26.01.2015 Views

3D Localization by Lock-in Thermography - eufanet

3D Localization by Lock-in Thermography - eufanet

3D Localization by Lock-in Thermography - eufanet

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>3D</strong> LOCALIZATION BY<br />

LOCK-IN THERMOGRAPHY<br />

EUFANET – Toulouse – November 2011<br />

Sherm<strong>in</strong> Danaie - Master1 EEATS at Joseph Fourier University Grenoble<br />

Quent<strong>in</strong> Saulnier – STMicroelectronics Grenoble – Failure Analysis<br />

Arnaud Loubaresse – STEricsson Grenoble – Failure Analysis


Purpose<br />

Increas<strong>in</strong>g functionalities <strong>in</strong><br />

mobile phone<br />

System In Package (SIP)<br />

NEW CHALLENGES:<br />

∙ Defect localization <strong>in</strong> <strong>3D</strong> (X,Y,Z) ma<strong>in</strong>ly when dices are<br />

stacked<br />

∙ Non destructive methods<br />

ONE SOLUTION:<br />

∙ Use lock-<strong>in</strong> thermography for Z location of a defect<br />

11/25/2011 CONFIDENTIAL 2


Outl<strong>in</strong>e<br />

• <strong>Lock</strong>-<strong>in</strong> thermography pr<strong>in</strong>ciple<br />

• <strong>Thermography</strong> equipment<br />

• Trial outl<strong>in</strong>e and analysis cases<br />

• Model<strong>in</strong>g for simple cases<br />

• Z measurements with Hamamatsu software<br />

• Conclusion & outlook<br />

11/25/2011 CONFIDENTIAL 3


LOCK-IN THERMOGRAPHY<br />

PRINCIPLE


<strong>Lock</strong>-<strong>in</strong> thermography pr<strong>in</strong>ciple<br />

•Two images (0° & -90°) are converted as below:<br />

Amplitude:<br />

Phase shift:<br />

∙ Phase shift is about propagation time of the wave between<br />

defect and sample surface<br />

∙ Z localization can be theorically found<br />

11/25/2011 CONFIDENTIAL 5


THERMOGRAPHY EQUIPMENT


<strong>Thermography</strong> equipment<br />

∙ Themos 1000 from Hamamatsu is used:<br />

∙ InSb detector, max efficiency between 3.7µm to 5.2µm<br />

∙ Examples of images for the 3 <strong>in</strong>frared lenses (Germanium):<br />

∙ CSP product, silicon thickness around 350µm<br />

0.8X, FOV 12mm*9mm<br />

4X, FOV 2.4mm*1.8mm 15X, FOV 0.64mm*0.48mm<br />

11/25/2011 CONFIDENTIAL 7


TRIAL OUTLINE & ANALYSIS<br />

CASES


Trial outl<strong>in</strong>e<br />

•REF unit reverse biased Diode connected to GND is polarized <strong>in</strong><br />

direct.<br />

•Reference value for phase shift measurement.<br />

•Comparison of phase shift values between REF reverse biased and<br />

FAIL units.<br />

11/25/2011 CONFIDENTIAL 9


Analysis case: back to back device<br />

Problem description and aim of analysis:<br />

bumps<br />

Digital die<br />

wire bond<strong>in</strong>g<br />

Analog die<br />

∙ Case 1: Short-circuit on digital signal<br />

∙ Case 2: Short-circuit on analog signal<br />

TRIAL OUTLINE:<br />

∙ Z localization of defect <strong>by</strong> <strong>Lock</strong>-<strong>in</strong> thermography<br />

∙ Physical characterization of defect<br />

∙ Effect of each layers on phase shift<br />

11/25/2011 CONFIDENTIAL 10


Case 1<br />

REF reverse biased, digital die:<br />

Frequency<br />

(Hz) 10 5 1<br />

Phase ( ) 180 124 60<br />

Fail<strong>in</strong>g unit:<br />

Frequency<br />

(Hz) 10 5 1<br />

Phase ( ) 188 131 68<br />

Hypothesis: Defect is located at digital die level<br />

Themos <strong>Localization</strong> Package Layout X-ray Image<br />

Defect is on wire bond<strong>in</strong>g but Z is very close to die<br />

11/25/2011 CONFIDENTIAL 11


REF reverse biased, analog die:<br />

Frequency<br />

(Hz) 10 5 1<br />

Phase ( ) 229 172 88<br />

Case 2 (1)<br />

Fail<strong>in</strong>g unit:<br />

Hypothesis: Defect is located at analog die level<br />

Frequency<br />

(Hz) 10 5 1<br />

Phase ( ) 240 180 100<br />

Effect of each material on phase shift (F lock-<strong>in</strong> = 10Hz)<br />

100° (thickness: around 140µm)<br />

50° (Process ~10µm)<br />

0° (thickness: silicon 320µm,<br />

glue)<br />

Conclusion:<br />

• Process and res<strong>in</strong> have a great <strong>in</strong>fluence on phase shift<br />

• Silicon and glue have a low <strong>in</strong>fluence on phase shift<br />

11/25/2011 CONFIDENTIAL 12


Case 2 (2)<br />

Check<strong>in</strong>g the hypothesis:<br />

<strong>Thermography</strong> of analog<br />

die after polish<strong>in</strong>g<br />

OBIRCH image<br />

Optical microscope<br />

∙ Analog die is broken<br />

∙ Remark:<br />

• Phase shift of thermal signal at defect level is not null, it’s<br />

around 35°<br />

• This is called Initial Phase Shift<br />

11/25/2011 CONFIDENTIAL 13


MODELING FOR SIMPLE CASES


Thermal wave propagation <strong>in</strong>side a solid<br />

• For isotropic and homogeneous material, Phase shift of thermal<br />

wave between defect (z=0) and surface (z=l)<br />

z=l<br />

Where<br />

µ (<strong>in</strong> mm) is called thermal diffusion length, and is depend<strong>in</strong>g on:<br />

• Thermal conductivity (λ en W/m*K)<br />

• Thermal capacity (cp en J/g*K)<br />

• Density (ρ en g/cm³)<br />

• <strong>Lock</strong>-<strong>in</strong> frequency (f en Hz)<br />

z=0<br />

11/25/2011 CONFIDENTIAL 15


Phase shift (°)<br />

Phase shift vs Z localization<br />

φ(f lock-<strong>in</strong>) for res<strong>in</strong> and silicon:<br />

Silicon<br />

Res<strong>in</strong><br />

Silicium<br />

Rés<strong>in</strong>e<br />

Frequency (Hz)<br />

• As seen dur<strong>in</strong>g trials:<br />

• Res<strong>in</strong> has a great <strong>in</strong>fluence on phase shift<br />

• Silicon has a low <strong>in</strong>fluence on phase shift<br />

11/25/2011 CONFIDENTIAL 16


Check<strong>in</strong>g model<strong>in</strong>g for Case 1<br />

• <strong>Localization</strong> of defect is close to res<strong>in</strong> thickness: Z=140µm<br />

• Res<strong>in</strong> is the only material on top of defect<br />

λ (W/m*K) cp (J/g*K) ρ (g/cm³) μ (mm)<br />

Theorical<br />

phase shift (°)<br />

at f=1Hz<br />

Experimental<br />

phase shift<br />

(°)<br />

at f=1Hz<br />

0,98 1,43 2.03 0.32 25 68<br />

But <strong>in</strong>itial phase shift has to be take <strong>in</strong>to consideration, it’s around<br />

35°.<br />

Theorical: Φ=25° Z=140µm<br />

Trial: Φ=68-35=33° Z=184µm<br />

11/25/2011 CONFIDENTIAL 17


Z MEASUREMENTS WITH<br />

HAMAMATSU SOFTWARE


Z measurements with Hamamatsu software<br />

• Need also to know characteristics below:<br />

• Thermal conductivity (λ en W/m*K), Thermal capacity (cp en<br />

J/g*K) & Density (ρ en g/cm³)<br />

Wire bonded device with 450µm of res<strong>in</strong><br />

• Works f<strong>in</strong>e for simple cases<br />

• Trials performed on <strong>3D</strong><br />

packages but accuracy is not<br />

good enough<br />

Measured:<br />

448µm<br />

11/25/2011 CONFIDENTIAL 19


CONCLUSION & OUTLOOK


Conclusion<br />

• Knowledge on:<br />

• <strong>Lock</strong>-<strong>in</strong> frequency <strong>in</strong>fluence on measurements<br />

• Low frequencies are suitable for Z localization while high<br />

frequencies are better for X/Y localization<br />

• Material <strong>in</strong>fluence on phase shift<br />

• Z localization improvement:<br />

• Relation between Z and phase shift is proven<br />

• Experimental outl<strong>in</strong>e is <strong>in</strong> place<br />

• Model<strong>in</strong>g and Z measurements are work<strong>in</strong>g for simple cases<br />

11/25/2011 CONFIDENTIAL 21


Outlook<br />

• To developed:<br />

• What about Z localization on others <strong>3D</strong> packages like face to<br />

face packages<br />

• Need to work on package description, means to know very<br />

well Thermal conductivity, Thermal capacity & Density (ρ en<br />

g/cm³)<br />

• Create a database with material characteristic<br />

• Keep strong collaboration with Hamamatsu<br />

11/25/2011 CONFIDENTIAL 22


THANK YOU

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!