum 9~011.<br />

G~mer= not ==~igned to =ubtrlbes.<br />

(:Y~rm/e/~ 870/1; Gtt~=he/ma 87012.<br />

6. Vemonieae<br />

Cen~r~herum 267/1, 26211, 71B4/1' ~54/1; Chr~ 488/1, 48~/1, 51811 ; Eleph~n~Ol~$ 93/2, 12611, ~1/1, 12711, 15411, 12711, 50111, B~/1. B~/1, 515,5/1,<br />

~611, 98711 ; F, mm~nthu$1 I1, 36713, 26~12, 9~/2, 3"/0/1, 37411, 37511, 26711. 388/1, :~911, ~0/1, 455/10 451 I1, ~211, 7~12, ~11, ~0/1, 940/1;<br />

Er~ngea 42911, 43011, 779/1, 787/1, 519.3/1 ; Hefemcoma 78211; Lychno~hora 112, ~911' 37111, ~11, ~413, 7~2/9, 7~11' ~411, ~/1, ~111,<br />

88211. 95311 ; Marffeldanthus 171 I1 ; P~loc~rp~ 4g011, 491/1, 49211, 493/1, 49411, 49511; P ~ 44811, 467/1;/~=L~ 37111, 37211, ~111,<br />

39212; Rol~ndm 49711, 49811. 49911, 50011; $~t~ke=/~ 47"//1, 47~/1, 478.5/1, 48611. 4~7/1, 83411. 85011; Ven///~ 111, 52/1, 9111, 92/1, 387/1.<br />

26812, ~/2, 7~2/2; M~rnon~ 112, 54/1, 58/1, 59/1. 13111, 132/1, 133/3, 13419, 13512, 19611, 473/2, 47411, 475/1, 476/1, 479/1, 4~0/1, 4~J3, 483/2,<br />

4~4/1' 48512, 513/1, 51711, 519.1/22, 519.2/27, 52011, 52712, 52811, 52911, 73812, 783/1. 825/3, ~'/11. ~31/1' ~34/3, ~35/1, B~7/9, ~B/4, ~40/1' ~/1,<br />

~11, 95111.<br />

7. Eupatorieae<br />

,4~er~tk~ 617.5/1, 629,511, ~02/1; Agr~n~u= ~06/1, 81911; Aual~N~tdce//~ 761/1; Chrom~ 28611 ; C o ~ 351/1, 35212; ~ 112,<br />

604.§/1. 671.511; ~ela98911; Di~lnaphia346II, 51911. 55311, 106011; Eupatorium312. 412, 1111, 14/1,15/1, 1711, 18/1' 1911, 20/1. 2111, ~1/1,<br />

33/1, 3411, 4511.4611, 47.511. 51/2. 99/1, 11612. 118/3, 119/9, 12211, 12313, 12414. 15011, 15111, 28211' 28312, 286/1, 2~/1, ~0/1. 29111' 29711, 29911,<br />

30012, 44112, 44213, 51012, 51111. 51212. 512.511, 76511, 76611, 781/1. 79112, 79611, 79711, 79912, 799.5/1, 80111, ~02/1, ~0311' 814/1, ~1711' 81811,<br />

~20/1, 821/1, ~22/1' 823/2, 82411, 87211, r/3/1, 26011, 93711, 93811, 974/1. 97511. 97611. 976.511, ~4/1; Gra~=~ 532/1, r~3311, ~4/10 535/1, ~=36/1,<br />

537/1, 83811, r~9/1, ~4111, 81211; Guevar~ 77311; H~.ft~Wg/h/~ 36311, 36411; L~cn~ 12/1, 3211. 28911, 29311, 29411, ~11, ~1611, ~17/I, ~15/1, ~/1,<br />

26111, 26211, ~02/3, 503/1, 50411, 55211, ~)4/1' ~5513, 807/1, 80~11, ~15/1' 97411, 87811, 87911. 109111; Lo~e/g~ 261/1; Mil~nia~6/1, 67/1. 55/1'<br />

68/1, 1~3/1' 18411.1~5/5, 193/5, 19411, 98111. 10~8/1, 108511; Oxylobu$111, 56611. ~2/1, ~/1, ~26/1; ~ 14011, 79111. 792/2, 79511, r~/1'<br />

94111' 114011; Tr/~n~ 54411, 54611, 54711, 54~/1, 54911, r~o/1, 551 I1, 554/1, 55511, ~11, 55711, ~/1' ~/1, 55011, ~61/1. F~3/1' 56411,<br />

56511.<br />

8. Heliantheae<br />

8.1. Mellmpodi<strong>in</strong>ae<br />

Acen~oermum 2~611, 2~BI1. 23~/1' 241/1, 24211, 243/1, 244/1, 24511. 24611, 24711. 24811, 24911, 400/1, 401/1, 40311, 543/1, 55211 ; Melarnl~dium<br />

7511, 7611, 7711, 7~11, 10011, 12511. 223/1. 22411. 22711, 25011, 25111. 25211' 25311, 25413, 25511. 255.5/1, 25611, 2~0/12, ~o211. 26311, 26511, 2~/1,<br />

26712, 26~20 27413, 27514. 276/1, 27711, 27~/2, 30211, 30311, 40411. 40511. 40611, 40711.40811, 40911' 410/1, 99111; Po/ymn= 168/1, 69011; $igesbeotia<br />

23111, 23211, 249.811, 51611; Sm~/~n~hu= 202/1, 20311. 22511, 22611, 22811, 2~3/2, 249.511, 249.6/1' 249.7/1, 255/1, 25511, 2~0/1' 26111, 26911, 27011.<br />

271/1, 6~6/1; Tetragono~heca 205/1. 20611. 20711. 20~/1, 20911. 21011, 211/1, 21211, 21311. 21411, 21,511, 21611, 21711, 21~/1' 21911. 22011, 221/1. 22211,<br />

22611. 23411. 23511. 25611. 43111, 43211. 433/2.<br />

8.2. Z<strong>in</strong>ni<strong>in</strong>ae<br />

~ 2611, 7~2/1, 7~5/1, 7~6/1, ~711, 83~11, 8~9112, ~13/2, 85711, 55~/1, g~ll, 106~11, 1070/2,107112, 107212, 107~/2, 107~.~/1, 107Z1.6/1, 107412,<br />

107511, 107611, 107711,1078/1, 107911. 10~0/1' 10~111,126211, 10~3/1, 10~4/1, 10~911,10~0/1, 10~4/1. 1085/1.<br />

8.3. Eclipt<strong>in</strong>ae<br />

~ 3511, 70011, 70111. 70211. 70311; B~/nv///e~ 95/1. 5511' 9711, 13611, 24011, 26411, 32611; ~ 25711, 25~11, 2~O/1; ~ 6~011, 71611.<br />

71711, 71911, 1230/1, 123111, 1232/1, 123311, 123411.


SESOUrTERPENE LACTONES IN ANGIOSPERMS 157<br />

T,~LE 6-- CON~'~ED<br />

8A. Vertmtn<strong>in</strong>~e<br />

Dk~mslWna 57511, 577/2, 57~/2, §7~/1, ~11, ~ I1; ~ 1~1; ~ ~1, ~1, 2~1, ~/1, 4111, 1~ 1~1, ~/1; ~ m<br />

~I, ~11, ~I, ~11; ~ ~ ~11, ~1, ~I, ~I, ~I; ~ ~.511, ~.611; ~ I~I, 1~11; ~ ~11,<br />

~11, ~11, ~711, ~/I, ~11, ~I, ~I, ~11, ~11.<br />

8.5. ~ n ~<br />

~ ~/2, ~/1, ~, ~; ~ ~.5/~ 1~1; ~ ~4, 4/1, 42/1. ~1, ~/1, ~.~1, ~ ~/1. ~/1, ~/1, ~/1,<br />

~2, ~2, ~/1, ~/1, ~/1. ~/1, ~1, ~1. ~7/1, ~7.~ ~/1, ~.5/1, ~.6/1, ~/1. ~1, ~.~1; ~ ~1, ~/1, 11~1,<br />

1~7/1, 1~/1, 1~/1; S~ 1~/1; ~ 5/1, ~1,1~/1, 1~1, 1~/1, ~/1, 1~/1, ~/1. ~2/1, ~9/1, ~4/1, ~1, ~/1, ~1, ~/2, ~7/1,<br />

~1, ~/1, ~/1, 5~/1, ~/1, ~/1; ~/1,1~/1, ~1, ~0/1, ~1/1, ~2, ~1, ~ ~.<br />

8.6. Gai~<br />

~ 2 , I~I/~, 11~I. I~/2,11~/I, I~/I, 11~, 11~/2,11~2. I~/~ I~/I, I~I, I~I; ~ 11~/I. 11~/I, I~I, I~/I.<br />

~7. ~ ~<br />

~ : ~ / ~ .<br />

82. F ~<br />

~/~, ~/I, ~/I, ~I, ~/I. ~2/I, ~/I.<br />

8.9. 5ahiln~<br />

~ ~/I. ~/I. ~I, ~/I, ~/I, 7~I, 7~I. 7~/I, ~I; ~ ~/~ ~I, ~.S/1, ~.~I.<br />

8.10. ~d;i~<br />

8.11. Ga~<strong>in</strong>~<br />

~ I~, ~/~, ~/I, ~/~, ~/I, ~/I, ~/2. ~/~, ~I/I. ~, ~/I, ~/I. ~7/~, ~/I. ~/I, ~/I, ~2, ~/I, ~/I, 3~/2,<br />

~/2, ~/2, ~/I, ~/I. ~/I, ~5/I. ~/I, 4~/I, ~I, 4~/2, ~7/I, ~/I, ~/I, ~/I, ~/I, ~/I, ~. ~/I, ~5/~, ~/I, ~7.5/I.<br />

~.6/I; ~ ~/I, ~I, ~I. M/I, ~/I, ~I, ~I. ~/I, ~/I, ~7/~.<br />

• 12. ~u~n~n~<br />

~ ~/I, ~5/I; ~ I/I, 10/I, ~I, ~/I, ~/~. ~/2, ~3, ~I/2, I~2, ~9/2.<br />

8.13. E~Imsn~n~<br />

~/I, ~I; ~ I~/I ; ~ ~/~.<br />

8.~. ~i~ae<br />

~ I / ~ 2/I. ~2, I~2, ~2, ~2, 112/4, ~/~, ~, I~.~I. ~/2, ~/2, ~/6, ~I, 5~I, ~/3. ~8/2. 6~2, ~/~, ~/~, ~/~,<br />

~7/I, ~/2, ~/I, I~/I, I~/I, I~. I~/6, 1107/I, 11~3. 11~/2, ~I~, ~2/~, 1113/I. 1116/I. 1117/I, I~18/I, 1119/I. 11~/2,11~/~, 11~/~,<br />

11~/~ 11~/I. I~/3, 11~3, ~I~/~, I~/3, ~/~. I~/~, ~5/~, I~/~, I~.~/~, ~I~, ~151/I, 1151.5/~, 11~/~0, ~53/7, ~/I. 11~/~, I~57/~.<br />

I~/I; ~ I/I. 61~2, I~/I, 1111/I, 111~I, I~17/2, ~I~/I, 11~/I, 11~/I ; ~ ~/I, ~/2. ~/2, ~, ~2~, ~/~. ~/I, ~/2,<br />

I~/I. I~/I~ I~/I. I0~/I, I0~I. I0~/I, I0~/~, I0~/~, I~/I, I~/I, I~/I, I~11/2. 11~2/I, 1117/~: ~ I~I; ~ 1~/~,<br />

~3/I, I~. I~/3, 11~/6, I~01/5, 11~/I, 11~/4, 11~/~. 11~.5/I, ~I~/I, ~110/2, ~111/I. 1112/I, ~113/I, 11~/3. 1115/I, ~7/2, 11~/5, 11~,<br />

11~, ~I~I. 11~3. 11~/I, 1127~, 11~/~; ~ 10~/2, I0~/I, I0~/5, ~0~/9. I0~/I, I~/~, I~2/4, I~/7, I~/I, I~/~, I~/I.<br />

~.15. Milte~ilnae<br />

~ ~/I; ~ I~/I, I~/~, I~/I.<br />

9. ~n~<br />

~ ~/I, ~/2. ~0/2, ~/I; ~ I~/~, ~/2, ~3/2. ~/I, ~5/~, ~/~. I~/~, 11~/I, 11~/I, 11~/I, I~2, I~/I, 11~/~, 11~/I,<br />

1174/I. 11~/5. 11~/I, ~I~/~. I~/2, 11~/~. 11~I, ~/I, 11~/I. ~I~3, I~/~, ~9/I, I~/I; ~m~/1, ~I, ~/~, I~/I. I~/I,<br />

I~/~, I~/~, 30~0/~, I014/~, ~0~5/~, I017/I, I~9/2, 11~/2, 1163/6, 11~/3, 11~/5, IM.~I, I~70/I, 11~/~, 1172/I, I~74/2, I~/~, 11~/I. ~18~/~.<br />

~/2. 11~/I. 1191/I, 11~/I, 11~/I, 11~/13, 11~I, I~I/2, I~3/~, I~/2, I~0/I, ~2/I, ~, I~2, i~7/2, I~/12, I~/~. I~/I,<br />

I~/I, 12~I, 1251/I, 12~/3, I~7/3, 12~/I: ~ 11~/I, 1167/I. 11~/3, ~/~. I~/I, ~/I, I~.5/I, ~4/I, I~8/I, 32~/I, I~/I,<br />

I~7/I, 12~, ~/I, I~/I, I~/I, 1247/~, 12~/~. ~249/~, 12M/I ; ~ 11~/~, I~/I. I~/~, 1241/I, I~2/I, 12~I, 12~/I, I~.<br />

10. ~emae<br />

~rT~/~, ~/~. ~/~, ~/~, ~/~, ~7/~, I~/I; ~p~on ~/~.<br />

I~. <strong>in</strong>u~ae<br />

~ 11~/~ ~ Ag~,f~us ~0~/I: ~n~en~r~ I~/~ ; ~/oce~a/us ~/~. ~/~. ~016/I; Ca~es~um ~/~. 6~/2, ~/~, ~9/~, I~5/2, I~4/2;<br />

~ / ~ , ~01~2, I~7/2, 3~7/2, I~/2, I~2, 12~/2; ~ m ~ 1 , I~/I; ~ I/I. 7/I, ~2, ~I. ~/I, ~, ~2, ~/~, 112/~.<br />

~/I, I~/~, I~/2, 2~/I, 412/I, 427/I, ~/~. 4~/I. 4~/~, S~S/~. 6~/I, ~/I. ~/I, ~4/2, 675/~, ~/5. ~7/I, ~/I, ~/~. ~/I. ~/~, ~7/I,<br />

~/I. ~/5, 7~/I, 707/I. ~/I, 7~/I, 7~2, 725/2, ~/~. ~/~, 7~/I. ~/~. ~/2, I~I, I~/3. I~, I~I, I~I/2, 1~5/I, I~/I,<br />

I~3/~, ~3~/I, I~/I. 1227/I, I~5/I. ~/I, 3~/3, ~322/3: ~c~n~ 6~/~, ~/I; ~ 574/~ ; ~ 7~/3, I~/~. I0~/I, I0~/~,<br />

I~/3. ~/~, I~/~, I~/3, I~/I, 11~/I; Te~ ~/I, ~7/I, ~/~, 723/3, 11~/~, 11~/~; ~m~ I~I.~.<br />

12. ~m~ae<br />

~ ~/~, 142/I. ~/I, ~I, ~/~, ~/I. ~3. ~/I, 912/3. 9~3, 915/~. ~/I, I~2/4; ~ M/I ; ~ 112/I, ~/I, I~/~. ~/~,<br />

~/I, ~/I, ~7/I, ~/I, ~4/I. I~.5/I ; ~ ~/2, ~I. 6/I, 8/I, 25/~, 27/2,1~/~. ~I/~, I~/I, ~/I, ~/I. I~I, ~4, ~/4, ~/I, 41~2,<br />

415/4. 4~6/I, 4~7~, 4~/I, 4~/I. ~/I, 42~I, ~, ~/4, ~/I, ~/I, ~7/2, ~I/I, ~2/~, ~3/3, ~/4, ~/3, ~/I, 572/I, ~, ~/2, ~I,<br />

~/~, ~/I, ~I/6. ~/2, ~2, ~/~, ~/I, ~/3, ~3~, ~5/I, 61~2. ~/2, ~/I. ~I, ~/I, ~/3, ~I/I. ~2/I, ~3/24, ~/~2, ~.5/17,<br />

~/3. ~/I. ~7.~I. ~/I, ~3, ~I~, ~/2, ~, ~S/1. ~/2, ~7/I, ~/~, ~/I, ~/I, 672/I, ~/~, ~7/I, ~0/I, 7~. ~/3. ~/~,<br />

~/3, ~7/~, M/I, ~/I, ~4/~, ~/2, ~, M/~, ~/I, M/I. ~/I, 8~2, ~/I. 8~/2, ~I, ~/I. ~2. ~/5, ~/I, ~/I. ~4. ~/I,<br />

~/14. ~S, 912/4. ~3/I, 9~/I. 9~/~, 9~/~, ~2/4. ~/~, ~/~, 9~/~, ~2/I, ~2. ~I, ~/I, ~/2. ~/2. ~/I; ~ / I , M/I,


158<br />

VICENTE DE P. EMERENCIANO, MARIA AUXILIADORA C. KAPLAN AND OTTO R. GOTTUEB<br />

TABLE 6.--CONTINUED<br />

75611. 757/1, 760/1. 762/1, 88711, 88811, 8~9/1; C/mmaeme/um 28111; ~nthemum 1/2, 112/2. 166/1, 18012, 397/1, 42611. 588/1, 59411,<br />

56211, 67711, 678/1, T/0/1, T/6/2, 79511. 895/2, 912/1. ~6/1, S82/1 ; Co~/a 111, 44'1, 76112. 79511 ; Handelia 25/1, 876/1. 985/1, 96311 ; Lidbectua 761/1 ;<br />

Ma~r~ 111, 120/1, 753/1, g03/1, 905/1, 906/1, 912/1, 932/1, 933/1, 1312/1 ; Osm/I<strong>of</strong>~ 813/1.967/1, ~6/1; Penm;a 775/1; Peymusea 761/1;<br />

Tanace~um 112/t, 182/1, 27~/1, 425/1, 440/1, 58811, ~0/1, ~=84/1, 611/1, 682/1, 67711, 6"/9/1. 875/1, r/6/1. 102o/1; (Am/n/a 156/1, 158/1, 156.5/1, 157/1,<br />

351/1.<br />

13. Amic<strong>in</strong>eee<br />

Anna 104912,1049.§/1, 1190/2, 11~5/1, 11S7/1,1206/1, 1207/2,1206/1, 1209/1, 1211/1, 121511; C/menac~ 11/2; EnOphy//um 11/1, 80/1, 81/1, 83/1,<br />

304/1. 30511, 306/1, 31511, 524/1, 62511, 74011, 74111, 106111;/.a~t~w/e ~S/2, ~6/1. 1Z~1.712; Peucepht4um 285/1.<br />

14. Senecione~e<br />

Bedford= 1050/1.1051/1, 1290/1. 1291/1 ; CacaJb 12~2/2, 134111. 1347/1; Eu~t~os 1267/1,126~/1; Homo91~e 1~92/1. 12¢J~/1. 1300/1; Lygu~r~ 127011.<br />

127612, 1277/1, 12~2/1, 1283/1, 12~8/2. 12~9/1. 1292/30 129S/1. 130011; Pemw~s 1271/2, 1272/1. 1273/2. 1274/2, 1275/2, 1276/3,127711, 1292/4.<br />

1293/1. 129411. 128511. 1297/1, 12S8/1, 130111, 134611; Se~ck, 747/1. 74811, 748/1. ~0/1, 7~1/1, 75211, 126211. 1263/1, 126411,1~6/1, 1278/1. 12"/9/1,<br />

1280/1. 1286/1, 12~7/1. 12~2/1.<br />

TABLE 7. EVOLUTIONARY ADVANCEMENT PARAMETERS OF TAXA<br />

WITH RESPECT TO SKELETAL SiIECJALIZATION AND OXIDATION LEVEL<br />

OF SESQUWERPENE LACTONES<br />

Genera<br />

Taxa EA5 F, Ao<br />

Tribes or families (except Astersceee)<br />

Family (Asteraceae)<br />

TEA5 <strong>of</strong> tribe<br />

[F-Ao <strong>of</strong> tribe<br />

t !<br />

S--ikeletal q~cialization, O--oxidltion level <strong>of</strong> I com¢x)und, n--<br />

number <strong>of</strong> i~ecies <strong>of</strong> the taxo~ <strong>in</strong> which the compound occurs,<br />

t--number <strong>of</strong> tribes.<br />

additionally produces type 1.5 is even more<br />

similar to the Apiaceee, chiefly if the Vemonieae<br />

are considered to be peripheral. The sasquiterpene<br />

lactone data <strong>of</strong> this tribe are close to the<br />

data for Eupetorieee, which, although it was<br />

formerly <strong>in</strong>deed considered to be ak<strong>in</strong> to Vernonieae<br />

[10], is placed <strong>in</strong> Asteroideae group 2 by<br />

Wagenitz [9]. In this group aff<strong>in</strong>ities can be<br />

detected easily by <strong>in</strong>spection <strong>of</strong> the registry <strong>of</strong><br />

the skeletal types (Table 12). Heliantheae, Inuleae<br />

and Anthemideee are def<strong>in</strong>itively very different<br />

from Senecioneas where eremophilanolidas are<br />

formed exclusively.<br />

An EAslEA o correlation (Fig. 9) provides a<br />

dynamic picture <strong>of</strong> this situation, reveal<strong>in</strong>g not<br />

only the aff<strong>in</strong>ity <strong>of</strong> Cichorioideee and Asteroideae,<br />

group 1, the distance <strong>of</strong> Anthemidase from<br />

Asteroideee, group 2 [9], and the relationship <strong>of</strong><br />

Amic<strong>in</strong>eae and Heliantheee [11], all anticipated<br />

on morphological grounds, but also the existence<br />

<strong>of</strong> two major directions <strong>of</strong> sesquiterpene<br />

lactone development. One direction encompasses<br />

the tribes <strong>of</strong> Asteroideee, group 1 and<br />

Cichorioideae, and the pair Vernonieae-Eupetorieae<br />

is <strong>in</strong>deed situated on one <strong>of</strong> its extremes.<br />

The other direction encompasses the tribes <strong>of</strong><br />

Asteroideae, group 2, to which Senecioneae is<br />

only distantly related.<br />

Also <strong>in</strong> a/~s//~ o correlation cluster<strong>in</strong>g <strong>of</strong> po<strong>in</strong>ts<br />

represent<strong>in</strong>g tribes is observed (Fig. 10). Structural<br />

variation <strong>of</strong> sesquiterpene lactones is<br />

TABLE 8. EX1REME S N~ID O VALUES OF SESQUITERPENE LACTONES AND EVOL~Y<br />

ANGIOSPERMS<br />

ADVANCEMENT PARAMETERS FOR FAMlUES OF<br />

~ex s s /~ EA= O 0 ~o EA~<br />

[7] m<strong>in</strong> max m<strong>in</strong> max<br />

Megnolieceae 25 0.13 0.26 0.13 0.20 -1.06 -0.~6 0.40 -0.90<br />

Laursceee 52 0.26 0A0 0.14 0.30 -1.06 -0.26 0.80 -0.83<br />

A~=/~ace~e 51 0.13 0.53 0.40 0,28 -1.06 -0.53 0.53 -0.70<br />

Alterm 72 0.13 0~10" 0.67" 0.32 --1.20 0.00 1.20 --0.78<br />

"The extraord<strong>in</strong>arily high S v~ue$, 0.93 and 1.00, for two r.oml~ourRb we~ excluded.


SESOUrrERI=ENE LACTONES IN ANGIOSPERMS<br />

159<br />

TABLE 9. EXTREME SAND OVALUES OF SESQUITERPENE LACTONES FOR TRIBES OF ASTERACEAE<br />

Basic<br />

chromosome $ S /~s EAt O O<br />

numbers ra<strong>in</strong> rrax ra<strong>in</strong> max<br />

Is]<br />

Cichorioideae<br />

Lactuceae 9, 6, 8, 7 0.13 0.26 0.13 0.25 -1.06 0.40 0.66 -0.68<br />

Am~oid~e, group 1<br />

Vernonieae 10, 8, 9 0.13 0.66 0.52 0.28 -1.06 -0~,6 0.80 -0,56<br />

Liabeae 0.13 0.40 0.27 0~.5 -1.06 -0.66 0.40 -0.82<br />

Mutisieae 9 0.13<br />

,<br />

0.66 0.53 0.21 -1.20 0.53 0.67 -0.85<br />

Cardueae 12, 13, 10 0.13 0.53 0.40 0.24 -1.20 -0.53 0.67 -0.72<br />

Arctoteae 9 0.13 0.26 0.13 0.20 -1.06 -0,66 0.40 -0.85<br />

Asteroideae, group 2<br />

Eupatorie~e 10 0.13 0.66 0.53 0.29 -1.20 -0.13 1.07 -0.61<br />

Helientheae 18, 17, 12, 15 0.13 0.93 0~0 0.40 -1~0 0.00 1.20 -0.72<br />

Helenieae 19, 18 0.26 0.80 0.54 0.53 -1.20 -0.13 1.07 -0.73<br />

Amic<strong>in</strong>eae - 0.13 0.53 0.40 0.36 -0.93 -0.53 0.40 -0.80<br />

" A~tereae 9, 5 0.26 0.53 0.27 0.32 --1.06 -0.26 0.80 -0.92<br />

I~uleae 10, 7, 9 0.13 0.93 0.80 0.33 --1.20 -0.53 0.67 -0.86<br />

Senecloneae 10 0.40 0~0 0.80 0.59 -1 ~0 -0.53 0.67 --0.96<br />

Anthemidese 9 0.13 0.80 0.67 0.27 -1.20 -0.26 0.80 --0.81<br />

TABLE 10. EXTREME SAND OVALUES OF SESQUITERPENE LACTONES AND EVOLUTIONARY ADVANCEMENT PARAMETERS FOR SUBTRIBES OF<br />

THE TRIBE HELIANTHEAE (ASTERACEAE)<br />

Basic<br />

chromosome<br />

numbers $ S /~ s EAs 0 0<br />

[8] ra<strong>in</strong> max m<strong>in</strong> max<br />

/~o<br />

EAo<br />

Melampodi<strong>in</strong>~e 10, 15 0.13 0.66 0.53 0.40 -1.20 0.00 1.20 --038<br />

Z<strong>in</strong>ni<strong>in</strong>ae 11, 14 0.13 0.53 0.40 0.35 -1.06 -0.40 0.66 -0.63<br />

Eclipt<strong>in</strong>ae 15, 16 0.13 0.66 0.53 0.35 --0.93 -0.26 0.67 -0.63<br />

Verbe$<strong>in</strong><strong>in</strong>ae 15, 16, 17 0.13 0.53 0.40 0.26 -0.93 -0.26 0.67 -0.75<br />

Helianth<strong>in</strong>ae 17, 18 0.13 0.53 0.40 0.32 -1.20 -0.26 0.54 -0.72<br />

Gaillardi<strong>in</strong>ae 15. 16, 17. 19 0.26 0.80 0.54 0.54 -1.20 -0.13 1.07 -0.73<br />

Coreopsid<strong>in</strong>ae 12 0.13 0.13 0.00 0.13 -1.06 -0.93 0.13 -1.02<br />

Fitchi<strong>in</strong>ae 0.13 0.26 0.13 0.19 --0.93 -0.80 0.13 -0.90<br />

Bahi<strong>in</strong>ae 8, 9, 10, 12 0.26 0.66 0.40 0.38 --1.06 --0.26 0.80 -0.68<br />

Gel<strong>in</strong>$og<strong>in</strong>ae 8, 9 0.13 0.53 0.40 0.39 -0.80 -0.13 0.67 -0.41<br />

Neurolaen<strong>in</strong>ae 8, 9 0.13 0.40 0.26 0.26 -1.06 -0.53 0.53 -0.85<br />

Engetmani<strong>in</strong>ae 9 0.26 0.53 0.27 0.33 -1.06 -0.53 0.53 -0.80<br />

Ambrosi<strong>in</strong>ae 18 0.13 0.93 0.80 0.47 -1.20 " -0.40 0.80 -0.82<br />

Milteri<strong>in</strong>ae 8, 12. 15 0.13 0.53 0.40 0.13 -0.93 -0.66 0.27 -0.81<br />

smaller for Cichorioideae and Asteroideae,<br />

group 1, than for Asteroideae, group 2. Aga<strong>in</strong><br />

Anthemideae constitute a borderl<strong>in</strong>e case and<br />

Vernonieae is clearly peripheral to group 1. Here,<br />

however, the situation <strong>of</strong> Eupatorieae <strong>in</strong> group 2<br />

admits no doubts.<br />

Many <strong>of</strong> the sesquiterpene lactone types have<br />

been located <strong>in</strong> the subtribes <strong>of</strong> the Heliantheae<br />

(Table 13), one <strong>of</strong> the largest tribes <strong>of</strong> the Aster-<br />

aceae. With respect to their basic chromosome<br />

numbers, the subtribes were classified <strong>in</strong>to four<br />

groups. Two major ones, grouped around Verbes<strong>in</strong>ae<br />

(x-15, 16, 17) and Gal<strong>in</strong>sog<strong>in</strong>ae (x--8,<br />

9), and two m<strong>in</strong>or ones with Coreopsid<strong>in</strong>ae<br />

(x-12) and Milleri<strong>in</strong>ae (x-12) [8] (Table 10). The<br />

EAslEA o correlation <strong>in</strong>dicates that, although EA o<br />

is consistently higher for representatives <strong>of</strong> the<br />

former major group, parallel evolution <strong>of</strong> sesqui-


160 VICENTE DE P. EMERENCIANO, MARIA AUXlLIADORA C. KAPLAN AND O1"1"O R. GoI"rLIEB<br />

TABLE 11. NUMBER OF SESQUITERPENE LACTONES, CLASSIFIED INTO<br />

STRUCTURAL TYPES (FIG. 6), DISTRIBUTED IN FAMILIES OF THE<br />

ANGIOSPERMS<br />

Asteraceae<br />

MAG LAU API ClC AST 1 AST 2<br />

1 8 + + 4 190 291<br />

1F 14 +<br />

1.1 1 24 23 144 288<br />

1.1-- 482<br />

1.2 7 3 9 3 14 309<br />

1.2.1 1 36<br />

1.2.1~ 37<br />

1.2.2 7<br />

1.3 1 183<br />

1.4, 1.7, 1.8. 1.10 100<br />

1.5 1 13 34<br />

1.6 1 33<br />

1.9 2<br />

MAG Magnoli~ceae, LAU Lauraceae, API Apiaceme. Subfamilies <strong>of</strong> the<br />

Asteraceae: CIC Ciehorioideae, AST Asteroldeae groups 1 and 2.<br />

terpene lactone characteristics has occurred <strong>in</strong><br />

both groups (Fig. 11). Especially the EA s parameter<br />

is considerably lower for representatives<br />

<strong>of</strong> the m<strong>in</strong>or gmups. The dependence <strong>of</strong><br />

chromosome numbers and secondary products<br />

chemistry becomes especially conv<strong>in</strong>c<strong>in</strong>g upon<br />

<strong>in</strong>spection <strong>of</strong> the /~s//~o plot (Fig. 12). This<br />

evidences a positive relation to exist for the<br />

t~ansition <strong>of</strong> x 12--,9-,15-,18 and the structural<br />

variation <strong>of</strong> sesquiterpene lactones.<br />

Discussion<br />

It is not <strong>in</strong>tended to suggest that sesquiterpene<br />

lactone data establish a close relationship<br />

between Magnoliaceae and Asteraceae,<br />

although the topic has been discussed [5]. The<br />

relationship between Apiaceae and Asteraceae,<br />

however, has been proposed on micromolecular<br />

TABLE 12. NUMBER OF SESQUITERPENE LACTONES, CLASSIFIED INTO Sll:tUCTURAL TYPES (FIG. 6). DISTRIBUTED IN TRIBES OF THE SUBFAMILIES<br />

CICHORIOIDEAE (CIC) AND ASTEROIDEAE (FAMILY ASTERACEAE)<br />

ClC Asteroideae, group 1 Ast~roideae, group 2<br />

LAC MUT ARC LIA CAR VER EUP ANT HELl HELE ARN INU AST SEN<br />

1<br />

1.1<br />

1.1.1<br />

1.1.1.1<br />

1.1.1.2<br />

1.1.1.3<br />

1.1.1.4<br />

1.1.2<br />

1.1.3<br />

1 .I .4<br />

1.2<br />

1.2.1<br />

1.2.1.1<br />

1.2.1.2<br />

1.2.1.3<br />

1.2.1.4<br />

1.2.2<br />

1.3<br />

1,4<br />

1.5<br />

1.6<br />

1.7<br />

1.8<br />

1.9<br />

1.10<br />

4 12 4 4 39 130 66 70 128 1 8 18 + +<br />

23 2 7 11 82 42 53 153 47 16 3 15 +<br />

1 + 159 117 11 9<br />

2 51 4<br />

2 34 17<br />

4<br />

1 4<br />

1<br />

43 1 3 16 3<br />

4<br />

1<br />

3 5 2 4 3 8 166 71 8 1 49 6<br />

4 1 1<br />

.<br />

5 2<br />

1 33 39 7 98 1 5<br />

2 ~4<br />

7 6 2 30 1 1<br />

1 2 20 1<br />

31<br />

2O<br />

6<br />

6<br />

5<br />

LAC L~"tuce~e, ARC Arcto~ae, LIA Liebe~, MUT Mu~le~e, CAR C~rdu~e0 V~R Vemonleae, EUP Eul~tm'i~e, HEU I.IMienthel~e, HELE Helenieae,<br />

AST Astem~e, INU Inuteae, ANT Aedhemideae, ARN Amic<strong>in</strong>e~e, SEN SenecloneM.


S~SOUITERPI~N~ LACTONES IN ANGIOSI:I~RMS 161<br />

TABLE 13, NUMBER OF SESQUITERPENE LACTONES, CLASSIFIED INTO STRUCTURAL TYPES (FIG 6), DISTRIBUTED IN SUBTRIBES OF THE TRIBE<br />

HEUANTtdE~ (FAMCY ASTER~E)<br />

MEL 71N ECL V~R HEL GAI COR FIT BAH MAD GAL. N£U ENG AMB MIL<br />

1.<br />

1.1<br />

1.1.1<br />

1.1.1.1<br />

1.1.1.3<br />

1,1.2<br />

1.1A<br />

13<br />

13.1<br />

1~3<br />

13<br />

1A<br />

1.5<br />

1~<br />

1~<br />

26 6 4 13 31 2 3 2 + 18 4 19<br />

11 + 4 + 1 3 2 11 10<br />

5 2 4 18 140<br />

8<br />

1 1<br />

2 17 16 21 8 2 3<br />

3<br />

2 5 30 9 39<br />

80 5<br />

27<br />

12 I 3 I<br />

41<br />

1 21<br />

1 2<br />

2<br />

MEL Melampodi<strong>in</strong>ae, ZlN Z<strong>in</strong>niirme, ECL Eclipt<strong>in</strong>ae, VER Vedoea<strong>in</strong>ae, HEL H~lian~<strong>in</strong>ae, GA] Gaillardi<strong>in</strong>~e, COR Co~<strong>in</strong>ae,<br />

Bllhi<strong>in</strong>ae, MAD Madi<strong>in</strong>ae, GAL Gal<strong>in</strong>sog<strong>in</strong>ae. NEU Neurolaen<strong>in</strong>ae. ENG Engelmani<strong>in</strong>ae, AMB Ambroei<strong>in</strong>H, MIL Mtll~ri<strong>in</strong>ae.<br />

FIT Fitc~i<strong>in</strong>ae, BAH<br />

eI.Au<br />

eAP*<br />

OA~T<br />

emJ~<br />

I t !<br />

o.m*O 0.~'~ ~A s 0.~0<br />

FIG. 7. CORRELA'rlON OF EA~ AND EAo PARAMETERS FOR FAMILIES OF ANGIOSPERMS CHARACTERIZED BY THEIR SPORNE INDEXES (cf. Table 8).<br />

For a glossary <strong>of</strong> the three-le~er acronyms see Table 11.<br />

[12, 13] and macromolecular [14] grounds, <strong>in</strong> the<br />

face <strong>of</strong> criticism based on morphological criteria<br />

[15]. Magnoliaceae and Asteracsee were plotted<br />

<strong>in</strong> Figs. 7 and 8 <strong>in</strong> the hope that they might be <strong>of</strong><br />

assistance <strong>in</strong> the solution <strong>of</strong> the rema<strong>in</strong><strong>in</strong>g<br />

problem: the evolutionary polarity <strong>of</strong> the Asteraceae<br />

tribes along the two l<strong>in</strong>es <strong>of</strong> sesquiterpene<br />

lactone development. Does it proceed <strong>in</strong> the<br />

sense <strong>of</strong> structural diversification or simplification<br />

Consider<strong>in</strong>g the location <strong>of</strong> the po<strong>in</strong>t<br />

represent<strong>in</strong>g the Magnoliaceae, it appears that<br />

the former prevails, i.e. that the sequence <strong>of</strong><br />

primitive to advanced tribes <strong>in</strong>volves<br />

Mutisieae-,Vemonieae-Eupatorieae and Astereae-,Heliantheae.<br />

This, however, is unlikely<br />

upon consideration <strong>of</strong> the po<strong>in</strong>t represent<strong>in</strong>g the<br />

Apiaceae (Fig. 9). Its central location, between<br />

the two Asteraceae l<strong>in</strong>eages, makes it improbable<br />

that Mutisieae and Astereae constitute the<br />

basic tribes. Indeed the sesquiterpene lactone<br />

chemistry <strong>of</strong> Apiaceae may have been ancestral<br />

with respect to the analogous chemistry <strong>of</strong><br />

Asteraceae. In this case evolution <strong>of</strong> groups 1<br />

and 2 got under way by <strong>in</strong>crease <strong>in</strong> oxidation


162 VICENTE DE P. EMERENClANO, MARIA AUXILIADORA C, KAPLAN AND 01-tO R, GOTTLIEB<br />

Is, O<br />

~0<br />

UO<br />

OLAU<br />

OAPi<br />

OAa~<br />

O.40 O~m~O<br />

I ..... I<br />

O.OO ¢1~0 ~ s O.O0<br />

FIG. 8. CORRELATION OF /~= AND ~o VALUES FOR FAMIUES OF<br />

ANGIOSPERMS CHARAC~RIZED BY THEIR SFGflNE INDEXES (<strong>of</strong>. Table<br />

8). F(x a glossary <strong>of</strong> the th~e-lmt~r ~onyml m Tolde 11.<br />

state (<strong>in</strong> Vemonieae) and skeletal specialization<br />

(<strong>in</strong> Heliantheae) respectively. Reduction <strong>of</strong> oxidation<br />

state and loss <strong>of</strong> skeletal specialization<br />

followed <strong>in</strong> both cases (towards Mutisieae and<br />

Astereae, respectively). This, however, is only a<br />

work<strong>in</strong>g hypothesis. It will be necessary to <strong>in</strong>sert<br />

<strong>in</strong>to this frame other micromolecular data<br />

appear<strong>in</strong>g as replacement characters, <strong>in</strong> order to<br />

arrive at a clearer picture.<br />

F<strong>in</strong>ally, it was deemed desirable to verify the<br />

strength <strong>of</strong> the present analysis <strong>in</strong> face <strong>of</strong> the<br />

permanent flow <strong>of</strong> new <strong>in</strong>formation. A prioriit is<br />

hoped that the system <strong>in</strong>volv<strong>in</strong>g structural types<br />

and averages <strong>of</strong> chemical characters, rather than<br />

s<strong>in</strong>gle compounds, should lead to more durable<br />

conclusions. This seems to be the case.<br />

The present analysis is based on data assembled<br />

by Fischer et al. [2] and by Seaman [3]<br />

which reviewed the literature up to 1982. Table 14<br />

lists 50 species <strong>of</strong> Asteraceae the composition <strong>of</strong><br />

which became known subsequently. A comparison<br />

<strong>of</strong> their sesquiterpene lactone types and<br />

their EA s and EA o parameters with the analogous<br />

data registered <strong>in</strong> Tables 12 and 9 is <strong>in</strong>structive.<br />

Among the eight new species <strong>of</strong> Mutisieae<br />

(Table 14) predom<strong>in</strong>ate compounds <strong>of</strong> type 1, a<br />

feature shared <strong>in</strong>deed by Mutisieae, Vernonieae<br />

and Heliantheae (Table 12). The two latter tribes,<br />

however, are characterized by considerably<br />

higher EA s and EA o values (Table 9). Among the<br />

three new species <strong>of</strong> Vemonieae predom<strong>in</strong>ate<br />

compounds <strong>of</strong> types 1 and 1.3. This feature and<br />

the high EA o values <strong>of</strong> the species are <strong>in</strong>deed<br />

consistent with the general characteristics <strong>of</strong> the<br />

tribe, as well as <strong>of</strong> Eupatorieae and Heliantheae,<br />

the species <strong>of</strong> the latter, however, possess<strong>in</strong>g<br />

higher F_A s values. Among the seven new<br />

species <strong>of</strong> Eupatorieae predom<strong>in</strong>ate aga<strong>in</strong> compounds<br />

<strong>of</strong> type 1.3 and, reciprocally,<br />

differentiation from Vernonieae is difficult. The 10<br />

new species <strong>of</strong> Heliantheae are dist<strong>in</strong>guished, as<br />

~.o(<br />

OvIM<br />

~l[up,<br />

~.LAG~<br />

X<br />

OcA~<br />

BHEU<br />

~H~'l.j<br />

~OmT<br />

~R~<br />

#L Ej~i., r IDA~N<br />

,~<br />

Iollu<br />

IANT<br />

~ e<br />

0.,1~o ~ lEA=<br />

FIG. 9. CORRELATION OF F..A, AND £A= PARAMETERS FOR TRIOES OF ASTERACEAE BELONGING TO THE SUBFAMIUES CIO4ORIOIDEAE (~) AND<br />

ASTEROIDEAE GROUP 1 ~) AND 2 (~|; ANO FOR APIACEAE (X). For a glossary <strong>of</strong> she ~4otmr ac~mtyms ~e Ta~e 12.


SESOUITERPENE LACTONES IN ANGIOSPERMS 163<br />

TABLE 14. SESOUITERPENE LACTONE DATA FOR RECENTLY ANALYSED SPECIES OF THE ASTERACEAE. FOR A GLOSSARY OF THE THREE-LETI'ER<br />

ACRONYMS SEE TABLE 12<br />

Structural type/<br />

Species Tribe Ref. No. <strong>of</strong> compounds i$oieted EA 5 F_.,4 o<br />

Ano~3ra/a p/nrmt/fida LAC [19] 1.1/1 0.26 --0.53<br />

f.A,~p~c~n ~ s L~C [41] 1A/2 0.40 --0.53<br />

A.~/ea ~gr=ns MUT [28] 1.1/5 0.26 -0.90<br />

D/coma anoma/a ~ub =p. anoma/a MUT [23] 1.3/1 0.13 -0.53<br />

k~m, =ub =p. ckck~des MUT [23] 114, 1.1/2, 1~/3 0~) -0.63<br />

D/coma m~croce/~a/a MUT [23] 113 0.13 -0.80<br />

O. tomentosa MUT [28] 1/4, 1.4/6 0.29 ---0,69<br />

D. sch<strong>in</strong>zii MUT [23] 1/3, 1.2/3 0.20 -0,73<br />

D. zeyheri MUT [23] 1.1/1 0.26 -0.53<br />

Gochna= pardcu/a~a MUT [44] 1.1/1.1.114,1.2/1 0.28 -0.78<br />

Centaurea behen CAR [42] 1.115 0.26 -0.77<br />

Ereman~hus cro=noides VER [16} 1.3/9 0.60 -0.43<br />

E. g/oumeratus VER [16] 1.112 0.40 -0.60<br />

Vemon~ na~a~ens~ VER [31] 1/4 0.13 -0.60<br />

Eupatorium scabridum EUP [35] 1/4, 1.1/4 0.20 --0.61<br />

Li~tris acMota EUP [47] 1.316 0.40 --0.53<br />

L. a~era EUP [47] 1.3/4 0.13 -0~0<br />

L. mucronata EUP [47] 1.3/4 0.40 -0.53<br />

~tev~ monardaefol~a EUP [45] 1.3/1 0.40 -0,93<br />

$. myr~denia EUP [21] 1.1/2 0.28 -0.80<br />

Tni=hogon/o~ mon'i EUP [24] 1/3, 1.211, 1.3/3 0.28 -0.55<br />

Calea angusta HELl [27] 1.3/2 0.53 --0.20<br />

C hymeno/eps~s HELl 128] 1/2 0.33 -0.33<br />

C. ~enuifolia HELl [32] 1/3 0.13 -0.62<br />

C v#losa HELl ]39] 1/2, 1.3/5 0.42 -0.42<br />

Enhyclra fluctuan$ HELl I17] 1.4/6 0.40 --0.28<br />

Hetianthus ant)us HELl [38] 1.3/4 0.33 -0.56<br />

Ich~hyoz~ere term<strong>in</strong>Mis HELl [331 1.4/2 0.46 -0.13<br />

Monanoa tomentosa HELl [25] 1.3/2 0.40 --0.73<br />

Parlhenium hyterophoru$ HELl [20] 1.1.1/2 0.53 -0.80<br />

Wedelia hookeriana HELl [34] 1/4, 1.1/4 0.26 -0.66<br />

Gaillardia arislata HELE [48] 1.1.1/4 0.53 -0.66<br />

Calostel~hane divaricata INU [22] 1.2/5 .0.28 -0.66<br />

Geigeria a~oera vat. asoera INU [18] 1.1/5. 1.2/4, 1.1.2/3, 1.2.1/1 0.38 -0.90<br />

G. brevifolia INU [18] 1.2/4, 1.2.1/1 0.34 -1.06<br />

G burkeisub sp. burkei INU [18] 1.2/2 0.35 -1.15<br />

idem, var. elata INU [18] 1.1.2/1 0.53 -0.93<br />

idem, var. <strong>in</strong>terrnedia INU [18] 1.1/1, 1.1.1/1, 1.1.2/3 0.48 -0.88<br />

/dern, var. zeyheri INU [18] 1.1/1, 1.1.1/1 0.46 --1.06<br />

G. burkeisub ~. diffusa INU [18] 1.2/2. 1.1.2/2 0.53 -0.60<br />

Artemisia herba alba ANT [43] 1/3 0.13 --0.97<br />

A. herba alba ANT [43] 1/3 0.13 -0.97<br />

Inezia <strong>in</strong>tegrifolia ANT [41] 1.1/1.1.2/3 0.28 -0.83<br />

O~anthu$ mari~mu$ ANT [46] 1.1/4 0.28 -0.66<br />

Tanacetum par~eniurn ANT [37] 1.8/1.1.1/10.1.2/1 0.27 -0.74<br />

Lopholaena distichia SEN [30] 1.2.1/5 0.53 -1.17<br />

L. segmentata SEN [30] 1.2.1/6 0.53 -1.08<br />

L. tomentosa SEN [30] 1.2.1/6 0.53 --1.06<br />

Senecio corormtus SEN [36] 1.2.1/9 0.53 -0.61<br />

$. glandulo.pilosus SEN [40] 1.2.1/2 0.53 -1.00


164 VICENTE DE P. EMERENCIANO. MARIA AUXILIADORA C. KAPLAN AND O1-I"O R. GoI-rLJEB<br />

i.+l. o<br />

lHmu<br />

l.OC<br />

mlKuP<br />

mNm'L.ml<br />

~,<br />

~,~<br />

mA|T OYEm m.~r,<br />

&m.~ OoAo ~m~ Im, u<br />

I<br />

B~m~¢ O~A mJmN<br />

m ~.o o.a~ m<br />

~ ~<br />

RG. lO. ~ f l ~ ~ ~s ~D ~ V~UES ~ ~[S ~ ~ BE~GI~ ~ ~E S~I~S C ~ l ~ ~) ~D<br />

~ ~ GR~ 1 ~) ~ 2 ~). F~ m O ~ ~ ~ m ~ r m~n~ m Tm~ 12.<br />

expected, by compounds <strong>of</strong> type 1.4 and by<br />

uniformly high EA s values. The eight new<br />

species <strong>of</strong> Inuleae conta<strong>in</strong> compounds <strong>of</strong> various<br />

types, <strong>in</strong>clud<strong>in</strong>g type 1.2 and possess low EA o<br />

values. The situation for the five new species <strong>of</strong><br />

Anthemideae with respect to type 1.2 is similar,<br />

but F-A s values are considerably lower. All five<br />

new species <strong>of</strong> Senecioneae conta<strong>in</strong> types 1.2.1.<br />

This dist<strong>in</strong>ctive feature, together with very low<br />

EA o and very high F_A s values, make recognitions<br />

<strong>in</strong> this group especially easy.<br />

The global analysis <strong>of</strong> the presem paper thus<br />

not only reveals valid trends, but also shows that<br />

the way is paved to a useful chemosystematic<br />

device for the cla=sification <strong>of</strong> the Asteraceae.<br />

Ackn~me~t--Con~lho Nacional de De~envolvirnento<br />

Cientifico • Tecnolbgi¢o (CNPq) provided a graduate fellowship<br />

(to V. de P, E.).<br />

References<br />

1. Silva, M. F. das G. Fo, Go~iieb00. Ft. sm~ Oreyer0 0. L. (1984)<br />

~ochem. $~st ~co/. 12, 299.<br />

~o<br />

~,film'L<br />

BOiL<br />

~!<br />

mA<br />

Z*N~<br />

h~.<br />

~¥~<br />

~,w.~<br />

~<br />

m,,,mu<br />

B ~<br />

B ~<br />

&~OT<br />

AOOel<br />

o~1,o ~ =~. ~-J<br />

~,~. ~. co~e~ o~ ~, ~o ~ ~ M ~ r~ SuO~lOeS o~ .eu~'r.e,oz. C~,~CTe~'O O~ ~e.~ O~C C.~OMO~O~<br />

NUMBERS, BELONGING TO THE GROUPS CENTERED IN VERBE$1MNA~ t~), GAUNSOGINAE ~), COREOPSIDINAE (~) AND MILLERIINAE (Z~). For a<br />

Oloa~ary <strong>of</strong> the ~me4Ottor acronyms see Tatde 11.


SESQUITERPENE LACTONES IN ANGIOSPERMS 165<br />

OmEL<br />

O.N<br />

0o41<br />

~H|L<br />

0.~'0<br />

nBAH<br />

VBN<br />

nAml<br />

GM~L<br />

&FIT<br />

=~,o o.~o o.&o oJ~<br />

'~s<br />

FIG. 12. ~RRE~ON ~ ~s ~D ~ V~UES FOR SUB~tBES OF flELIA~E~, C~R~R~D BY ~EIR B~IC CHRO~ME NU~ERS,<br />

BEL~I~ TO ~E GR~ ~ED IN VERBESlNIN~ (~), G~INS~I~ ~), C~E~IB~ (~) AND MI~ERIIN~ ~). F~ a glo~w ~ ~<br />

~ r acmn~s ~ Tab~ 11.<br />

2. Rscher, N. H., Olivier, E. J. and Fischer, H. D. (1979) Prog. 22. Bohlmann, F., Jakupovic, J. and Ahmed, M (1962) Phy~o-<br />

Chem. Org. A/eL Prod. :~, 48.<br />

chemistry 21, 2027.<br />

3. Seaman, F. C. (1982) BoL Rev. 4~, 121. 23. Bohlmann, F., S<strong>in</strong>gh, P. and Jakupovic, J. (1982) Phy~o-<br />

4. G<strong>of</strong>fiieb, O. R. (1982) Micromolecular <strong>Evolution</strong>, Systematics chemistry 21, 2029.<br />

and Ecology--An Essay <strong>in</strong>to a Novel Botanical Discipl<strong>in</strong>e, 170 24. Bohlmann, F., Zdero, C., K<strong>in</strong>g, R. M and Rob<strong>in</strong>son, H.<br />

pp. Spr<strong>in</strong>ger, Berl<strong>in</strong>.<br />

(1982) Phy~ochemistry21, 2035.<br />

5. Gershenzon, J. and Mabn/, T. (1983) Nord. J. BoL 3, 5. 25. Quijano, L., Calder~n, J. S., Gbmez, F. and Rico, I. (1982)<br />

6. Hendrickson, J. B., Cram, D. J. and Hammond, G. S. (1970) Phytochernistry 21, 2041.<br />

Organic Chemistry,, 3rd ed., p. 739, McGraw-Hill, New York. 26. Bohlmann F., Mathur, R., Jakupovic, J., Gupta, R. K., K<strong>in</strong>g,<br />

7. Spome, K. R. (1980) New Phytol. 85, 419.<br />

R. M. and Rob<strong>in</strong>son, H. (1982) Phytochemistry21, 2045.<br />

8. Stuessy, T. F. (1977) <strong>in</strong> The Biology and Chemistry <strong>of</strong> the 27. Bohlmann F., Gupta, R. K., K<strong>in</strong>g, R. M. end Rob<strong>in</strong>son, H.<br />

Compos/cae (Heywood, V. H., Harborne, J. B. and Turner, B. (1982) Phytochemistry21, 2117.<br />

L., eds.) Vol. II, p. 621. Academic Press, London. 28, Bohlmann F. and Chen, Z. L. (1982) Phytochemistry 21,<br />

9. Wsgenitz, G. (1976) Plant SysL Evol. 125, 29.<br />

2120.<br />

10. Carlquist, S. (1976) Aliso 8, 465. 29. Bohlmann, F., S<strong>in</strong>gh, P. and Jakupovic, J. (1982) Phyto-<br />

11. Nordenstam, B. (1977)<strong>in</strong> The Biology and Chemistry <strong>of</strong> the chemistry 21, 2122.<br />

Compos/~ae (Heywood, V. H., Harborne, J. B. and Turner, B. 30. Bohlmann F, and Wallmeyer, M (1982) Phylochemistry21,<br />

L., eds.), Vol. II, p. 799. Academic Press, London.<br />

2126.<br />

12. Hegnauer, R. (1971) BoL J. L<strong>in</strong>n. Soc. ~4 (Suppl. 1 ), 267. 31. Bohlmann F. and Zdero, C. (1982) Phy~ochemistry21, 2263.<br />

13. Ferreira, Z. S. and G<strong>of</strong>fiieb, O. R. (1982) 8iochem. SysL Ecol. 32. Lee, I. Y., Olivier, E. J., Urbatsch, L. E. and Fischer, N. H.<br />

10, 155.<br />

(1982) PhytochemisUy21, 2313.<br />

14. Boulter, D., Gleaves, J. T., Haslett, B. G., Peacock, D. and 33. Bohlmann, F., Jakupovic, J., Schuster, A., K<strong>in</strong>g, R. M. and<br />

Jensen, U. (1979) Phytochemistry 17, 1585.<br />

Rob<strong>in</strong>son, H. (1982) Phy~ochemistry21, 2317.<br />

15, Cronquist, A. (1977) Rant Syst. Evol. (Suppl. 1), 180. 34. Bohlmsnn, F., Zdem, C., K<strong>in</strong>g, R. M. and Rob<strong>in</strong>son, H.<br />

16. Bohtmann, F., S<strong>in</strong>gh, P., Zdero, C., Ruhe, Ao, K<strong>in</strong>g, R. M. (1982) Phytochemistry21, 2329.<br />

and Rob<strong>in</strong>son, H. (1982) Phytochemis~'y21, 1669. 35. Herz, W. and Kulanthaivel, P. (1982) Phylochemism/21,<br />

17. Bohlmann, F., Ahmed, M., Rob<strong>in</strong>son, H. and K<strong>in</strong>g, R. M 2475.<br />

(1982) Phytochemis~y21, 1675. 36. Bohlmann, F. and Zdero, C. (1982) Phy~ochemistry21, 2537.<br />

18. Bohlrnann, F, Zdero, C. end Ahmed, M. (1952) Phylo- 37. Bohlmann, F. and Zdero, C. (1982) Phytochemis~y21, 2543.<br />

chemistry 21, 1801. 38. Spr<strong>in</strong>g, O., Albert, K. and Hageer, A. (1982) Phytochemistry<br />

19. Bohlrnann, F. and Gupta, R. K. (1982) Phy~ochernistry 21. 21, 2551.<br />

1799. 39. Bohlmann, F., Gupta, R. K., K<strong>in</strong>g, R. M. and Rob<strong>in</strong>son, H,<br />

20. Pieman, A. K., Baiza, F. and Towers, G. N. H. (1982) Phy/o- (1982) Phytochemism/21, 2593.<br />

chemism/21, 1801. 40. Bohlrnann, F. and Gupta, R. K. (1982) Phytochernisl~/21,<br />

21. Bohlmann, F., Zdero, C., K<strong>in</strong>g, R. M. and Rob<strong>in</strong>son, H. 2595.<br />

(1982) Phwochem/s~'y21, 202_1. 41. Bohlmann, F. end Zdero, C. (1982) Phytochemistry21, 2743.


166 VICENTE DE P. EMERENCIANO, MARIA AUXILIADORA C. KAPLAN AND OTtO R. GOI-rLJEB<br />

42. Oksuz, S., Ulubelen, A., Aynechi, Y. and Wagner, H. (1982)<br />

Phytochemistry 21, 2747.<br />

43. Segal, R., Feuersteis, I., Duddeck, H., Kaiser, M. and Dan<strong>in</strong>,<br />

A. (1983) Phytochemistry22, 129.<br />

44. Bohlmann, F., Ahmed, M., Jakupovic, J., K<strong>in</strong>g, R. M. and<br />

Rob<strong>in</strong>son, H. (1983) Phytochemis~y22, 191.<br />

45. Gbmez, G., Quijano, L., Calderbn, J. S., Perales, A. and<br />

Rios, T. (1983) Phylochemis~ry22, 197.<br />

46. Sabri, N. N., Abd EI-Salan, N. A., Self El-D<strong>in</strong>, A. A. and<br />

Khafagy, S. M (1983) Phy~ochemist~22, 201.<br />

47. Herz, W. and Kulanthaivel, P. (1983) PhytochemistTy22, 513.<br />

46. Gill, S., Dembihska-Migas, W., Zielihska-Stasiek, M.,<br />

Daniewski, W. M. and Wawrzuh, A. (1983) Phytochemistry<br />

23° 599.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!