25.02.2015 Views

Semiconductor Device & Analysis Center Berlin University of ...

Semiconductor Device & Analysis Center Berlin University of ...

Semiconductor Device & Analysis Center Berlin University of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

<strong>Semiconductor</strong> <strong>Device</strong> & <strong>Analysis</strong> <strong>Center</strong><br />

<strong>Berlin</strong> <strong>University</strong> <strong>of</strong> Technology<br />

Christian Boit<br />

TUB <strong>Berlin</strong> <strong>University</strong> <strong>of</strong> Technology<br />

Sect. <strong>Semiconductor</strong> <strong>Device</strong>s<br />

Christian.Boit@TU-<strong>Berlin</strong>.DE<br />

1


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

<strong>Semiconductor</strong> <strong>Device</strong> & <strong>Analysis</strong> <strong>Center</strong> <strong>Berlin</strong><br />

Scope:<br />

• Research: FA Techniques for Faster Turnaround<br />

- Edit techniques on devices<br />

- Physical interactions <strong>of</strong> devices for localization<br />

- Standard solutions (cook book etc.)<br />

- <strong>Device</strong> Design & Characterization<br />

• Education: Full <strong>Device</strong> Development Process<br />

- <strong>Semiconductor</strong> <strong>Device</strong>s in Basic Curriculum<br />

- Full Microelectronic Business Process (FET)<br />

- Failure <strong>Analysis</strong>, Power & Special <strong>Device</strong>s<br />

• Service: Commerical-like Application Lab<br />

- Lab unique for service <strong>of</strong> design verification and<br />

failure analysis processes from chip backside<br />

2


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

<strong>Semiconductor</strong> <strong>Device</strong> & <strong>Analysis</strong> <strong>Center</strong> <strong>Berlin</strong><br />

Resources:<br />

• 1 Lead Engineer (permanent)<br />

• 3 PhD Students based on educational track<br />

• 4 Technical Staff (permanent contracts)<br />

• More PhD Students per cooperation contracts<br />

• State <strong>of</strong> the Art tools Hamamatsu Phemos 1000,<br />

NPTest OPTIFIB, Agilent 83000 Tester<br />

• <strong>Device</strong> Simulation & Know How (FET, Power, PV)<br />

• Sample Preparation Mech, Chem Wet &Dry<br />

• 1000 sqft Small Clean Room Technology<br />

• More than 5000 sqft lab and <strong>of</strong>fice space<br />

3


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

<strong>Semiconductor</strong> <strong>Device</strong> & <strong>Analysis</strong> <strong>Center</strong> <strong>Berlin</strong><br />

Who we are<br />

<strong>Device</strong> Dynamics Make the Difference in Functional <strong>Analysis</strong><br />

Challenges <strong>of</strong> Backside Approach<br />

<strong>Device</strong> Localization with Laser Stimulation<br />

<strong>Device</strong> Repair (Circuit Edit) with FIB<br />

Where we want to go<br />

4


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Photon Emission Basics: Electroluminescence<br />

The Two Basic Mechanisms <strong>of</strong> Photon Emission in IC<br />

P/N Junction:<br />

Reverse Bias<br />

1) Deceleration:<br />

Radiant loss <strong>of</strong><br />

energy gained in<br />

electrical field<br />

Leakage<br />

Current<br />

I<br />

Detection<br />

Limit<br />

V<br />

Forward Bias<br />

2) Injection:<br />

Radiant<br />

Interband<br />

Recombination<br />

5


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Photon Emission Microscopy<br />

Direct defect identification: Gate oxide defect<br />

X5<br />

X25<br />

X0.8<br />

Emission images at magnification:<br />

X 100<br />

6


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Substrate<br />

[µA]<br />

I sub<br />

Correlation <strong>of</strong> MOSFET Light Emission<br />

to Electrical Operation Mode<br />

current<br />

I D<br />

Gate voltage [V]<br />

Drain<br />

[mA]<br />

Light emission and substrate<br />

current vs. gate voltage<br />

Substrate<br />

Current<br />

Gate voltage [V]<br />

Light<br />

Intensity<br />

7


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Dynamic Photon Emission in CMOS<br />

• Photon Emission in<br />

Switching Phase <strong>of</strong> FET<br />

• Required Time Resolution:<br />

30 - 40 ps<br />

• Measurement Challenge:<br />

~ 1 photon / 10 5 events<br />

•Stroboscopic Imaging: IC<br />

Signal Tracing<br />

All figures from J.C. Tsng, Picosecond<br />

imaging circuit analysis<br />

8


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Design Verification: Signal Propagation in IC<br />

visualized with Dynamic Photon Emission<br />

t=3.876ns:<br />

t=4.080ns:<br />

t=6.800ns:<br />

Emission from a<br />

ring oscillator at<br />

various times.<br />

Example: ring oscillator:<br />

Three ‚optical waveforms‘ <strong>of</strong> switching<br />

induced light emission from neighbouring<br />

inverters <strong>of</strong> the ring oscillator;<br />

Vdd -> 0V: high intensity<br />

0V -> Vdd: low intensity<br />

All figures from J.C. Tsng, Picosecond imaging circuit analysis<br />

9


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Design Verification & Failure <strong>Analysis</strong>:<br />

Identification and Localization <strong>of</strong> Erratic <strong>Device</strong><br />

fail<br />

reference<br />

Time integrated image <strong>of</strong> light<br />

from a register file while<br />

running a test pattern<br />

producing a fail<br />

fail<br />

‚optical waveform‘ from normal<br />

and faulty latch pair<br />

All figures from J.C. Tsng, Picosecond<br />

imaging circuit analysis<br />

10


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Why FA through Backside <strong>of</strong> the Die?<br />

New Packages<br />

Multi-Level Metallization<br />

LOC ( Lead On Chip)<br />

Flip-Chip<br />

Die<br />

Flip-chip substrate<br />

Data taken from Fujitsu<br />

11


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Observability <strong>of</strong> <strong>of</strong>Signals with Beam Techniques<br />

Drastically Reduced by byMulti Layer Wiring<br />

DatatakenfromN.Kujietal.,NTT,ESREF97<br />

Image taken from IBM Research Labs<br />

Cu 6<br />

Cu 5<br />

Cu 4<br />

Cu 3<br />

Cu 2<br />

Cu 1<br />

tungsten 1<br />

12


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Challenge <strong>of</strong> <strong>Analysis</strong> Techniques<br />

Through Chip Backside:<br />

IR Optics Resolution vs. Feature Size<br />

13


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Resolution<br />

<strong>of</strong> different<br />

immersion<br />

media<br />

gas, air (a),<br />

liquid, oil(b),<br />

solid, Si (c)<br />

14


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

<strong>Semiconductor</strong> <strong>Device</strong> & <strong>Analysis</strong> <strong>Center</strong> <strong>Berlin</strong><br />

!"#"$%&'()*%+,(%-(./-0,%1-"2(3-"245%5(1+(((<br />

)6'%01-$/0,1#(768%065<br />

./-0,%1-"2(3-"245%5(,*#1/&*(9*%:(;"0


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

<strong>Semiconductor</strong> <strong>Device</strong> & <strong>Analysis</strong> <strong>Center</strong> <strong>Berlin</strong><br />

Who we are<br />

<strong>Device</strong> Dynamics Make the Difference in Functional <strong>Analysis</strong><br />

Challenges <strong>of</strong> Backside Approach<br />

<strong>Device</strong> Localization with Laser Stimulation<br />

<strong>Device</strong> Repair (Circuit Edit) with FIB<br />

Where we want to go<br />

16


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Beam Induced <strong>Device</strong> Stimulation<br />

Set Up:<br />

5678%-,)<br />

8!9<br />

51%#,<br />

*/,)&%:<br />

!"#$%&'<br />

.,/"+, 0*1234,)<br />

()*+,--"$#<br />

.,;&,+4"*$<br />

-"#$%&<br />

17


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Principle <strong>of</strong> Laser Induced Thermal Stimulation<br />

Electrical Signal<br />

responding to<br />

laser stimulation<br />


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Transmission (%)<br />

Thermal Stimulation <strong>of</strong> Silicon <strong>Device</strong> by IR Laser<br />

Intraband Free Carrier Absorption :<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

Si indirect<br />

bandgap<br />

1.0 1.5 2.0 2.5<br />

IR Absorption in Highly Doped Layers:<br />

0.1 to 0.05% <strong>of</strong> 1.3µm Laser power<br />

(c)<br />

(a)<br />

(b)<br />

(d)<br />

Si thickness<br />

625µm<br />

Dopant Conc.<br />

x10 16 cm -3<br />

(a) 1.5<br />

(b) 33<br />

(c) 120<br />

(d) 730<br />

Wavelength (µm)<br />

Local Heating <strong>of</strong><br />

Active <strong>Device</strong><br />

19


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Thermal Laser Stimulation in Metal Wire & in<br />

<strong>Semiconductor</strong> <strong>Device</strong><br />

M2<br />

M1<br />

S/D, typ. 10 19 /cm 3<br />

M1<br />

Cap typ. 10 19 -<br />

Silicide<br />

Poly-Si<br />

10 20 /cm 3<br />

S/D<br />

well, typ. 10 17 /cm 3<br />

Si-Substrate, typ. 10 15 -10 16 /cm 3<br />

Interactions:<br />

Wiring:<br />

<strong>Device</strong>:<br />

20


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Thermal Laser Stimulation in Metal Wire & in<br />

<strong>Semiconductor</strong> <strong>Device</strong><br />

Heat<br />

λ=1.3 m laser illumination<br />

Interactions:<br />

Wiring:<br />

Voltage Alteration<br />

Resistive Change<br />

<strong>Device</strong>:<br />

21


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Heat<br />

reflected<br />

beam<br />

Heat<br />

Thermal Laser Stimulation<br />

in Metal Wire & in <strong>Semiconductor</strong> <strong>Device</strong><br />

laser illumination, λ=1.3 m<br />

Interactions:<br />

Wiring:<br />

Voltage Alteration<br />

Resistive Change<br />

<strong>Device</strong>:<br />

Performance<br />

Reduction<br />

- Mobility<br />

-Vτ<br />

- Speed<br />

22


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Heat<br />

Heat<br />

Heat<br />

t=1ms<br />

Thermal Laser Stimulation<br />

in Metal Wire & in <strong>Semiconductor</strong> <strong>Device</strong><br />

Heat<br />

Interactions:<br />

Wiring:<br />

Voltage Alteration<br />

Resistive Change<br />

<strong>Device</strong>:<br />

Performance<br />

Reduction<br />

- Mobility<br />

-Vτ<br />

- Speed<br />

23


S<strong>of</strong>t Defect Localization - FET<br />

24<br />

Source: Ed Cole<br />

Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

S<strong>of</strong>t Defect Localization<br />

S<strong>of</strong>t Defect: Test Fail occurring<br />

only in special Environment<br />

TUB Research Result:<br />

Quantitative Investigation <strong>of</strong> FET <strong>Device</strong> Parametrics<br />

with Thermal Laser Stimulation to be submitted 10/03<br />

Source:<br />

Ed Cole<br />

25


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

<strong>Semiconductor</strong> <strong>Device</strong> & <strong>Analysis</strong> <strong>Center</strong> <strong>Berlin</strong><br />

=>)(=*6#'"2(>"56#(),%'/2",%1-(1+()1+,(76+60,5?(<br />

@%22(A6(%':1#,"-,(B--18",%1-(%-(>10"2%C",%1-(1+(<br />

B9(768%06(./-0,%1-"2%,4("-$(."%2/#65(<br />

! #%&8+*+,)$%+&9,#84#-&8+/$1+&.+,(',)#%1+<br />

! ?%8+,0*#%8$%9&'(&+((+1*0&01#**+,+8&&&<br />

;@&,+0+#,12&%+1+00#,6&(',&.,'.+,&40+&$%&$%840*,6<br />

26


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

<strong>Semiconductor</strong> <strong>Device</strong> & <strong>Analysis</strong> <strong>Center</strong> <strong>Berlin</strong><br />

D6E,(F6-6#",%1-(>10"2%C",%1-(=60*-%G/65(<br />

H I64?(+/#,*6#(%':#186'6-,(1+(,/#-"#1/-$<br />

A 76,60,%1-(1+(+/#,*6#(5%&-"25(6'%,,6$(A4($68%06J(<br />

%K6K('"&-6,%0(+%62$(L)MNB7O((<br />

A B-,6#"0,%1-(1+(0%#0/%,#4(,%'6($62"4("-$(<br />

:#1:"&",%1-(1+(%-$/06$(5%&-"2(<br />

H )%&-"2(,#"0%-&(P%,*("22("8"%2"A26($4-"'%0(<br />

,60*-%G/65(L>"56#(%-$/06$J(:*1,1-<br />

6'%55%1-J(1,*6#QO((<br />

27


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Outline:<br />

Who we are<br />

<strong>Device</strong> Dynamics Make the Difference in Functional <strong>Analysis</strong><br />

Challenges <strong>of</strong> Backside Approach<br />

<strong>Device</strong> Localization with Laser Stimulation<br />

<strong>Device</strong> Repair (Circuit Edit) with FIB<br />

Where we want to go<br />

28


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Previous Process<br />

<strong>Device</strong> Repair (Circuit Edit) with FIB:<br />

Short Redesign Loop and Access to Cells<br />

Circuit CircuitDesign<br />

Simulation Simulation<br />

Layout LayoutDesign<br />

Mask MaskProduction<br />

Engineering EngineeringSample<br />

Evaluation Evaluation<br />

Production Production<br />

Quality QualityControl<br />

FIB Deposition <strong>of</strong><br />

Probing Pads for<br />

SRAM Cell on<br />

Via1level<br />

(Prep: surface<br />

parallel polishing)<br />

FIB<br />

29


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

The OptiFIB Column<br />

Photon Beam<br />

Ion Beam<br />

Coaxial Photon-Ion Microscope<br />

Simultaneous<br />

Imaging & Editing<br />

Photon Image<br />

Ion Editing<br />

100nm FIB<br />

Placement Accuracy<br />

30


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

M5<br />

M4<br />

M3<br />

M2<br />

M1<br />

FIB Editing <strong>of</strong> ICs through Si Backside<br />

2-5µm<br />

Silicon<br />

Substrate<br />

48 µm<br />

FIB Trench<br />

Very thin remaining bulk Si<br />

- Risks: Flatness, Endpoint, Navigation<br />

ILD1<br />

ILD0<br />

Transistor Level<br />

31


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

Voltage Contrast by Silicon Active Volume<br />

TUB Research<br />

Result:<br />

FIB Image<br />

Contrast <strong>of</strong> n-<br />

Wells for<br />

- Endpoint Control<br />

and<br />

- Navigation<br />

to be presented at<br />

ESREF & ISTFA 03<br />

32


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

M1<br />

Endpoint Detection for Active Si Volume<br />

M1<br />

n+ n+ - p+ p+<br />

+<br />

+<br />

p-well<br />

- n-well<br />

+ + + + + + + + +<br />

-<br />

- - - -<br />

Si-p-Substrate<br />

- - - -<br />

Scanned Ion<br />

Beam<br />

700nm<br />

4 µm<br />

• Ion Beam<br />

removes<br />

material<br />

33


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

M1<br />

Endpoint Detection for Active Si Volume<br />

M1<br />

n+ n+ - p+ p+<br />

+<br />

+<br />

p-well<br />

- n-well<br />

+ + + + + + + + +<br />

-<br />

- - - -<br />

Si-p-Substrate<br />

- - - -<br />

+ + + + + + + + +<br />

700nm<br />

4 µm<br />

• Ion Beam<br />

removes<br />

material<br />

• and implants<br />

Ga ions into<br />

the back<br />

surface.<br />

34


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

M1<br />

Endpoint Detection for Active Si Volume<br />

M1<br />

n+ n+ - p+ p+<br />

+<br />

+<br />

p-well<br />

- n-well<br />

+ + + + + + + + +<br />

-<br />

- - - -<br />

Si-p-Substrate<br />

- - - -<br />

+ + + + + + + + +<br />

e-<br />

e-<br />

700nm<br />

4 µm<br />

• Ion Beam<br />

removes<br />

material<br />

• and implants<br />

Ga ions into<br />

the back<br />

surface.<br />

• Influence <strong>of</strong><br />

SCR causes<br />

contrast <strong>of</strong><br />

secondary<br />

particle<br />

emission rate<br />

35


Section <strong>Semiconductor</strong> <strong>Device</strong>s / C. Boit ’<br />

<strong>Semiconductor</strong> <strong>Device</strong> & <strong>Analysis</strong> <strong>Center</strong> <strong>Berlin</strong>:<br />

Wherewewanttogo<br />

• Establish TUB as Solution <strong>Center</strong> for Advanced<br />

<strong>Analysis</strong> Problems in Electronic <strong>Device</strong>s<br />

Microelectronics:<br />

• Dynamics <strong>of</strong> <strong>Device</strong> and <strong>Analysis</strong><br />

• Pervasive Techniques (i.e. SQUID)<br />

• Focused Ion Beam Processes for Edit in Si<br />

Power <strong>Device</strong>s & Compound <strong>Semiconductor</strong>s:<br />

• Adaption <strong>of</strong> Localization Techniques to Discrete<br />

<strong>Device</strong>s, Band Gap and Mechanisms <strong>of</strong> Direct SC<br />

• Adaption <strong>of</strong> FIB processes to Material Components<br />

36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!