11.07.2015 Views

Low frequency noise \(1/f and RTS\) in submicron MOSFETs - Free

Low frequency noise \(1/f and RTS\) in submicron MOSFETs - Free

Low frequency noise \(1/f and RTS\) in submicron MOSFETs - Free

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3From the analysis of RTS-, 1/f- <strong>and</strong> thermal-<strong>noise</strong> <strong>in</strong> MOSTs weexpla<strong>in</strong> that faster devices are noisier.Expla<strong>in</strong> why low <strong>frequency</strong> <strong>noise</strong> is a good diagnostic tool <strong>and</strong>show how current crowd<strong>in</strong>g will enhance 1/f <strong>noise</strong>. The shot<strong>noise</strong>, 1/f <strong>noise</strong> <strong>and</strong> generation-recomb<strong>in</strong>ation (RTS-) <strong>noise</strong> areimportant for quality assessment <strong>in</strong> e.g., diode type devices like:solar cells, laser diodes, LEDs, avalanche photo diodes <strong>and</strong> bipolartransistorsApplications are e.g.,: contacts, conductive adhesive jo<strong>in</strong>ts, thick<strong>and</strong> th<strong>in</strong> film resistors, parasitic series resistance or parallelconduction paths <strong>in</strong> devices like <strong>in</strong>: <strong>submicron</strong> MOS-, MES-,<strong>and</strong>MODFET <strong>and</strong> poly silicon emitter BJT <strong>and</strong> HBT.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


4Why knowledge of the physical orig<strong>in</strong> of <strong>noise</strong> isimportant?a. Stochastic fluctuations set a detection limit to measur<strong>in</strong>g systems<strong>and</strong> telecommunication systemsb. Noise can be used for reliability assessment of devices.c. Know<strong>in</strong>g the physical orig<strong>in</strong> of <strong>noise</strong> can help to reduce <strong>noise</strong>:Thermal <strong>noise</strong>, Brownian motion (resistance-type devices: T↓, W↑)Shot <strong>noise</strong>, stochastic emission (diode –type devices: avoid microplasmadue to non uniform fields <strong>in</strong> reverse biased (FET) junctions)Generation recomb<strong>in</strong>ation-, <strong>and</strong> RTS <strong>noise</strong> (∆N→∆σ→∆R: avoidtraps)1/f <strong>noise</strong> (∆µ→ ∆σ →∆R: N or N eff not too low)L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


52. Some def<strong>in</strong>itions <strong>and</strong> remarks [1-4]Electrical <strong>noise</strong> is a real stochastic signal often described <strong>in</strong> terms ofvariance (σ 2 ), rms values or st<strong>and</strong>ard deviation (σ), average absoluteamplitudes (∆I ) or relative absolute amplitudes, e.g., ∆I / I, correlationfunction, C (τ), amplitude distribution function (pdf) or spectral <strong>noise</strong>density (S x (f)). There is a difference between: amplitude spectrum [x]<strong>and</strong> power spectrum [x 2 ], both are l<strong>in</strong>e spectra for periodic functions.The power density spectrum [x 2 / Hz] of the <strong>noise</strong> is cont<strong>in</strong>uous .Power often means x 2 , not Watt.”x” can be a fluctuation <strong>in</strong> time of voltage V, current I, resistance R,optical power P [Watt], magnetization (Ni / Fe), ext<strong>in</strong>ction coefficientof an optical fiber, or height along a l<strong>in</strong>e (surface roughness) [x 2 /(1/x)].Spectral density, S x (f) <strong>and</strong> correlation functions C(τ) of physicalquantities are real <strong>and</strong> we use positive frequencies.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


6Correlation functions: C 2 (τ) is a two-po<strong>in</strong>t correlation function [x 2 ]C 2 (τ) = ,C(τ) = C 2 (τ) <strong>and</strong> S (f) are two differentrepresentations of x (t). The cos<strong>in</strong>e transform or the Wiener-Kh<strong>in</strong>tch<strong>in</strong>e theorem or the so- called Fourier transform of C(τ)gives S(f):S(f )=4∞∫0C( τ)cos2πfτ.dτSpectral density Sx (f) is also def<strong>in</strong>ed as the variance of a b<strong>and</strong>pass filtered x (t), that becomes per b<strong>and</strong>width ∆f at<strong>frequency</strong> fVariance 2 2∫ ∞0Sx( f ) df = ( ∆ x ) =σL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


73. Analogue <strong>noise</strong> measurement set-up [5, 5a, 5b]AAC amplifier <strong>and</strong> sample <strong>in</strong> a cage of Faraday <strong>and</strong> output at A ismonitored with oscilloscope for 50Hz, 150Hz parasitic, do we have“normal Gaussian <strong>noise</strong>”, clipp<strong>in</strong>g or oscillations? At B, the signallooks like amplitude modulated carrier at <strong>frequency</strong> f with r<strong>and</strong>omenvelope if ∆f is small enough, ∆V f (t). Variance of b<strong>and</strong> pass filtered<strong>noise</strong> divided by ∆f gives the power spectral density: ∆V 2 f(t)S V≡L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004∆fB


8FFTFast Fourier Transform (FFT) systems (Spectrum analyzer) are basedon:“periodic” <strong>in</strong> a time block of duration T, it will give a l<strong>in</strong>e spectrum.sampl<strong>in</strong>g on x(t)Power spectrum / ∆f = power spectrum x T Power densityspectrum <strong>in</strong> e.g., V 2 /Hz or V 2 sT 2 2S(fa) ≈ ( an+ bn) with fa=2" harmonics"On the next slide some FFT artefacts with rectangular w<strong>in</strong>dow<strong>in</strong>gnTL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


FFT of a s<strong>in</strong>e wave of 1Hz, T = 1s; 1.25s; 1,5s → f 1 =1, 0.8, 0.66 Hz9L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


Thermal- <strong>and</strong> 1/f <strong>noise</strong>, <strong>in</strong> time- <strong>and</strong> <strong>frequency</strong> doma<strong>in</strong>, decomposition10V=I.(R+∆R)Top: thermal <strong>noise</strong>,bottom left <strong>and</strong> below:the 1/f <strong>noise</strong> <strong>in</strong> time <strong>and</strong><strong>frequency</strong> doma<strong>in</strong>, at highfrequencies the thermal<strong>noise</strong> always becomesvisible <strong>and</strong> can be usedfor calibrationS V(V 2 /Hz)S2∆Vf(t)∆f10 -11 figuur 2V≡10 -12 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 f (Hz)10 -13V = V + ∆V+V th10 -1410 -1510 -16L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


111. Thermal <strong>noise</strong>II. Noise Sources [6-11]Sv = 4 kTR <strong>and</strong> SI= 4kT/Johnson or Nyquist-<strong>noise</strong>: Phys Rev, 32 (1928)no 1, pp 97-113.R→ R eal [Z] <strong>and</strong> 1/R→ R eal [Y] white <strong>noise</strong> for 0 < f < 3x10 12 HzPhysicists avoid problems at f → ∞by replac<strong>in</strong>g “kT ” withEng<strong>in</strong>eers <strong>and</strong> material scientists multiply S V by 1/(1 + (fwith f 0 = 1/2πRC; τ = RC is a circuit time constant or the dielectrictime constant τ diel : τ with 0.1s > τ diel >10 -12 s fordiel= εoεr/ qµnmost dielectrics <strong>and</strong> for metals.We observe <strong>in</strong> a b<strong>and</strong>width ∆f a variance of the voltage or currentfluctuations given by = 4kTR ∆f or = (4kT/R) ∆fL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004R/ fo)2e)hfhf / kT−1


12Equivalent circuit for network analysis ( SPICE ) with test sourcesA <strong>noise</strong> free resistor with a <strong>noise</strong> voltage <strong>in</strong>series or a <strong>noise</strong> current <strong>in</strong> parallel. The opencircuit resistance is not heated by the current<strong>noise</strong> source. The short circuited resistor isnot heated by the <strong>noise</strong> voltage! Equivalent,means equal to a certa<strong>in</strong> level !eeeen1n1n2n=.e≠=n2eeen2= 0n12n1++= 0een22n2L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004Independent <strong>noise</strong>sources are added <strong>in</strong>squarred values, not <strong>in</strong>nV/√Hz


13Orig<strong>in</strong> of thermal <strong>noise</strong>Brownian motion (1827) of free charge carriers (electrons 1897)R<strong>and</strong>om motion of particles <strong>in</strong> a fluid (1827-1900) <strong>in</strong> plants, organic<strong>and</strong> <strong>in</strong>organic material; due to light?; due to evaporation?; persistafter a year!; smaller particles move faster; motion <strong>in</strong>creases withtemperature; molecular impact;In analogy: electrons with<strong>in</strong> a conductor’s lattice make a r<strong>and</strong>omwalk at T > 0K. Average k<strong>in</strong>etic energy of an electron:E 1 m*v2 th(3/ 2)kT2=kT= v 3 2th= ≈ 107 cm / s at T = 300Km*17nm < λ = v th τ < 300 nm for 50 < µ ( cm2 /Vs ) < 16000L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


14For f < f c holds: for the short circuit current fluctuations S I = 4kT/R<strong>and</strong> for the open circuit voltage fluctuations S V = S I R 2 = 4kTRThermal <strong>noise</strong> is <strong>in</strong>dependent of dc or ac current passed throughthe resistor. A temperature raise due to power dissipation can be taken<strong>in</strong>to account by adapt<strong>in</strong>g T <strong>in</strong> the above equations. Ohms law, <strong>and</strong> thesimple S V = 4kTR holds if collision time τ is not <strong>in</strong>fluenced by the field(v drift < v th ).We can expect deviations, if there are no collisions, (e.g. at 0 K at f >f c (THz) <strong>in</strong> very short time <strong>in</strong>tervals <strong>and</strong> for resistors with a length L


15Remarks on thermal <strong>noise</strong>:Thermal <strong>noise</strong> is reduced by lower<strong>in</strong>g the temperature, e.g., cryogenicapplications <strong>in</strong> satellites. In MOSFET design, very often wide <strong>and</strong> shortchannels are chosen to reduce equivalent <strong>in</strong>put thermal <strong>noise</strong> voltage.Thermal <strong>noise</strong> <strong>and</strong> resistance measurements are used to measure thetemperature <strong>in</strong> hostile environments (neutron flux <strong>and</strong> other ioniz<strong>in</strong>gradiation).Equivalent voltage <strong>noise</strong> at the <strong>in</strong>put of amplifier (S V<strong>in</strong> = S Vout / G 2 ) areoften expressed <strong>in</strong> an equivalent <strong>noise</strong> resistance(@ 289K) or equivalent<strong>noise</strong> temperature (has noth<strong>in</strong>g to do with the real device temperature).R eq <strong>and</strong> T eq are equivalent <strong>noise</strong> parameters def<strong>in</strong>ed bySv <strong>in</strong>= 4kTReq( f )<strong>and</strong>Svsystem+ 4kTRTeq ( f ) = T + ∆T=>4kRL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004T


162. Shot <strong>noise</strong> [8]Stochastic emission of electrons is often like a Poisson process. Ifthe average transit time is t 0 = τ <strong>and</strong> G is the generation rate (s -1 ) ofelectrons at the cathode, then we have at the average = G. t 0cross<strong>in</strong>g electrons underway. The <strong>noise</strong> is <strong>in</strong> the emission-time <strong>and</strong>also <strong>in</strong> the transit-time due to <strong>in</strong>itial velocity fluctuations.Nqτ2∆Nq22 qI = ∆I=( ∆I ) = ( ∆N )2ττ222 q qPoisson ⇒ ( ∆N) = N ( ∆I ) = N = I2τ τC(t) = 0 for t > t 0 (no overlap <strong>in</strong> populations) <strong>and</strong> for 0 < t < τC(t)=( ∆I)2(1−t/τ)L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


S IS∞= 4∫C(t)cosω t.dt ⇒ C(τ ) = for t > τI0=o4qIτ(1 −)cos∫ ω tτ τ0( f ) = 2qIfor f


183. Generation Recomb<strong>in</strong>ation Noise [10]∆N( t)=∆N(0) e− t /τN is number of free electrons, notconcentration, τ is lifetime of ∆N2 4τS n( f ) = ( ∆N)21 + (2πfτ)electener<strong>and</strong>∞∫01 +GRConductionb<strong>and</strong>b<strong>and</strong>gaptrapsGeneration-recomb<strong>in</strong>ation fromtraps4τdf = 12(2πfτ)2( ∆N ) =N?Is the smallest value of N, the number of full traps<strong>and</strong> the number of empty traps. It depends on E F .L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


19One s<strong>in</strong>gle trap (∆N=1) <strong>and</strong> low N ==> RTS-<strong>noise</strong>; ∆I/I = ∆G/G =∆N/N = 1/N10Lorentzian-spectrum2S N / (4τ ∆ N )τ can be read from the spectrum10−6< τ [ s] f c = 1/2πτ [Hz] >1610 -210 -22πfτ10 -1 1 10L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


204. Burst <strong>noise</strong>, popcorn <strong>noise</strong>, RTS <strong>noise</strong> [9,11-14]RTS-<strong>noise</strong> is a special case of generation recomb<strong>in</strong>ation <strong>noise</strong> withone s<strong>in</strong>gle trap, ∆N = 1, if τ e = τ c then = ¼ , has its highestvalueTwo level <strong>noise</strong> <strong>and</strong> superimposed 1/f <strong>noise</strong> <strong>in</strong> time doma<strong>in</strong><strong>and</strong> its amplitude propability density function (pdf)L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


21Pure RTS without 1/f <strong>noise</strong> component has a Lorentzian spectrum.SISS4τI v Np= = = K⇒1/τp= 1/ τe+2 2 22V N 1+(2πfτp)RTS is a problem of <strong>submicron</strong> devices with traps, e.g., <strong>in</strong> diode typedevices with dislocations <strong>in</strong> sensitive areas <strong>and</strong> <strong>submicron</strong><strong>MOSFETs</strong> with a low number of carriers. RTS is a poor (traps)device <strong>in</strong>dicator. For strong asymmetric <strong>noise</strong> holds 2 → 0.Symmetric traps can become asymmetric <strong>in</strong> a MOSFET, by apply<strong>in</strong>gswitch<strong>in</strong>g bias, but asymmetric ones can become symmetric21< ∆N> =2 + τ / τ + τ / τL.K.J. V<strong>and</strong>amme / Noise / 26-02-20041/ τ2∆N1 τp τeτcK ≡ ⇒ or K = . =2222NN τ + τ N ( τ + τ )eeccceecc


22Analysis of RTS <strong>in</strong> time <strong>and</strong> <strong>frequency</strong> doma<strong>in</strong> [13,14]V(t)8⋅10 4pdfLED#4kpdf examplesa6⋅10 4ϑi4⋅10 4Solid l<strong>in</strong>e: I d =2.15⋅10 -6 ADoted l<strong>in</strong>e: I d =1.53⋅10 -4 AV 00t-bτi2⋅10 40U, Volt-10 -4 -5⋅10 -5 0 5⋅10 -5 10 -4 2⋅10 -4The waveform of the measured <strong>noise</strong>displayed by the oscilloscopeThe probability densityfunction of the raw <strong>noise</strong>L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


Detection of <strong>noise</strong> <strong>in</strong> <strong>noise</strong>V(t)a23ϑiTotal <strong>noise</strong>: V(t) = V 1/f(t) + V RTS(t)V 00-bτitState “1” (V(t) > V 0 ):State “0” (V(t) < V 0 ):V 1/f(t) = V (1) (t) – a ; V RTS(t) = +aV 1/f(t) = V (0) (t) + b ; V RTS(t) = −bV 0 threshold voltage to be found us<strong>in</strong>g the st<strong>and</strong>ardsignal detection theory <strong>in</strong> the <strong>noise</strong> backgroundL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


8⋅10 46⋅10 4The pdf of the raw <strong>noise</strong>:pdfLED#4kpdf examplesNoise reconstructionW V( V )=q2πσ⎛⎜( V + b)exp−2⎝ 2σ2⎞⎟+⎠2 2 2p2πσ⎛⎜( V − a)exp−2⎝ σ2⎞⎟⎠244⋅10 42⋅10 4Solid l<strong>in</strong>e: I d=2.15⋅10 -6 ADoted l<strong>in</strong>e: I d=1.53⋅10 -4 AU, Volt0-10 -4 -5⋅10 -5 0 5⋅10 -5 10 -4 2⋅10 -4p = /( +)q = /( +)Probabilities forstates “1” <strong>and</strong> “0”Likelihood relation:Λ(V )=⎛p exp⎜−⎝( V− a)2σ22⎞⎟⎠⎛⎜( V + b)q exp−2⎝ 2σV(t)2⎞⎟⎠Λ =1V0=a−2b+2σa + blnabV 00aϑitL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004-bτi


25Obta<strong>in</strong>ed results after detection reconstructionaV 00-bVV 1/ft10 -12 S V, V 2 /Hz10 -1310 -14RTS1/fRAWIf 1/f <strong>and</strong> RTShave a differentdependence onbias, then thereis a differentphysical orig<strong>in</strong>0t10 -15a0-bV RTS10 -16t10 10 2 10 3 10 4L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004f, HzRaw <strong>noise</strong> spectrum <strong>and</strong> its decomposition <strong>in</strong> a1/f <strong>and</strong> RTS


265. 1/f Noise [15-19]For metal-, semiconductor-, organic- samples with perfect contacts, holdsan empirical relation for the 1/f conductance fluctuations. Spectra are 1/f γwith 0.8< γ


27a) Experimental facts on 1/f <strong>noise</strong>1. For I = 0 → S R ∝ 1/f already exists as a conductance fluctuation <strong>in</strong>equilibrium.2. For I (dc) → S V = I 2 S R ∝ 1/ f (Ohm, ∆V = I∆R).3. I (ac)→ S V ∝ 1/( f c ±f ) ∝ 1/∆f<strong>noise</strong>(up conversion of 1/f <strong>noise</strong>→phase <strong>noise</strong> <strong>in</strong> RF) (best values dependon f o ,-100 dB < dB c @ 10 kHz < -90 dBfor 10 -14 < C < 10 -13 ).4. Observable <strong>in</strong> homogeneous sampleswith a number of carrier N between 10 7<strong>and</strong> 10 14 . For N < 10 7 often homogeneityproblems, RTS-<strong>noise</strong> on top of 1/f, for N>10 14 detection problems, always 4kTR.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004dB = 10Logc∆f = 10kHzSPP2c


285. ∆ρ is not due to ∆T: because samples with a negligible smalltemperature coefficient have the same 1/f <strong>noise</strong> as samples with anormal ∆R/R∆T=∆ρ/ρ∆T=-∆µ/µ∆T∆ρδ.∆Tµ ∝ T −δ ⇒ log µ = −δlogT + A ⇒ = ⇒ δ → 0 ⇒ ∆ρρ T6. omnipresent as a bulk phenomenon (S V /V 2 ∝ 1/N) <strong>in</strong>:metals (solid-liquid), semiconductors, polymers (homogeneous,contacts) <strong>in</strong> dielectrics like optical fibers as a 1/f fluctuation <strong>in</strong> theattenuation coefficient, <strong>in</strong> magnetization fluctuations <strong>in</strong> magnetoresistivesensors (NiFe) <strong>and</strong> <strong>in</strong> devices like: (photo) diodes, laserdiodes, BJT, HBT, JFET, MESFET, MODFET <strong>and</strong> MOSFET.Exist also <strong>in</strong> non electronic systems: loudness <strong>in</strong> music; heartbeatfluctuations; electro encephalic-graphs dur<strong>in</strong>g sleep or <strong>in</strong> the state ofattention→0L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


30About the 1/N dependence, N <strong>in</strong> the empirical relation does notsuggest number fluctuations → <strong>noise</strong> source is distributed uniformly<strong>in</strong> the volumeN∆σ∆N∆µ= + ⇒ ∆Nor ∆µor both? ⇒ G ∝ ∑ µσ N µii=1Mobility fluctuationsG ∝ N µ∆22G ∝ N ∆µiNumber fluctuations2⎛ ∆G⎞ ⎛ ∆N⎞G ∝ N µ ⇒ ⎜ ⎟ = ⎜ ⎟⎝ G ⎠ ⎝ N ⎠Poisson, or sub-Poissonian <strong>in</strong> bulk2∆N = pN with p = 1 or∆N 2 = pN [p < 1]⎛ ∆G ⎞2⎜ ⎟ =⎝ G ⎠pN⎛ ∆G⎞⎜ ⎟⎝ G ⎠L.K.J. V<strong>and</strong>amme / Noise / 26-02-200422=N∆µN2µ2i2=1N⎛⎜⎝∆µµi⎞⎟⎠Or traps at <strong>in</strong>terface, Fermiwith1∆N2=⎛ ∆G⎞⎜ ⎟⎝ G ⎠1N2+1N+21tP t=∆N2N2


31About N eff [17, 20,21]1/f <strong>noise</strong> is only detectable above thermal <strong>noise</strong> for N < 10 14 [71] (MOST;t ox = 2nm, L = 0.2µm, W = 2 µm, V G*= 46mV N = 2x10 3 )Inhomogeneous current density (current crowd<strong>in</strong>g) <strong>in</strong> homogeneousmaterial: N must be replaced by N eff


32Experimental facts <strong>in</strong> favor of a bulk orig<strong>in</strong> for the 1/f <strong>noise</strong> [19,22-24]The relative 1/f <strong>noise</strong> at 1 Hznormalised versus N for Pt (dots), Au(full l<strong>in</strong>e) <strong>and</strong> GaSb (solid triangles).The dotted l<strong>in</strong>e is calculated withα=10 -4 <strong>and</strong> the full l<strong>in</strong>e [19, 22,23](Au <strong>and</strong> GaSb) with α=10 -3← metals, Au, Pt, GaSb; Si ↑ holds over morethan 5 orders of magnitude <strong>in</strong> volumeα-values for silicon samples with different volume.α is not a strong function of temperature <strong>and</strong> isvolume <strong>in</strong>dependent. Open circles: n-Si at 300 K;dots:p-Si at 300 K; black squares: p-Si at 77 K;open squares : n-Si at 77 K [24]L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


338. ∆µ→∆ρ, 1/f-fluctuations are <strong>in</strong> the lattice scatter<strong>in</strong>g →∆µ <strong>and</strong>α-value is a parameter [25-27]Experimental values of α versus µ/µ lattat 300K. Circles denote p-type Ge withresistivities <strong>in</strong> the range of 4.5x10 -4Ωcm < ρ< 50 Ωcm.Crosses (+) denotes n-type GaAs with ρ= 2.7x10 -3 Ωcm.Squares denote MBE grown GaAslayers with thickness between 3.2 µm<strong>and</strong> 10 µm <strong>and</strong> electron concentrationbetween 2.5x10 14 cm -3 < n < 10 17 cm -3 .Solid l<strong>in</strong>e: α proportional to µ 2L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


34Physical orig<strong>in</strong> for ∆µ due to 1/f fluctuations <strong>in</strong> lattice scatter<strong>in</strong>g [25]1 1 1= +Hypothesis: ∆µ latt ≠ 0 <strong>and</strong> ∆µ Coul = 0 ⇒µ µ latt µ Coul⇒dµ 2 =µdµµlatt2latt<strong>and</strong>⎛ ∆µ⎞⎜ ⎟⎝ µ ⎠2=⎛⎜⎝µµlatt⎞⎟⎠2⎛ ∆µ⎜⎝ µlattlatt⎞⎟⎠2⇒⇒SSR α meas µ ⎛ µ2 2R Nf µ µ ⎟ ⎞= = =⎜⎝ latt ⎠2αNflattαmeas=2( µ / µ ) latt αlatt<strong>and</strong>⎛⎜⎝D=µkT⎞⎟⇒q ⎠∆µ=µ∆DDL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


359. 1/f <strong>noise</strong> is <strong>in</strong> the lattice scatter<strong>in</strong>g [25]α⎛ µ ⎞= ⎜ ⋅αµ⎟⎝ latt ⎠2lattA low α-value can mean a lot of impurity scatter<strong>in</strong>g, hence a low µbut an acceptable crystal quality.α-values can be low <strong>in</strong> semiconductors with a high crystal qualityeven if µ ≈ µ latt.On top of the ubiquitous lattice scatter<strong>in</strong>g there may be numberfluctuations of the McWhorter-type or several generationrecomb<strong>in</strong>ation contributions. This often leads to 1/f-like spectra~1/f γ with a <strong>frequency</strong> exponent 1.15 < γ


36α is not a constant, <strong>and</strong> not predictable with a high precision [23, 60]α versus thickness ton bismuth samples1/λ = 1/λ b + 1/t [28]α vs V G [29], <strong>in</strong>n-type Si layer.α is high ifcarriers are atthe surface <strong>in</strong>accumulation.In depletion(carriers awayfrom surface)low α-valuesare observedL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


37-3log10. α depends oncrystal quality-4-5-1T an (K -1 )-68 x10 -4 1.5x10 -3α vs reciprocal anneal temperature<strong>in</strong> boron implanted S i. The dots areobta<strong>in</strong>ed at T = 300K, the squares<strong>in</strong>dicate results at T = 77K. The dottedl<strong>in</strong>e through the results at 300K showthe proportionality with activationenergy of 1.1eV. [30, 31]α versus versus proton flux <strong>in</strong> irradiated n-GaAs. α-values at T = 78 K (•) <strong>and</strong> at T = 295K (0) versus irradiation doses Φ. The solidl<strong>in</strong>e shows proportionality between the lowtemperature α-values <strong>and</strong> proton irradiationdose Φ. The dose-<strong>in</strong>dependent α-values@300K (broken l<strong>in</strong>e)[32]L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


38Remedies to reduce 1/f <strong>noise</strong>1/f <strong>noise</strong> is <strong>in</strong>herent <strong>in</strong> the conduction <strong>and</strong> cannot be avoided. Devicescan be designed <strong>in</strong> such a way that 1/f <strong>noise</strong> is reduced at the cost ofdevice area <strong>and</strong> speed. Avoid that the current is carried by a smallnumber of electrons. Avoid <strong>submicron</strong> devices," the faster, the noisier ”.Faster devices have shorter channel lengths <strong>and</strong> smaller N. For a given I,N is small <strong>in</strong> fast diodes due to a small τ (Au killers) <strong>and</strong> transit time.Avoid current crowd<strong>in</strong>g, like <strong>in</strong> granular materials (poly silicon, thickfilm resistors consist<strong>in</strong>g of touch<strong>in</strong>g gra<strong>in</strong>s, too th<strong>in</strong> film resistors), hightech conductive adhesives, N eff


39b) Some 1/f Noise problemsfh2CVS V is divergent for f → 0 <strong>and</strong> the variance∫2 fhdf = CV lnfffllis logarithmic divergent for f l → 0 <strong>and</strong> f h →∞ . This can be solvedby <strong>in</strong>troduc<strong>in</strong>g two corner frequencies: one where S V levels off for f< f lc <strong>and</strong> a second cut off <strong>frequency</strong> f hc where holds that S V becomesproportional to 1/f 2 for f > f hc . However, f lc <strong>and</strong> f hc have never beenobserved. The 1/f <strong>noise</strong> component disappears <strong>in</strong> the thermal or shot<strong>noise</strong>at high frequencies. A f<strong>in</strong>ite measur<strong>in</strong>g time (10 periods of 10 -7Hz <strong>in</strong> 3 years) <strong>and</strong> thermal stability problems set a limit at the lowestfrequencies. The variance of 1/f <strong>noise</strong> <strong>in</strong>creases logarithmically withmeasur<strong>in</strong>g time. A plot of the measured variance (l<strong>in</strong>ear) over a timet meas versus the logarithm of t meas is an other way to measure 1/f <strong>noise</strong>with a drift free <strong>and</strong> sensitive dc voltmeter [71]σ2tmeas=< ∆V2>tmeas=CV2lnfhtmeasL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


40Controversy about physical orig<strong>in</strong>: surface or bulk; ∆N or ∆µ?∆N: Surd<strong>in</strong>-model → 1/f = Sum of <strong>in</strong>dependent g-r <strong>noise</strong>s with a 1/τdistribution with 10 -7 s < τ < 10 7 s ; McWhorter model → 1/τ distributionexpla<strong>in</strong>ed by tunnel<strong>in</strong>g <strong>in</strong>to traps at the surface of a MOST or 1 /ffluctuations <strong>in</strong> surface velocity recomb<strong>in</strong>ation time <strong>in</strong> short diodes•∆µ: empirical relation, no theory to expla<strong>in</strong> the value of α <strong>and</strong> the 1/fdependence of the spectrum. Better no theory than a wrong theory.•arguments for ∆µ : (i) 1/f fluctuations <strong>in</strong> the Seebeck (thermo-voltage)coefficient, Hall voltage, magneto-resistance, <strong>in</strong>jection diodes, hotcarrier mobility, diffusion coefficient <strong>in</strong> diodes, <strong>and</strong> α~µ 2 by chang<strong>in</strong>gthe ratio of lattice scatter<strong>in</strong>g <strong>and</strong> Coulomb scatter<strong>in</strong>g changes µ, but alsoα. It can only be expla<strong>in</strong>ed by ∆µ latt ≠ 0 <strong>and</strong> ∆µ Coul = 0.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


41SummaryFluctuation <strong>in</strong> Spectrum RemedyThermalShotV,I: resistance-typedevices, MOS-FETS,MOD-, MES-,J-FETSI: diode type devices,BJT, HBTS v =4kTRS I =2qINo, low R<strong>and</strong> T, high µsensorsNo, FanofactorG-RN, conductance:semiconductorsFermi level positiondependent2< ∆N> 4τNo trapsS N=21+(2πfτ) No <strong>noise</strong>Lorentzian1/f R: <strong>in</strong> metals, liquidspolymers <strong>and</strong>semiconductors∝ 1/fL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004? Avoid <strong>submicron</strong>. It isnot dependenton Fermi level


42III. Sensitivity coefficient for current crowd<strong>in</strong>g [17, 17a,33, 34, 72]Important for conductance fluctuations with <strong>in</strong>homogeneous currentdensities. A distributed system is considered as a limit case of a network.A local change <strong>in</strong> the resistivity will provoke a voltage fluctuation if aconstant current is applied. In a arbitrarily-shaped sample holds forresistance R <strong>and</strong> conductance G between two contacts1∫21∫22 2R = ρJdΩ⇒ G = σE. dΩ⇒ I R = V G =∑(Pdensity)∆Ω2 2IΩVΩThe total dissipated power is the sum over the whole sample volume Ωof the power density multiplied by sub volumes dΩ. For a homogeneoussample submitted to uniform electric field E (J is constant) the well knowequation is obta<strong>in</strong>ed, R = ρL/ A = 1/ GL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


43The sensitivity coefficientthe sub area where the resistivity <strong>in</strong>crease occurs, Ω lδ V /δρis taken from the derivative <strong>in</strong>Vδ1 21= ∫2 Vρ J d Ω ⇒ = ∫ J dΩwith dimension [ A/cm]Iδρ I Ω lFor a homogeneous <strong>in</strong>crease <strong>in</strong> resistivity over the complete volume,the <strong>in</strong>tegral must be taken over Ω . The voltage or current fluctuationis given by the product of the sensitivity coefficient <strong>and</strong> ∆ρ or ∆σ1∆ = ∫2V ∆ρJdΩI Ω l1∆ = ∫2I ∆σEdΩV Ω lIf the 1/f <strong>noise</strong> source is spatial uncorrelated <strong>and</strong> distributedhomogeneously over the sample the empirical relation can be appliedon a sub volume which results <strong>in</strong>L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


44Sv1= ∫ 2I fΩ2αρ Jn4dΩ<strong>and</strong>V222 1 ⎡ ⎤2 ρ ⎡= =2 ⎢∫ρ J dΩ⎥2 ⎢∫IΩIΩL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004⎣⎦⎣J2⎤dΩ⎥⎦In homogeneous samples: α, ρ <strong>and</strong> the concentration of free carriers ncan be <strong>in</strong> front of the <strong>in</strong>tegral. The relative voltage fluctuation becomesSVΩv2eff=α⎡nf ⎢⎣=⎡⎢⎣∫Ω∫Ω∫Ω∫ΩJJ42dΩ⎤dΩ⎥⎦22⎤J dΩ⎥⎦4J dΩ2≡αnΩ< Ωefffthe effective number of carriersN eff = nΩ eff is given by theeffective volume Ω eff that seemsto be concentrated at the spots ofthe highest current density.Only for uniform current density(J constant) holds Ω = Ω eff2


45Some applications, contacts <strong>and</strong> sensors [17, 17a, 33, 35, 36]L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


Contact <strong>noise</strong> (constriction dom<strong>in</strong>ated, no <strong>in</strong>terface or multispot)46Top: Qualitative shape of current <strong>and</strong> equipotentiall<strong>in</strong>es of a circular contact on a thick homogeneoussample.Bottom:Simplified model of a po<strong>in</strong>t contact on. Thesemi circles represent hemispherical equipotentialsurfacesR ∝ ρ / aNSReffR2=∝Ca31/ff=Nαeff∝R3C 1/fvs R at T=300 K for two alloyswith negligible temperaturecoefficient [34]• Mangan<strong>in</strong>; o Constantan. Thel<strong>in</strong>es are drawn us<strong>in</strong>g a bulk 1/f<strong>noise</strong> orig<strong>in</strong>. The full l<strong>in</strong>e is formangan<strong>in</strong> with α = 6 × 10 -4 , thedotted l<strong>in</strong>e is for constantan withα = 1.2 × 10 -4 . ∆ρ/ρ∆T→0, 1/f notcaused by temperature fluctuationsL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


47Po<strong>in</strong>t contacts between InSb rods ( native oxide <strong>in</strong>terface alwayspresent, but not always dom<strong>in</strong>ant) [70]Bulk or <strong>in</strong>terface dom<strong>in</strong>ated relative 1/f <strong>noise</strong> C vs R <strong>and</strong> R vs force at 77<strong>and</strong> 300K, with <strong>and</strong> without H 2 O 2 treatment, (native oxide thickness). p-typeInSb, @ 300K, <strong>in</strong>tr<strong>in</strong>sic ”n-type”, dope 10 15 cm -3 <strong>and</strong> ρ 77K / ρ 300K = 10 3L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


48Remarks on current crowd<strong>in</strong>g <strong>and</strong> <strong>in</strong>terfacesDeviations from homogeneity <strong>in</strong> electric field <strong>and</strong> current density <strong>in</strong>samples with homogeneous properties <strong>in</strong> ρ,n, <strong>and</strong> <strong>noise</strong> result <strong>in</strong> an<strong>in</strong>crease <strong>in</strong> excess <strong>noise</strong> e.g.:• electrical contacts, vias <strong>and</strong> conductive adhesives (multi spot contacts)• granular th<strong>in</strong> layer with thickness 10 nm < t < 100 nm• granular thick layers (poly silicon, thick film resistors (RuO))• trim cuts <strong>in</strong> precision resistors always lead to an <strong>in</strong>crease <strong>in</strong> <strong>noise</strong>• Interfaces are notorious for the excess <strong>noise</strong>, because the local value ofJ is much higher at weak spots. Due to a poor local crystal quality,2 γdepletion at crystal boundaries or a native oxide, α <strong>and</strong> the 1/fiρi/ nif<strong>noise</strong> is higher.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


49For samples with 4 contacts: [33,35] a pair of current contacts, D 1 , D 3(drivers) <strong>and</strong> 2 voltage contacts, Q 4 , Q 2 ,(sensors) holds for the 1/f <strong>noise</strong>21 αρ ~~=J • J represents the dot product of the∫2SVQ( J • J ) dΩ2 ~I nftwo current densities with J thecurrent density <strong>in</strong> the ad jo<strong>in</strong>t situationby <strong>in</strong>terchange of the current source Ifrom the driver contacts to the sensorcontacts. Areas with conductivityfluctuations where the J <strong>and</strong> J ~ areperpendicular do not contribute to theobserved voltage <strong>noise</strong> at the sensorcontacts. For a given current I at thedriver contacts, we always f<strong>in</strong>d highervoltage fluctuations at the currentcontacts, than at the sensors [36]Hall sensorL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


50IV. Noise <strong>in</strong> devices: resistors, diodes, BJT, MOST1. Resistors [5b]1/f Noise only exceeds thermal <strong>and</strong> amplifier <strong>noise</strong> above a certa<strong>in</strong>m<strong>in</strong>imum power dissipated <strong>in</strong> the sample:αVfN2>4kT(R2⎛ L4kT⎜⎝ qµNIf R eq 4kTf / αqµ⇒ E [ 4 kTf / αqµ] 21crit=Req)=+Req⎞⎟⎠Dielectrics, low (hopp<strong>in</strong>g) µ, E crit >> E break down → ”no” 1/f <strong>noise</strong>, it is notdetectable. Dielectrics with soft or hard breakdow show high 1/f <strong>and</strong> RTS<strong>noise</strong>L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


51Power density criterion for metals <strong>and</strong> semiconductors⇒2αρJf crit=4kTnρ J 2 > 4kTfn / α6 2In th<strong>in</strong> metal layers (ρ ≈3.10 -6 Ωcm ):J < J =maxx10A /2 cmPd 2x10 6 A/cm 2 . Electromigration damage, drift <strong>and</strong>current <strong>in</strong>duced non stationary 1/f γ –<strong>noise</strong> (with γ>2) will occur forJ>3x10 6 A/cm 2.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


52f max for homogeneous semiconduc. resistors at highest current densityJ max≅qnvth⇒P dmax= ρ J2 = kTn / τ ⇒maxf cmax =τ = 10 -12 s, collision timeα4τN < 10 14 criterion: from the choice f crit =100 Hz (to be able to judge a 1/fspectrum from 1Hz on) <strong>and</strong> a maximum power dissipated <strong>in</strong> a samplevolume Ω at T=300K, P d Ω < 0.1 Watt, <strong>and</strong> an α = 1.6x10 -3 follows⇒fcrit=α ρ J4kTn2 2α ρ J Ω α PdΩ⇒nΩ =4kTfcrit=N=max4kTfcritA sample resistance R larger than R eq <strong>and</strong> with N < 10 14 is always a safestart to be able to detect 1/f conductance fluctuations above the thermal<strong>noise</strong> under reasonable bias conditions.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


531/f <strong>noise</strong> of m resistors <strong>in</strong> series or <strong>in</strong> parallelFor m resistors <strong>in</strong> series holds:mm 2SRiαS= ⇒ = ∑Rα R⇒ = ∑jR Ri≠22 2mRiNifi=1 R f R j=1 Nj∑i=1For m conductors <strong>in</strong> parallel holds:≠ ⇒ = only for R = R or G = G <strong>and</strong> N =ijijiNjα /mm 2SGiαS= ⇒ = ∑Gα G⇒ = ∑jG Gi≠222mGiNifi=1 G f G j=1 Nj∑= 1fNiiα /fNiProof is based on the empirical relation <strong>and</strong> uncorrelated <strong>noise</strong>sources: = 0 for i≠jL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


54The 1/f <strong>noise</strong> can be quite different for resistors with the samethermal <strong>noise</strong>Th<strong>in</strong> film resistors all hav<strong>in</strong>g the same thickness <strong>and</strong> width, lengthratio: W/L, will show the same thermal <strong>noise</strong> but a different 1/f <strong>noise</strong>:S R ~ 1/WL.Resistors with the same ratio of length over cross section : L/Wt with tthe thickness, will show the same thermal <strong>noise</strong> but a different 1/f<strong>noise</strong>: S R ~ 1/WLtA noisy but small series resistance <strong>in</strong> series or a small but noisyleakage conductance <strong>in</strong> parallel can be very annoy<strong>in</strong>g.This makes 1/f <strong>noise</strong> a very useful diagnostic toolL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


55Overlook<strong>in</strong>g a small, but noisy series resistance or small leakageconductance <strong>in</strong> parallel can result <strong>in</strong> apparently high α-values. Thatis one of the reasons of a wide spread <strong>in</strong> 1/f <strong>noise</strong> <strong>and</strong> α-values.m resistors <strong>in</strong> series <strong>and</strong> n l<strong>in</strong>es <strong>in</strong> parallelFor a resistance with value R consist<strong>in</strong>g of a network of n branches <strong>in</strong>parallel, with each branch consist<strong>in</strong>g of m resistances <strong>in</strong> series; all withthe same average value r <strong>and</strong> 1/f <strong>noise</strong> value S r results a resistance <strong>and</strong> <strong>in</strong>a relative 1/f <strong>noise</strong> given by:R=m rn⇒SRR=21m nSrr2For m=n, R=r, <strong>and</strong> the thermal <strong>noise</strong> rema<strong>in</strong>s 4kTR, but the 1/f <strong>noise</strong>of the network is the 1/f-<strong>noise</strong> of one resistance r reduced by n 2.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


56Decomposition of a spectrum for <strong>frequency</strong> <strong>in</strong>dex analysis <strong>in</strong>three <strong>in</strong>dependent componentslog S V (V 2 /Hz)The precision <strong>in</strong> the calculated <strong>frequency</strong><strong>in</strong>dex of 1/f γ <strong>noise</strong> is reduced by a lack offor a poor decomposition of spectra.1/fG-RAt low bias, a competition of thermal<strong>noise</strong>, white background <strong>noise</strong> gives toolow γ-values <strong>and</strong> at strong bias often anadditional non-stationary current <strong>in</strong>duced<strong>noise</strong> <strong>and</strong> drift with a 1/f 2 dependenceresults <strong>in</strong> too high γ-values4kTR1/2πτlog f(Hz)L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


572. 1/f <strong>noise</strong> <strong>in</strong> long <strong>and</strong> short diffusion dom<strong>in</strong>ated diodes [37-39]If V > kT/q then I ∝ I 0 exp(qV/kT) <strong>and</strong> I ∝ I 0∝ D/L <strong>and</strong> with D/µ= kT/q holds I ∝ (µ/τ) 1/2 with I 0the saturation current, D thediffusion coefficient of the dom<strong>in</strong>ant carriers, L the diffusionrecomb<strong>in</strong>ation length def<strong>in</strong>ed by (Dτ) 1/2 , τ the m<strong>in</strong>ority carrierlifetime, <strong>and</strong> µ the mobility. Hence holds: ln I = 1/2 ln µ + constant,thus: ∆I/I = ½ ∆µ / µ <strong>and</strong> S I/ I 2 = ¼ S / µ µ2 <strong>and</strong> I=qN/τ (chargecontrol) [37-39]S1/IIfSµα1 1/= = ⇒ SI==2S4µ2shotI(f)4Nf(q4αIτfL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004)1/ f= SIf ⇒ fc=α8τfqαI4τfAt the corner <strong>frequency</strong> f c holds S Ishot = 2qI = S 1/f (f c )


Corner <strong>frequency</strong> f c <strong>in</strong> long diodes, is current <strong>in</strong>dependent onlywhen the 1/f <strong>noise</strong> only stems from one type of current (withe.g,, ideality factor =1) <strong>and</strong> α is homogeneousf c=α8ττ is large, slow device ; low 1/f <strong>noise</strong>τ is small, fast device; high 1/f <strong>noise</strong>f c <strong>in</strong>dependent of current <strong>and</strong> device area10 -2110 -2210 -2310 -2410 -25S I[A 2 /Hz]f cf [Hz]5810 -20 10 0 10 2 10 4 10 6 10 8f c is a real figure of merit, if there is 1/f <strong>and</strong> shot <strong>noise</strong> onlyτ <strong>in</strong> III-V direct b<strong>and</strong> gap semiconductors


No edge effects <strong>in</strong> diodes ifSI∝IAkxifk=x+159A ≡ A AA = A 1 +A 2SI∝fJγk( A( A11++AA22))xk≡⇒SI∝( JAA1x1)k+( JAA2x2)kSI∝Jk( A1+fγA2)( k −x)≡SI∝Jfkγ( A( k −x)1+A( k −x)2)Holds only for any A 1 <strong>and</strong> A 2 if: k-x=1L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


60If there is no perimeter effect (<strong>in</strong> mature technology) then⇒SIAkI∝ =γ k −1fJfkγACompar<strong>in</strong>g <strong>noise</strong> at the same current leads to S I ∝ 1/A k-1 or at the samecurrent density (junction voltage) leads to S I ∝ A.shot <strong>noise</strong>: γ = 0, k = 1 (no perimeter effect)1/f <strong>noise</strong>: γ =1, <strong>and</strong> 1 ≤ k < 2 ( for η 1 <strong>and</strong> η 2 contributions, or seriesresistance <strong>noise</strong> gives k = 2)k = 1 then holds for S 1/f = αqI/4τf often observed <strong>in</strong> SiL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


61k > 1 often observed <strong>in</strong> poly-emitter BJTs, HBTs (III-V) <strong>and</strong> SiGe BJTscan be expla<strong>in</strong>ed by either an α-profile <strong>in</strong>creas<strong>in</strong>g towards the junction,or by different contributions of the current components with idealityfactor η 1 , η 2 to I <strong>and</strong> S I ;I=I 1 (η=1) +I 2 (η=2) <strong>and</strong> S I = S I1 + S I2If, I ≅ I 1 ∝ I 2 2 ; <strong>and</strong> if S I ≅ S I2 ∝ I 1/2 or I ≅ I 2 ∝ I 11/2;<strong>and</strong> S I ≅ S I1 ∝I 2IkS k −1 k −1I∝I J1/f τ k −1⇒ fc∝ ∝fAk −1τ τ<strong>and</strong> f c becomesAfor the same A, current dependentfor the same current, f c ∝ 1/A k-1for the same J, <strong>in</strong>dependent of Afigure of merit, f c without mention<strong>in</strong>g I or J becomes doubtful.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


623. Noise <strong>in</strong> BJTs <strong>and</strong> HBTs [40-44]pnI3pIIIII~IWW4 1 25• r e ,r b, r c: 3x3 (thermal, 1/f-, <strong>and</strong> g-r <strong>noise</strong>) = 94 3 5• e-b, b-c junctions (short diode) 2x3 (shot, 1/f, g-r) =61 2In total: 15 possible <strong>in</strong>dependent <strong>noise</strong> sources (15 = 9+6)L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


631/f <strong>noise</strong> <strong>in</strong> series resistances (high dope, low <strong>noise</strong>)α r2e,br=e ,f Ne , b effectiveSbkI I BS b∝SVre , b=I2e,bfα rAbout (1/2 ≤ k ≤ 2)N2e,be,b effectiveqV qVkT 2kTI B = I e I e10 +20SIb∝ID1 +2WeIτ2jI B= I 1+ I2⇒I B dom<strong>in</strong>ated byS Ib⇒dom<strong>in</strong>ated by I 1 or I 2I 1→2IB∝ I 1 ; I B ∝ I 2I 2→IB∝ I 2 ; I B ∝ I 11/ 2S ∝IIbS ∝IIbB2BDW2eDW2eL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004SSIbIb∝∝I1/ 2BτIτjjB


64f c / f T a new figure of merit [42]Highest f T , highest f cUnit current ga<strong>in</strong> approximatedf T11= ≈2πτ 2π( τ + τ + τ + τ + τ )f Tec≤jejc12π ( τ + τBloadA new empirical relation if f c<strong>and</strong> f T ∝ 1/(τ B +τ c )c)T≅Bα8If 1/f <strong>noise</strong> is dom<strong>in</strong>ated byfcαnative oxide than >>fffTc8cf T(GHz)302225305446403010f c(Hz)500≈ 4x10 4≈ 4x10 43x10 5> 10 5> 10 63003x10 37005000L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004α1.3x10 -71.5x10 -51.3x10 -58x10 -5>1.4x10 -5>1.7x10 -46x10 -86x10 -71.9x10 -71.9x10 -7CommentSiGe (IBM)AlGaAs/GaAs (TI)GaInP/GaAs (Thompson)AlGaAs/GaAs (NEC)InGaAs (NEC)SiGe epitaxial polysiliconemitterSiGe MotorolaSiGe MBE (Daimler-Benz)


Experimental results: poly-emitter Si BJTs [42]65Author, publication year, affiliationk <strong>in</strong>S Ib ∝ I bkComments onfS Ib /I b [A], f c , α, area APong-Fei Lu (1987) IBMk ≈ 1.52x10 -17 -5x10 -16 , 2kHzKle<strong>in</strong>penn<strong>in</strong>g & Holden (1992) E<strong>in</strong>dhovenk = 13x10 -16 -5x10 -15 , 2x10 -6 < α < 2x10 -5Mounib et.al. (1993) Grenoblek = 110 -16 , 330 Hz (A E = 10x10 3 µm 2 )Quon et. al. (1994) CaliforniaMarkus & Kle<strong>in</strong>penn<strong>in</strong>g (1995) E<strong>in</strong>dhovenMounib et.al. (1996) GrenobleSimoen et. al. (1996) IMECMarkus et. al. (1997) E<strong>in</strong>dhovenk = 11.2 < k < 1.8k = 2k = 2k = 1.3k = 1k = 1.8k = 2L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004no oxideth<strong>in</strong> oxidethick oxide7.5 Å oxide, S Ib ∝ I B2 /A (no perimetereffect)A E = 10x10 3 µm 2 , 2x10 -17 < fS Ib /I B


66Experimental results III-V HBTs npn – GaAs/GaAlAs10 -1510 -16S Ib[A 2 /Hz]S Ib ∝I B3/210 -14S IC[A 2/Hz]10 -17→∆µ10 -1610 -1810 -1910 0 10 1 10 2 10 3I B[µA]•, , • Kle<strong>in</strong>penn<strong>in</strong>g – Holden (1993) [73], • Tutt et al. (1990, 1992) Jue et. al. (1989)• Costa et. al. (1992,1994) Plana et. al. (1992);10 -1810 -20SL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004I [µA] C10 0 10 2 10 4IkCI c∝ 1.3 < k < 1.4f∆µ – model with 2x10 -5 < α < 3x10 -3


67Discussion <strong>and</strong> conclusions [40, 42]•1/f <strong>noise</strong> is unavoidable / RTS- or g-r <strong>noise</strong> on top of the 1/f <strong>noise</strong> with1/(1+(2πfτ) 2 ) can be avoided by avoid<strong>in</strong>g traps. Some III-V HBT havean “<strong>in</strong>herent” g-r <strong>noise</strong>, e.g., GaAlAs with Al > 20%, often shows τ ≤ 10 -4s <strong>and</strong> a f g-r ≥ 1.6 kHz.A new figure of merit is proposed: f c / f T ≈ α /8 useful to comparetechnologies. The lowest values of f c /f T are from SiGe devices.Native oxide at the poly-emitter results <strong>in</strong> more 1/f <strong>noise</strong> (S V ∝ α iJ 4 /n i3 dΩ ). This is not a proof for the ∆N orig<strong>in</strong> of the 1/f <strong>noise</strong> [20].•Current crowd<strong>in</strong>g at contacts will <strong>in</strong>crease the 1/f <strong>noise</strong> <strong>and</strong> c<strong>and</strong>om<strong>in</strong>ate the 1/f <strong>noise</strong> of the junction.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


68•Contact <strong>noise</strong>, S IBE ∝ I B2 , I E2 visible at higher currents contributions of∆r e , ∆r b <strong>and</strong> on top of the 1/f <strong>noise</strong>, often GR <strong>noise</strong> with τ ≤ 10 -4 s•S Ib ∝ I bk 1 ≤ k < 2 can be understood as ∆µ <strong>noise</strong> either by a nonuniformα-profile <strong>in</strong>creas<strong>in</strong>g towards the junction or <strong>noise</strong> <strong>and</strong> currentdom<strong>in</strong>ated by different areas (depletion layer or outside space chargelayer) k ≈ 1 <strong>in</strong> Si devices 1.3 < k < 1.6 <strong>in</strong> III-V devices•Physical orig<strong>in</strong> of 1/f <strong>noise</strong> <strong>in</strong> diodes <strong>and</strong> diode type devices aremobility fluctuations: D/µ = kT/q ⇒ ∆µ/µ= ∆D/D.•For long diodes τ is the m<strong>in</strong>ority carrier lifetime at the low dopedside of the junction. For a short diode it is the transition time W 2 /D(W = emitter or base width, D diffusion coefficient.)L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


694. MOSFET [45-55]• Substrate dope: 10 14 < N A (cm -3 )


1/f <strong>noise</strong> <strong>in</strong> <strong>MOSFETs</strong> (Geometry <strong>and</strong> bias dependence) [48-50]70Equations <strong>in</strong> terms of αOhmic region V d


SSIsVeq=2αINf=SgEquations <strong>in</strong> terms of α2sIs2m==2αg4CαV2Cox*Gox2mVWlVqWlf*2G*Gqfαg=2Ct∝ox∝Wl2mox1Cg*GV qWlfSKKIsaaCircuit-oriented parameters, bias….dependentK≡Ca2oxor[2 2Coulomb /m ]= αqV2gmWlf*GCox/ 2SVeqKa≡C Wlf2ox71Sub threshold [52]gSINmI2S0= Iq / ηkT==veq( N + N )Coxα0f≈I∝αN fWl(kT / q)/q2αη kTC Wlfox0kTe qV G /η( N>= kT [ Coulomb V]qox


72Experimental Results vs Wl, V G <strong>and</strong> I sat [50, 51, 54,55]10 -910 -10f S Veq(V 2 )"5"Sveq ∝toxWl10 -4αSurface channel10 -11"3""2""1"10 -510 -12"4"10 -6Bulk channel10 -1310 -7V G * (V)10 -8 10 -12 10 -11 10 -10 10 -9 10 -8 10 -7 10 -610 -14The equivalent 1/f <strong>noise</strong> S Veqat 1 Hz (fS Veq) versus the area W × L. Theextrapolated values at 1 Hz (f S Veq) of the1/f <strong>noise</strong> measured for “1” t ox = 600 nm<strong>and</strong> “2” t ox = 150 nm, at f = 1 kHz, 25µm technology; α p = 1.7 × 10 -4 ; S Veq ∝ t oxfor “3” <strong>and</strong> “4” t ox = 100 nm, at f = 10 Hz,α n = 10 -4 @ V G = 1V; α p = 10 -6 ;for “5” t ox = 12 nm, 0.6 µm technology,at f = 100 Hz, α n = 10 -4 [54]W x L (m 2 )10 -2010 -2110 -2210 -2310 -24f S Isat(A 2 )slope = 3/2I sat(A)10 -3 10 -1 10 0 10 1The 1/f <strong>noise</strong> parameter α versus V G*for a surface(p+poly) <strong>and</strong> bulk(n+poly) p-MOST. The α–values are calculated with eq. (2) fromexperimental results obta<strong>in</strong>ed <strong>in</strong> the ohmic region [50,51] : ∆ surfacechannel with L = 5 µm, surface channel with L = 0.8 µm,ο bulk channel with L = 5 µm, bulk channel with L = 0.8 µmThe quantity fS Isatversus the saturation current I sat.The results obta<strong>in</strong>ed on n-type <strong>MOSFETs</strong> show apower low with exponent 3/2 [54]10 -19 10 -7 10 -6 10 -5 10 -4L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


73n-MOSTs often show a surface orig<strong>in</strong>, tunnel<strong>in</strong>g (∆N), Experimental facts<strong>in</strong> favor <strong>and</strong> at variance with ∆N, 1/f ∝ N ss ? [47, 48]The equivalent <strong>in</strong>put <strong>noise</strong> at1 Hz <strong>and</strong> V G* = 1V versusx 0 D 0 [cm 2 eV -1 ]. The dottedl<strong>in</strong>e follows the McWhortermodel. [48]The equivalent <strong>in</strong>put <strong>noise</strong> at 1 Hz <strong>and</strong> 1carrier(α values) versus x 0 D 0 [cm 2 eV -1 ]. [47] Thedotted l<strong>in</strong>e follows the McWhorter model.1…6are n- channels, b,c,d,e,f are p- channelsL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


74Independent verification of traps with there characteristic low valuesof time constants responsible for the 1/f <strong>noise</strong> at f < 10 Hz <strong>and</strong> at agiven value V G* , correspond<strong>in</strong>g to MOST bias condition is oftenlack<strong>in</strong>g.n-MOSTs : a ∝ 1/V G* ⇒ <strong>in</strong> favor of a ∆N <strong>in</strong>terpretation, but a ∆µ<strong>in</strong>terpretation is also possiblep-MOSTs : a = const. ⇒ <strong>in</strong> favor of a ∆µ <strong>in</strong>terpretationSI/ I22 2 2 22= S ∆ N/ N ∝∆N/ N ∝1/N if ∆N∝NtUnsolved problem: α-values are not predictable with a highprecision, only trend can be given. There is no theory for theshape of the 1/f spectrumL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


75Faster <strong>MOSFETs</strong> are noisier [54], [56]• Resistance:SVth=4kTR=2V α=NfSV 1/f⇒fcαqµV=4kTl22• <strong>MOSFETs</strong>: S I th = S I 1/f ⇒fc=3αqµV16kTl* 2G2∝1/l2• “Highest” <strong>frequency</strong> f T• New figure of merit for <strong>MOSFETs</strong>kT = 1/40 eV, V G* = 1V f c = 47 × α f T , ; α= 2x10 -5 f c = f T /10 3gL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004fT=m*µ VG/ 2πCg= ∝1/l22πlffcT=3παqV8kT*G2


76Some a values (10 -6 < a < 3×10 -4 )Supplier/GroupYeart oxnmW × lµm 2α fromS I / I 2 = α / N fLeti /Grenoble20011.5 nm < t ox< 3.5 nm10 × 10α n = 1 × 10 -4Philips Research20011.8multiple gate oxide process10 × 4α n = 5.7 × 10 -5without F implantUniv. of S<strong>in</strong>gapore200117.50.8 < L < 5 µm1.5 < W < 10 µmα n= 9 × 10 -5α p= 4.4 × 10 -6STMicroelectronics20013 < t ox< 16compar<strong>in</strong>g different t ox0.18 < L < 0.5 µmα p,n≈ 1.9 × 10 -6S Veq ∝ t ox ⇒ ∆µIMEC /E<strong>in</strong>dhovenUniv. 19984.510 × 0.50.2 < L < 2 µmα p= 9.6 × 10 -5Alcatel /E<strong>in</strong>dhovenUniv. 1989252 < L < 100 µm3 < W < 300 µmα n= 1 × 10 -4α p= 6 × 10 -6L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


α-values from sub threshold bias77SupplierYeart oxnmW × lµm 2Experimentalplateau valuef S Is/ I2sα fromS I/I 2 = α/N 0fN 0Hitachi19772001040 × 101 × 10 -92.7 × 10 -42.9 × 10 5Thomson1984120200 × 151.3 × 10 -9 (T=300K)2 × 10 -10 (T=77K)1.8 × 10 -47 × 10 -61.4 × 10 53.6 × 10 4Grenoble19912620 × 2.41.5 × 10 -81.5 × 10 -41 × 10 4IMEC19984.510 × 22 × 10 -9α p= 5 × 10 -52.5 × 10 4N= CWl(kTq20 ox/ )<strong>in</strong>SII2L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004=αN f0


78RTS <strong>noise</strong> is not 1/f <strong>noise</strong> [9, 11, 12, 13,14]SII2∆Nτ=2/ τ=S I = α ∝12I Nf NecSN=N2=12( 2 + τ / τ + τ / τ )K>Ne1or11c4τ∆N+K(2πfτ)


79Misunderst<strong>and</strong><strong>in</strong>gs [53]1.1/f <strong>noise</strong> is different from RTS <strong>noise</strong> (uniformly distributed <strong>and</strong> local)•uniformly distributed 1/f <strong>noise</strong> source <strong>in</strong> device S I / I 2 = α/Nf•RTS <strong>noise</strong> is due to one trap (local) close to Fermi level very bias <strong>and</strong>temperature sensitive (<strong>in</strong> contrast to 1/f )•RTS <strong>noise</strong> can be reduced (or <strong>in</strong>crease) by switch<strong>in</strong>g bias techniquesmak<strong>in</strong>g τ e / τ c


801/f <strong>noise</strong> parameterα*V GIncrease <strong>in</strong> α at high V gs is due to1/f <strong>noise</strong> <strong>in</strong> the series resistance2 nd correction term is negligiblysmall⇒ ∆µ - ∆N models cannotexpla<strong>in</strong> the V gs -dependence of afor p-type <strong>MOSFETs</strong>L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


Conclusions1. 1/f <strong>noise</strong> <strong>in</strong> <strong>MOSFETs</strong> is predictable with α values often observed <strong>in</strong> bulkSi between 10 -6 <strong>and</strong> 3 × 10 -4 ( SOS, SOI). Data collected over 35 years.Higher substrate dopes <strong>in</strong> scal<strong>in</strong>g down processes → lower µ → lower αEpi-layers lower α than CZ substrates with high O contentNon uniform channel higher 1/f <strong>noise</strong>Lattice damage by implantation <strong>in</strong> the <strong>in</strong>version layer region: α↑2. p-channel <strong>MOSFETs</strong>: V G*<strong>in</strong>dependent α -value (about 10 -6 on qualitywafers, 3x10 -5 on CZ wafers <strong>and</strong> 3x10 -4 on old small diameter wafers.straightforward ∆µ <strong>in</strong>terpretation.3. n-channel <strong>MOSFETs</strong> <strong>in</strong> a CMOS technology with n + poly gate often haveα ∝ 1/V G*dependence for 0.1 V < V G*< 1 V (straightforward ∆N- or ∆µ –<strong>in</strong>terpretation possible). α -values at V G*= 1 V 3 × 10 -54. <strong>noise</strong> parameters <strong>in</strong> SPICE, BSIM are often geometry, oxide thickness<strong>and</strong> V G*dependent poor predictions, different technologies are bettercompared <strong>in</strong> α-values obta<strong>in</strong>ed for the same N.L.K.J. V<strong>and</strong>amme / Noise / 26-02-200481


825. The observed dependence (2004 <strong>and</strong> 1971) S veq∝ t oxpo<strong>in</strong>ts to the ∆µorig<strong>in</strong>. This holds for technologies with 3 nm < t ox< 600 nm(∆N-<strong>noise</strong> holds S veq∝ t 2 ox )6. Apart from serious 1/f <strong>noise</strong> <strong>in</strong> the series resistance of prematuretechnologies, the geometry dependence is well understood: S I@ V G*∝W/L 3 for L > 0.15 mm ; S I@ V G*∝ W/L for L < 0.15 mm but alwaysholds S Veq@ V G*∝ 1 / Wl7. In sub threshold: S I/ I 2 = α / N 0 f with N 0= (kT / q 2 ) C oxW l ⇒ sameα-values. a is a perfect figure of merit to describe the 1/f <strong>noise</strong> <strong>in</strong>MOSTs (the contribution of one charge carrier to the relative <strong>noise</strong> <strong>in</strong>the conduction at f = 1 Hz) [lowest value ever observed <strong>in</strong> a bulk p-channel MOSFET is 4 × 10 -7 ]9. Some problems: (1/f <strong>noise</strong> = sum of RTS); 1/f due to trapp<strong>in</strong>g; trapscalculated from 1/f <strong>noise</strong>; ∆N+ ∆µ(∆N) is a non-physical model; S veq∝ t oxor S veq∝ t 2 ox a-values constant or ∝ 1/ V G * ?L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


83V. <strong>Low</strong> <strong>frequency</strong> <strong>noise</strong> as a diagnostic tool forquality evaluation of electronic devices [20,57-69]1. Types of <strong>noise</strong>1.1 Thermal <strong>noise</strong> : is fundamental <strong>and</strong> <strong>in</strong>dependent of technology,S V = 4.k.T.R (Brownian motion)A) Calibration of <strong>noise</strong> measur<strong>in</strong>g set up. For I = 0 the <strong>noise</strong> S V isproportional to T a R 0 . If power dissipation P= I.V ≠ 0, S V is stillproportional to T.RB) Static heat resistance: R therm = T-T a / IV → too high, problems <strong>in</strong>e.g.,SOA (10 4 K/ Watt) → higher harmonics, delam<strong>in</strong>at<strong>in</strong>g <strong>and</strong>temperature <strong>in</strong>duced failures.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


84C) Transport mechanism / Ballistic transport? Hot carriers? Impactionization? Thermal <strong>noise</strong> to <strong>in</strong>vestigate transport properties.Deviations from S I = (2/3)4kTg m <strong>in</strong> MOST are <strong>in</strong>dications foreither or: avalanche phenomena, hot carrier effects, non uniformmobility along the channel.Multi quantum well devices show a white <strong>noise</strong> comparable to thethermal <strong>noise</strong> <strong>in</strong> <strong>in</strong>jection diodes, S I ~ I m .<strong>MOSFETs</strong> biased <strong>in</strong> sub threshold also S I ~ IL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


851.2 Shot <strong>noise</strong> : deviations from S I = 2qI for diode type structures:A) calibration purposes B) junction quality, forward biased → seriesresistance problems, <strong>in</strong> reverse biased junctions e.g. gate of Schottkybarrier <strong>in</strong> MES- or MODFETs , : at low I, leakage current problems.R sh <strong>in</strong> prototype structures: IV-IV, III-V <strong>and</strong> II-IV <strong>and</strong> at higher I, onsetof micro plasmas or the quality of multiplication ( <strong>noise</strong> <strong>in</strong> the ga<strong>in</strong> bymultiplication, Mc Intyre) can be observed from the deviations from 2qI.Beyond a critical local field[65] an onset of un<strong>in</strong>tentionalavalanche multiplication canoccur that gives a weak<strong>in</strong>crease <strong>in</strong> current <strong>and</strong> a strong<strong>in</strong>crease <strong>in</strong> white (shot) <strong>noise</strong>L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


861.3 Conductance <strong>noise</strong> (∆σ) due to trapp<strong>in</strong>gA, Generation recomb<strong>in</strong>ation <strong>noise</strong>B, Burst-, popcorn- or RTS- <strong>noise</strong>2∆N ≡ 1 <strong>and</strong> 〈∆N〉 ≤1/4depends strongly on E FGeneration recomb<strong>in</strong>ation <strong>noise</strong> is often observed <strong>in</strong> III-V devices.RTS <strong>noise</strong> is often an <strong>in</strong>evitable problem of <strong>submicron</strong> devices withtraps <strong>and</strong> a low number of carriers like <strong>in</strong> <strong>MOSFETs</strong>, also a problem<strong>in</strong> diode type devices with dislocations <strong>in</strong> sensitive areas <strong>and</strong> quantumdot devices. In general strongly dependent on temperature <strong>and</strong> on biasconditions (E F position dependent) <strong>and</strong> therefore a poor device<strong>in</strong>dicator, because traps can be avoided.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


871.4 Conductance <strong>noise</strong> due to mobility fluctuations (1/f <strong>noise</strong>:current-, excess-, flicker- or low-<strong>frequency</strong> <strong>noise</strong>)Pitfalls <strong>in</strong> <strong>in</strong>terpretation ( traps, <strong>in</strong>terface roughness <strong>and</strong> poor crystalquality due to lattice damage by implantation often go h<strong>and</strong> <strong>in</strong> h<strong>and</strong>)Phenomenological approach with Hooge’s empirical relationS R2R=αfNThe 1/f <strong>noise</strong> parameter α (Hooge parameter α H ) cannot bepredicted but calculated from experimental results. Most values are<strong>in</strong> resistors, <strong>MOSFETs</strong>, MODFETs <strong>and</strong> BJTs between 10 -6 <strong>and</strong> 10 -4 .L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


882. The omnipresent 1/f <strong>noise</strong> is a favorite diagnostic tool2.1 Without RTS or GR-<strong>noise</strong>, there is still 1/f <strong>noise</strong>Implantation <strong>and</strong> lattice damage due to proton bombardment <strong>and</strong>anneal temperature play a role. Interface (roughness) <strong>and</strong>implantation damage, make 1/f <strong>noise</strong> position dependent.If a poor oxide with a high number of traps goes h<strong>and</strong> <strong>in</strong> h<strong>and</strong> with<strong>in</strong>terface charges <strong>and</strong> roughness as a result of fast oxide growth ondamaged poor crystal material, then the controversy about the bulkor surface orig<strong>in</strong> of the 1/f <strong>noise</strong> is solved (reconciled)L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


89The α-value represents the contribution to the relative 1/f <strong>noise</strong> at 1Hz from one carrier ( electron or hole), assum<strong>in</strong>g that the Ncarriers have uncorrelated contributions to the total <strong>noise</strong>. Thevalue is <strong>in</strong> pr<strong>in</strong>ciple dimensionless <strong>and</strong> <strong>in</strong>dependent of sample size,applied current <strong>and</strong> <strong>frequency</strong> at least for pure 1/f.α-values can be used as a figure of merit without suggest<strong>in</strong>g a ∆µor∆N orig<strong>in</strong> for the fluctuations.Its value depends on crystal quality <strong>in</strong> the current path <strong>and</strong> mobility.Current crowd<strong>in</strong>g always <strong>in</strong>creases the effects of conductance <strong>noise</strong> onvoltage or current <strong>noise</strong>. Overlook<strong>in</strong>g this problem <strong>in</strong> 1/f <strong>noise</strong> alwaysresults <strong>in</strong> high apparent α-values [20, 60].L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


902.2 Contact <strong>noise</strong> as a diagnostic tool [16, 17, 17a, 20,21, 34, 57]Current crowd<strong>in</strong>g goes h<strong>and</strong> <strong>in</strong> h<strong>and</strong> with <strong>in</strong>creased power densityρJ 2 , heat dissipation, local temperature (hot spots), higher 1/f <strong>noise</strong>than <strong>in</strong> homogeneous samples <strong>and</strong> higher risk of failures due to ∆Tbaseddegrad<strong>in</strong>g mechanisms.21 αρ J= ∫ 2I f nS v 4ΩdΩ ⇒SVv2=α⎡nf ⎢⎣∫Ω∫ΩJJ42dΩ⎤dΩ⎥⎦2≡αnΩefffL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


Constriction dom<strong>in</strong>ated contacts, equipotentials, approximations<strong>and</strong> calculationsJ(x)=I / 2πx291dΩ =2πx2dxR∞ρ ⎛ I ⎞ 2= ∫ 2πxdx2⎜=2⎟I ⎝ 2πx⎠a2ρ2πaΩeff=⎡⎢⎣∞∫a∞∫a⎛⎜⎝⎛⎜⎝I2πx2I2πx⎞⎟⎠22⎞⎟⎠2πx422πx⎤dx⎥⎦2dx2= 10πa3


92Contacts with complications [17a]ρ t2l. <strong>in</strong>terface : R <strong>and</strong> Ωeff= π a t2π aSR1 1∝ ∝ ∝ R <strong>in</strong>stead of proportion al to R22R Ωeffa2. multi-spot contacts (region- III) : R ∝ ρ <strong>and</strong> Ωk aSR1 1∝ ∝ ∝ R if a is constant23R Ω k ⋅aeff3. region-II multi-spot contacts:≅ film 3In all cases strong deviations from the simple constrictiondom<strong>in</strong>ated contact which results <strong>in</strong>:SR∝Rm5S R∝ Reff∝ k ⋅awith, m >> 5 ( m ≈320)L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


93Experimental results on metal-semiconductor contacts [69] <strong>and</strong>movable contact on thick film tracks <strong>in</strong> potentiometers [59]Full squarres: a film-dom<strong>in</strong>atedmetal semiconductor contactwith S R proportional to R 3Open symbols: three differentconstriction dom<strong>in</strong>ated movablecontacts on a thick film track ofa potentiometer with a contactresistance <strong>noise</strong> proportional to:SR∝ R5<strong>and</strong>SR∝R3L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


94Alloy<strong>in</strong>g of metal-semiconductor contacts under form<strong>in</strong>g gas or purehydrogen reduces the <strong>noise</strong>, this is no arguments for ∆N [20]L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


95Calculated <strong>and</strong> experimental results of <strong>noise</strong> versus resistance of voids [64]<strong>in</strong>duced by degradation. The <strong>noise</strong> is more sensitive than resistance only.RSR1 2⋅ J2= ∫IρdA1 αρ= ∫ J4dAI4n ⋅f2w2aL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004l


96Multi spot contact model on a cyl<strong>in</strong>der [57, 60, 63,]A=π b 2A e = π a 2 kπ b2=π2lkππbala22⎛=⎜⎝k=A eAA eA ⎞⎟⎠1/ 2LR h∝ LL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


97R⎡ b ⎛ ⎞⎤⎢ ⎜A= R⎟h1+−1⎥⎢⎣L k ⎝ Ae⎠⎥⎦No contact problemsR h=ρπL2bSR5/ 2⎡⎤b ⎛ ⎞⎢ ⎜⎛A ⎞= S 1+⎜ ⎟ −1⎟⎥R⎢ ⎜h20Lk⎟⎥⎣ ⎝⎝Ae⎠ ⎠⎦No contact problemsSRh=α ρ2L3f nπb6*R =RR hL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004*RS =SSRR h


98Noise model for BGA contacts• Constriction resistance R C Degradation dependent• Access resistance fixed dur<strong>in</strong>g degradationR =∆RRa+= ∆RaRc⇒ R ≈+ ∆RcRa∆RSR2== ∆RSRa+2aS+ ∆RRc⇒2cS+ 2∆RR≈SRca∆RcL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


99Calculated Degradation (a-reduction) <strong>and</strong> m-values [74]SRm∝ R with m≈ 25m=14RS*⎡⎢⎣A*RA e⎤⎥⎦2Degradation results <strong>in</strong> a reductionof the real electrical contact areaA e , by a reduction <strong>in</strong> the numberof spots k <strong>and</strong> spot diameter 2a.This is provoked by ag<strong>in</strong>g testslike thermo-cycl<strong>in</strong>g, temperaturehumiditytests or by mechanicalbend<strong>in</strong>gWe assumed <strong>in</strong> the follow<strong>in</strong>g diagrams: k = 50, l = 120nm,L = 5µm, 12nm < a < 60nm <strong>and</strong> 1% < A e /A < 25%L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


100R* <strong>and</strong> S R* versus A e/A with k = 3010 4R*S R*10 5 10 -3 10 -2 10 -1 10 0S R* b/L = 1S R* b/L = 0.1R* b/L = 1R* b/L = 0.1S R* (A e / A)10 310 2R * (A e / A)10 1Ae/A10 0L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


101SR * more sensitive for current crowd<strong>in</strong>g than R*10 5 10 0 10 110 4S R*S R ∝ R m5 < m < 3010 310 2k = 30 b/L = 0.1 m = 29.9k = 30 b/L = 1 m = 7.710 110 0R*L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


102C vs R after ag<strong>in</strong>g by thermo-cycl<strong>in</strong>g <strong>and</strong> bend<strong>in</strong>g of fresh samples [58]10 -1610 -15 0.3 0.4 0.5C10 -1510 -1610 -13 PolysolderC10 -14 0.3 0.4 0.5 0.6 0.7 0.8DM4030 SRAblebondC DM, 450, p=3C DM, 250, p=3C Poly, 100, p=3C Poly, 250, p=310 -17R Ω) (6 < m < 25 <strong>and</strong> D = 6.3 L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004 m≈1510 -17R P( Ω )0.6


103Conclusions on conductive adhesives [58, 63]With <strong>noise</strong> measurements: you see more, C∝ R m with m>> 3po<strong>in</strong>ts to a region II multi-spot contact with 0,4 % < Ae/A < 25%<strong>in</strong> a shorter time (thermo-cycl<strong>in</strong>g <strong>and</strong> temperature-humidity testslast for weeks, while bend<strong>in</strong>g <strong>and</strong> <strong>noise</strong> measurements takes onlym<strong>in</strong>utes) <strong>and</strong> <strong>in</strong> an non destructive way (bend<strong>in</strong>g) a quantitativeresult.D=AAeeunststess≅⎛⎜⎝CCstressunst⎞⎟⎠2 /5L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


104Investigation of new materials: polymer transistor [62]SamplesDra<strong>in</strong> electrode (Au)sp<strong>in</strong> coatedorganic semiconductorSiO 2 - gate oxidepolysilicon gate materialmetal gateSource electrode (Au)• Channel material by sp<strong>in</strong>coat<strong>in</strong>g:– pentacene– polythienylene v<strong>in</strong>ylene (PTV)• p-type accumulation FET• Au dra<strong>in</strong> <strong>and</strong> source at thebottom, poly-Si gate contactbelow• glass substrateL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


105Conclusion• 1/f <strong>noise</strong> <strong>in</strong> organic FETs satisfies the empirical relation(geometry, illum<strong>in</strong>ation dependence)• 1/f <strong>noise</strong> is (too) high, α ≈ 0.01 – 1.0• High <strong>noise</strong> is due to current crowd<strong>in</strong>g between gra<strong>in</strong>s of organicmaterial (leads also to apparent low mobility)• No Au-polymer contact <strong>noise</strong> contribution <strong>in</strong> these samplesL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


106Investigation of new materials: WO3 nano particle films [61]Sample description• WO 3 samples• Made by advanced gasdeposition with reactive ambientgas: synthetic air• Thickness: 0.1 - 4µm• Nano particles with lognormaldistribution with average size≈5nm• C 12 = C 13 = 2 C 23 ⇒ no electrode<strong>in</strong>terface problems12 3L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


107DiscussionTwo k<strong>in</strong>ds of <strong>noise</strong> were detectedThermal <strong>noise</strong>: expla<strong>in</strong>ed by: S V = 4 kT Re[Z]1/f <strong>noise</strong>: expla<strong>in</strong>ed by “shunted capacitor” model. Shunts are formed byAl spikes from the contacts on top of the WO 3 dielectrics.AlWO 3ITOL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


108ConclusionsQuality dielectrics do not show 1/f <strong>noise</strong>: (E c;1/f > E breakdown )Empirical relation is valid for nano particle sized Al wires α Al ≈2.5×10 -3 assum<strong>in</strong>g homogeneityThe th<strong>in</strong>nest WO 3 layers deposited at the highest speed are porous<strong>and</strong> suffer from Al shunts which generate 1/f <strong>noise</strong>Therefore 1/f <strong>noise</strong> can be used as quality assessment tool of WO 3nanostructures.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


1093. Diode type devices (solar cells,) [66]qNI =τFor long diodes holdsSI2I α= ⇒f ⋅ NSIαqI∝τf1∝2τFor diode with series resistance2contact problems S I∝ ITraps can reduce carrier lifetimeτ, <strong>in</strong>crease I <strong>and</strong> 1/f-<strong>noise</strong>. This isnot a proof for ∆Nexperimental results of solar cellstoo high α-values are an<strong>in</strong>dication of non uniformcurrent density at weak spotswith very small τ-valuesL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


1104. FET type devices <strong>and</strong> series resistance [67]Modern short channel devices have series resistance problemsFour possible situations for R= Rch+ Rs<strong>and</strong> SR= SR+chS Rs21RchRch∝ <strong>and</strong> SR∝ ∝chVN*G1V* 3GRs∝V* 0G<strong>and</strong>S R S∝V* 0GFour possible dependencies of S I / I 2 on V GL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


111All trends are observed [67, 68]Rch> R <strong>and</strong>SsRch> SRS⇒SRR2∝V* −1G←poor technologyRch> Rs<strong>and</strong> SRS> SRch⇒SRR2∝V*2GRs>Rch<strong>and</strong>SRch> SRS⇒SRR2∝ V* −3GRs>Rch<strong>and</strong>SRS> SRch⇒SRR2∝ V*0GL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


112Conclusions on <strong>noise</strong> spectroscopy [20]Different types of <strong>noise</strong> play a different role <strong>in</strong> reliability analysis•1/f <strong>noise</strong> successful for lifetime characterization of metallization•g-r <strong>noise</strong> traps (AlGaAs)•RTS <strong>noise</strong> test <strong>submicron</strong> MOS technology•thermal <strong>noise</strong> for heat contact diagnosis•1/f <strong>noise</strong> general purpose diagnosis toolcrystal <strong>and</strong> device quality sensitivealways present especially <strong>in</strong> H.F. devices (small)L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


113• crystal defects : α at low Tlow a value is not necessarily good crystal quality• current crowd<strong>in</strong>g gives more 1/f <strong>noise</strong>, also a higher localtemperature• contacts : lowest limit no constriction, constriction, <strong>in</strong>terface ormulti-spot ( region I (A e /A> 0.16), region II (0.01


114References[1] D. K. C. MacDonald, Noise <strong>and</strong> fluctuations: an <strong>in</strong>troduction, John Wiley & Sons New York,1962.[2] A. Ambrozy, Electronic Noise McGraw-Hill New York, 1982. ISBN 0-07-001124-9[3] R. Muller, Rauschen, 2nd ed. Spr<strong>in</strong>ger - Verlag, Berl<strong>in</strong>, 1990. ISBN 0-387-51145-8[4] M. J. Buck<strong>in</strong>gham, Noise <strong>in</strong> electronic devices <strong>and</strong> systems. Ellis Horwood limited publishers,Chichester (John Wiley & Sons) New York, 1983. ISBN 0-85312-218-0[5] L. K. J. V<strong>and</strong>amme, "<strong>Low</strong> <strong>frequency</strong> <strong>noise</strong> measurement techniques," <strong>in</strong> M. A. Py, M-O.Hongler, J-P. Laedermann, J-F. Loude, <strong>and</strong> M.Droz (eds.) Fluctuations et bruit, Vercor<strong>in</strong> (Suisse):Frontier Group, 2001, pp. 97-112.[5a] R. J. W. Jonker, J. Briaire, <strong>and</strong> L. K. J. V<strong>and</strong>amme, "Automated-system for <strong>noise</strong>measurementson low-ohmic samples <strong>and</strong> magnetic sensors," IEEE Transactions onInstrumentation <strong>and</strong> Measurement, vol. 48, no. 3, pp. 730-735, June1999.[5b] L. K. J. V<strong>and</strong>amme <strong>and</strong> G. Trefan, "1/f <strong>noise</strong> <strong>in</strong> homogeneous <strong>and</strong> <strong>in</strong>homogeneous media,"IEE Proceed<strong>in</strong>gs-Circuits Devices <strong>and</strong> Systems, vol. 149, no. 1, pp. 3-12, Feb.2002.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


115[6] J. B. Johnson, "Thermal agitation of electricity <strong>in</strong> conductors," Physical Review, vol. 32, p 97-109, July1928.[7] H. Nyquist, "Thermal agitation of electric charges <strong>in</strong> conductors," Physical Review, vol. 32 pp.110-113, 1928.[8] W. Schottky, "Uber spontane Stromschwankungen <strong>in</strong> verschiedenen Elektrizitätsleitern,"Annalen der Physik, vol. 57, no. 23, pp. 541-567, 1918.[9] S. Machlup, "Noise <strong>in</strong> Semiconductors: Spectrum of a Two-Parameter R<strong>and</strong>om Signal," Journalof Applied Physics, vol. 25, no. 3, pp. 341-343, 1954.[10] N. B. Lukyanchikova, Noise Research <strong>in</strong> Semiconductor Physics. Gordon <strong>and</strong> Breach SciencePublishers, 1996. ISBN 90-5699-006-3[11] M. J. Kirton <strong>and</strong> M. J. Uren, "Noise <strong>in</strong> solid-state microstructures: A new perspective on<strong>in</strong>dividual defects, <strong>in</strong>terface states <strong>and</strong> low-<strong>frequency</strong> (1/f) <strong>noise</strong>," Advances <strong>in</strong> Physics, vol. 38, no.4, pp. 367-468, 1989.[12] L. K. J. V<strong>and</strong>amme, D. Sod<strong>in</strong>i, <strong>and</strong> Z. G<strong>in</strong>gl, "On the anomalous behaviour of the relativeamplitude of RTS <strong>noise</strong>," Solid-State Electronics, vol. 42, no. 6, pp. 901-905, June1998.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


116[13] L. K. J. V<strong>and</strong>amme, A. V. Belyakov, M. Y. Perov, <strong>and</strong> A. V. Yakimov. Difference <strong>in</strong>dependence of 1/f <strong>and</strong> RTS <strong>noise</strong> on current <strong>in</strong> quantum dots light emitt<strong>in</strong>g diodes. In: NOISE INDEVICES AND CIRCUITS, edited by M. J. Deen, Z. CelikButler, <strong>and</strong> M. E. Lev<strong>in</strong>shte<strong>in</strong>,BELLINGHAM:SPIE-INT SOCIETY OPTICAL ENGINEERING, 2003, p. 368-378.[14] A. V. Belyakov, L.K.J.V<strong>and</strong>amme, M. Y. Perov, <strong>and</strong> A. V. Yakimov, “The different physicalorig<strong>in</strong>s of 1/f <strong>noise</strong> <strong>and</strong> superimposed RTS <strong>noise</strong> <strong>in</strong> light-emitt<strong>in</strong>g quantum dot diodes”, Fluctuation<strong>and</strong> <strong>noise</strong> letters (FNL) vol. 3, no. 3, L325-L339, 2003[15] F. N. Hooge, "1/f-<strong>noise</strong> is no surface effect," Physics Letters A, vol. 29A, no. 3, pp. 139-140,1969.[16] F. N. Hooge, T. G. M. Kle<strong>in</strong>penn<strong>in</strong>g, <strong>and</strong> L. K. J. V<strong>and</strong>amme, "Experimental studies on 1/f<strong>noise</strong>," Reports on Progress <strong>in</strong> Physics, vol. 44, no. 5, pp. 479-532, May1981.[17] L. K. J. V<strong>and</strong>amme, "On the Calculation of 1/f Noise of Contacts," Applied Physics, vol.11 pp.89-96, 1976.[17a] L. K. J. V<strong>and</strong>amme. On 1/f <strong>noise</strong> <strong>in</strong> Ohmic contacts. Technische Universiteit E<strong>in</strong>dhoven. 1976.2000. Ph. D. Dissertation accessible at URL http://alex<strong>and</strong>ria.tue.nl/extra1/PRF2B/7607686.pdf[18] F. N. Hooge, "1/f <strong>noise</strong> sources “, IEEE Transactions on Electron Devices, vol. 41, no. 11, pp.1926-1935, Nov.1994.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


117[19] F. N. Hooge, "1/f-<strong>noise</strong> is no surface effect," Physics Lett. A, vol. 29A, no. 3, pp. 139-140, 1969.[20] L. K. J. V<strong>and</strong>amme, "Noise as a Diagnostic Tool for Quality <strong>and</strong> Reliability of ElectronicDevices," IEEE Transactions on Electron Devices, vol. 41, no.11, pp.2176-2187, Nov.1994.[21] L. K. J. V<strong>and</strong>amme <strong>and</strong> J. C. F. Groot, "1/f <strong>noise</strong> <strong>and</strong> resistance between circular electrodes,"Electronics Letters, vol. 14, no. 2, pp. 30-32, Jan.1978.[22] D. M. Fleetwood, J. T. Masden, <strong>and</strong> N. Giordano, "1/f Noise <strong>in</strong> Plat<strong>in</strong>um Films <strong>and</strong> Ultrath<strong>in</strong>Plat<strong>in</strong>um Wires: Evidence for a Common, Bulk Orig<strong>in</strong>," Physical Review Letters, vol.50,no.6, pp.450-453, 1983.[23] L. K. J. V<strong>and</strong>amme. Is the 1/f <strong>noise</strong> parameter α a constant? (Invited paper). Savelli, M., Lecoy,G., <strong>and</strong> Nougier, J. P. 183-192. 1983. Elsevier Science Publ. 7 th International Conference on Noise<strong>in</strong> Physical Systems <strong>and</strong> the 3rd International Conference on 1/f Noise May 17-20, 1983 Montpellier.[24] R. H. M. Clevers, "Volume <strong>and</strong> temperature dependence of the 1/f <strong>noise</strong> parameter α <strong>in</strong> Si,"Physica B, vol. 154 pp. 214-224, 1989.[25] F. N. Hooge <strong>and</strong> L. K. J. V<strong>and</strong>amme, "Lattice scatter<strong>in</strong>g causes 1/f-<strong>noise</strong>," Physics Letters A, vol.66, no. 4, pp. 315-316, May1978.[26] L. Ren <strong>and</strong> F. N. Hooge. Temperature dependence of 1/f <strong>noise</strong> <strong>in</strong> epitaxial n-type GaAs. PhysicaB 176:209-212, 1992.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


118[27] J. Berntgen, A. Behres, J. Kluth, K. Heime, W. Daumann, U. Auer, <strong>and</strong> F. J. Tegude. Hoogeparameter of InGaAs bulk material <strong>and</strong> InGaAs 2deg quantum-well structures based on InPsubstrates. MICROELECTRONICS RELIABILITY 40 (11):1911-1914, 2000.[28] F. N. Hooge, J. Kedzia, <strong>and</strong> L. K. J. V<strong>and</strong>amme, "Boundary scatter<strong>in</strong>g <strong>and</strong> 1/f <strong>noise</strong>," Journal ofApplied Physics, vol. 50, no. 12, pp. 8087-8089, Dec.1979.[29] L. K. J. V<strong>and</strong>amme. Bulk <strong>and</strong> Surface 1/f Noise. IEEE TRANSACTIONS ON ELECTRONDEVICES 36 (5):987-992, 1989.[30] L. K. J. V<strong>and</strong>amme <strong>and</strong> S. Oosterhoff, "Anneal<strong>in</strong>g of ion-implanted resistors reduces the 1/f<strong>noise</strong>," Journal of Applied Physics, vol. 59, no. 9, pp. 3169-3174, May1986.[31] L. K. J. V<strong>and</strong>amme. ION IMPLANTATION IN SEMICONDUCTORS Application totechnology Anneal<strong>in</strong>g of implants reduces lattice defects <strong>and</strong> 1/f <strong>noise</strong>. In: Solid State PhenomenaVol. 1&2, edited by D. Stievenard <strong>and</strong> J. C. Bourgo<strong>in</strong>, Lille;Paris:Trans Tech Publications Ltd.Switzerl<strong>and</strong>, 1988, p. 153-158.[32] L. Ren, "Intr<strong>in</strong>sic <strong>and</strong> extr<strong>in</strong>sic 1/f <strong>noise</strong> sources <strong>in</strong> proton-irradiated n-GaAs epitaxial layers,"Journal of Applied Physics, vol. 74, no. 7, pp. 4534-4539, Oct.1993.[33] L. K. J. V<strong>and</strong>amme <strong>and</strong> W. M. G. van Bokhoven. Conductance Noise Investigations with FourArbitrarily Shaped <strong>and</strong> Placed Electrodes. Applied Physics 14:205-215, 1977.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


119[34] L. K. J. V<strong>and</strong>amme, "Comments on "1/f Noise <strong>in</strong> Metal Contacts <strong>and</strong> Granular Resistors","IEEE Transactions on components, hybrids, <strong>and</strong> manufactur<strong>in</strong>g technology, vol. CHMT-10, no. 2,pp. 290-291, June1987.[35] L. K. J. V<strong>and</strong>amme <strong>and</strong> A. H. de Kuijper. Conductance <strong>noise</strong> <strong>in</strong>vestigations on symmetricalplanar resistors with f<strong>in</strong>ite contacts. SOLID-STATE ELECTRONICS 22 (11):981-986, 1979.[36] A. H. de Kuijper <strong>and</strong> L. K. J. V<strong>and</strong>amme. Charts of spatial <strong>noise</strong> distribution <strong>in</strong> planar resistorswith f<strong>in</strong>ite contacts. TH-Report 79-E-94, ISBN 90-6144-094-7:1-60, 1979. 01-1979.[37] T.G.M. Kle<strong>in</strong>penn<strong>in</strong>g; Charge-control model applied to 1/f <strong>noise</strong> <strong>in</strong> long p + -n diodes, Physicavol. 145B pp. 190-194 (1987).[38] T.G.M. Kle<strong>in</strong>penn<strong>in</strong>g; 1/f <strong>noise</strong> <strong>in</strong> p-n junction diodes, Journal of Vacuum Science &Technology A vol. 3 (no 1) pp. 176-182 (1985).[39] L. K. J. V<strong>and</strong>amme, E. P. V<strong>and</strong>amme, <strong>and</strong> J. J. Dobbelsteen. Impact of silicon substrate, ironcontam<strong>in</strong>ation <strong>and</strong> perimeter on saturation current <strong>and</strong> <strong>noise</strong> <strong>in</strong> n+p diodes. SOLID-STATEELECTRONICS 41 (6):901-908, 1997.[40] T.G.M. Kle<strong>in</strong>penn<strong>in</strong>g; <strong>Low</strong>-<strong>frequency</strong> <strong>noise</strong> <strong>in</strong> modern bipolar transistors: impact of <strong>in</strong>tr<strong>in</strong>sictransistor <strong>and</strong> parasitic series resistances , IEEE Transactions on Electron Devices vol. 41 (no 11)pp. 1981-1991 (1994)..L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


120[41] L. K. J. V<strong>and</strong>amme <strong>and</strong> G. Trefan. Review of low-<strong>frequency</strong> <strong>noise</strong> <strong>in</strong> bipolars over the lastdecades. Zampardi, P. pp. 68-73. 2001. Piscathaway, N.J. "IEEE Proceed<strong>in</strong>gs of the BCTM";(Bipolar/BiCMOS Circuits <strong>and</strong> Technology Meet<strong>in</strong>g), September 30 – October 2, 2001. J.Shott <strong>and</strong>J.Burghartz[42] L. K. J. V<strong>and</strong>amme <strong>and</strong> G. Trefan, "A review of 1/f <strong>noise</strong> <strong>in</strong> terms of mobility fluctuations <strong>and</strong>white <strong>noise</strong> <strong>in</strong> modern <strong>submicron</strong> bipolar transistors - BJTs <strong>and</strong> HBTs ,“ Fluctuation <strong>and</strong> NoiseLetters, vol. 1, no. 4, pp. R175-R199, 2001[43] S.P.O. Bruce, L.K.J V<strong>and</strong>amme <strong>and</strong> A. Rydberg; Measurement of <strong>Low</strong>-Frequency Base <strong>and</strong>Collector Current Noise <strong>and</strong> Coherence <strong>in</strong> SiGe Heterojunction Bipolar Transistors Us<strong>in</strong>gTransimpedance Amplifiers, IEEE Transactions on Electron Devices vol. 46 (no 5) pp. 993-1000(1999).[44] S. Bruce, L.K.J V<strong>and</strong>amme <strong>and</strong> A. Rydberg; Improved Correlation Measurements Us<strong>in</strong>gVoltage <strong>and</strong> Transimpedance Amplifiers <strong>in</strong> <strong>Low</strong>-Frequency Noise Characterization of BipolarTransistors, IEEE Transactions on Electron Devices vol. 47 (no 9) pp. 1772-1773 (2000).[45] T. G. M. Kle<strong>in</strong>penn<strong>in</strong>g. On 1/f trapp<strong>in</strong>g <strong>noise</strong> <strong>in</strong> MOST's. IEEE TRANSACTIONS ONELECTRON DEVICES 37 (9):2084-2089, 1990.[46] L. K. J. V<strong>and</strong>amme. Model for 1/f <strong>noise</strong> <strong>in</strong> MOS transistors biased <strong>in</strong> the l<strong>in</strong>ear region.SOLID-STATE ELECTRONICS 23 (4):317-323, 1980.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


121[47] L. K. J. V<strong>and</strong>amme <strong>and</strong> L. S. H. Dik.” Bias-temperature treatment, surface state density, <strong>and</strong> 1/f<strong>noise</strong> <strong>in</strong> MOSTs”. Eds. Meijer, P. H. E., Mounta<strong>in</strong>, R. D., <strong>and</strong> Soulen, R. J. , pp.244-247. 1981.Wash<strong>in</strong>gton, NBS. Sixth International Conference on Noise <strong>in</strong> Physical Systems, Gaithersburg, MDApril 6-10,1981 Proceed<strong>in</strong>gs of a conference held at the National Bureau of St<strong>and</strong>ards NBS.[48] L. K. J. V<strong>and</strong>amme <strong>and</strong> R. G. M. Penn<strong>in</strong>g de Vries, "Correlation between MOST 1/f <strong>noise</strong> <strong>and</strong>CCD transfer <strong>in</strong>efficiency," Solid-State Electronics, vol. 28, no. 10, pp. 1049-1056,1985.[49] L. K. J. V<strong>and</strong>amme. “1/f <strong>noise</strong> <strong>in</strong> CMOS transistors”.Ed. Ambrozy, A.; pp. 491-494. 1990.Budapest, Akadémiai Kiadó. 10th International Conference on Noise <strong>in</strong> Physical Systems - ICNF1989,August 21 - 25 1989, Budapest, Hungary.[50] L. K. J. V<strong>and</strong>amme, X. Li, <strong>and</strong> D. Rigaud, "1/f <strong>noise</strong> <strong>in</strong> MOS devices, mobility or numberfluctuations? ," IEEE Transactions on Electron Devices, vol. 41, no. 11, pp.1936-1945, Nov.1994.[51] X. Li, C. Barros, E. P. V<strong>and</strong>amme, <strong>and</strong> L. K. J. V<strong>and</strong>amme, "Parameter extraction <strong>and</strong> 1/f <strong>noise</strong> <strong>in</strong>a surface <strong>and</strong> a bulk-type, p-channel LDD MOSFET," Solid-State Electronics, vol. 37, no. 11, pp.1853-1862, 1994.[52] E. P. V<strong>and</strong>amme <strong>and</strong> L. K. J. V<strong>and</strong>amme. “ Unsolved Problems on 1/f Noise <strong>in</strong> <strong>MOSFETs</strong> <strong>and</strong>Possible Solutions”.2 nd Int. Conference on Unsolved Problems on Noise <strong>and</strong> Fluctuations (UPoN)481-486. 1999.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


122[53] E. P. V<strong>and</strong>amme <strong>and</strong> L. K. J. V<strong>and</strong>amme, "Critical discussion on unified 1/f <strong>noise</strong> models for<strong>MOSFETs</strong>," IEEE Transactions on Electron Devices, vol. 47, no. 11, pp. 2146-2152, Nov.2000.[54] L. K. J. V<strong>and</strong>amme <strong>and</strong> G. Trefan. 1/f Noise <strong>in</strong> <strong>MOSFETs</strong> (ISBN 90-73461-29-4). pp. 195-208.2001. "4th Annual Workshop on Semiconductor Advances for Future Electronics" -SAFE 2001 .[55] L. K. J. V<strong>and</strong>amme <strong>and</strong> G. Trefan. <strong>Low</strong> <strong>frequency</strong> <strong>noise</strong> (1/f <strong>and</strong> RTS) <strong>in</strong> <strong>submicron</strong> <strong>MOSFETs</strong>(28-11-2001) http://www.stw.nl/programmas/safe/proc-2001/V<strong>and</strong>amme.pdf[56] L. K. J. V<strong>and</strong>amme. 1/f Noise <strong>in</strong> MOSTs: Faster is Noisier, Kluwer, 2004 Proceed<strong>in</strong>gs fromARW NATO, held <strong>in</strong> Brno August 2003,[57] L. K. J. V<strong>and</strong>amme. Opportunities <strong>and</strong> limitations to use low-<strong>frequency</strong> <strong>noise</strong> as a diagnostic toolfor device quality. ICNF 2003, 17th Conference on Noise <strong>and</strong> Fluctuations. J. Sikula. CzechRepublic:CNRL s.r.o. 735-748, 2003. ISBN 80-239-1005-1. August-2003.[58] L. K. J. V<strong>and</strong>amme, M. G. Perichaud, E. Noguera, Y. Danto, <strong>and</strong> U. Behner. 1/f <strong>noise</strong> as adiagnostic-tool to <strong>in</strong>vestigate the quality of isotropic conductive adhesive bonds. IEEE Transactionson Components <strong>and</strong> packag<strong>in</strong>g Technology 22 (3):446-454, 1999.[59] E. P. V<strong>and</strong>amme <strong>and</strong> L. K. J. V<strong>and</strong>amme. 1/f Noise <strong>and</strong> its Coherence as a Diagnostic Tool forQuality Assessment of Potentiometers. IEEE Transactions on components, packag<strong>in</strong>g, <strong>and</strong>manufactur<strong>in</strong>g technology - part A 17 (3):436-445, 1994.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


123[60] E. P. V<strong>and</strong>amme <strong>and</strong> L. K. J. V<strong>and</strong>amme. Current crowd<strong>in</strong>g <strong>and</strong> its effect on 1/f <strong>noise</strong> <strong>and</strong> 3rdharmonicdistortion - a case-study for quality assessment of resistors. MICROELECTRONICSRELIABILITY 40 (11):1847-1853, 2000.[61] A. Hoel, L. K. J. V<strong>and</strong>amme, L. B. Kish, <strong>and</strong> E. Olsson. Current <strong>and</strong> voltage <strong>noise</strong> <strong>in</strong> WO3nanoparticle films. JOURNAL OF APPLIED PHYSICS 91 (8):5221-5226, 2002.[62] L. K. J. V<strong>and</strong>amme, R. Feyaerts, G. Trefan, <strong>and</strong> C. Detcheverry. 1/f <strong>noise</strong> <strong>in</strong> pentacene <strong>and</strong>poly-thienylene-v<strong>in</strong>ylene th<strong>in</strong>-film transistors. J. App. Phys. 91 (2):719-723, 2002.[63] R. J. J. M. Jongen, L. K. J. V<strong>and</strong>amme, H. H. Bonne, <strong>and</strong> J. W. C. de Vries. 1/f <strong>noise</strong> as adiagnostic tool to <strong>in</strong>vestigate the quality of anisotropic conductive adhesive (ACA) bonds for ballgrid arrays (BGA's). Fluctuation <strong>and</strong> Noise Letters 3 (1):L31-L51, 2003.[64] L. K. J. V<strong>and</strong>amme <strong>and</strong> A. J. van Kemenade. Resistance <strong>noise</strong> measurement: a betterdiagnostic tool to detect stress <strong>and</strong> current <strong>in</strong>duced degradation. MICROELECTRONICSRELIABILITY 37 (1):87-93, 1997.[65] L. Benoit, N. Malbert, F. Verdier, N. Labat, A. Touboul, <strong>and</strong> L. K. J. V<strong>and</strong>amme. <strong>Low</strong><strong>frequency</strong> gate <strong>noise</strong> <strong>in</strong> a diode-connected MESFET: measurements <strong>and</strong> model<strong>in</strong>g. J. App. Phys.48 (4):628-633, 2001.[66] L. K. J. V<strong>and</strong>amme, R. Alabedra, <strong>and</strong> M. Zommiti. 1/f <strong>noise</strong> as a reliability estimation for solarcells. SOLID-STATE ELECTRONICS 26 (7):671-674, 1983.L.K.J. V<strong>and</strong>amme / Noise / 26-02-2004


124[67] J. M. Perans<strong>in</strong>, P. Vignaud, D. Rigaud, <strong>and</strong> L. K. J. V<strong>and</strong>amme. 1/f Noise <strong>in</strong> MODFET'sat <strong>Low</strong> Dra<strong>in</strong> Bias. IEEE TRANS. ELECT. DEV. 37 (10):2250-2253, 1990.[68] X Li <strong>and</strong> L. K. J. V<strong>and</strong>amme. 1/f <strong>noise</strong> <strong>in</strong> MOSFET as a diagnostic tool. SOLID-STATEELECTRONICS 35 (10):1477-1481, 1992.[69] L. K. J. V<strong>and</strong>amme <strong>and</strong> A. Douib. Specific contact resistance <strong>and</strong> <strong>noise</strong> <strong>in</strong> contacts onth<strong>in</strong> layers. SOLID-STATE ELECTRONICS 25 (11):1125-1127, 1982.[70] L. K. J. V<strong>and</strong>amme. 1/f <strong>noise</strong> of po<strong>in</strong>t contacts affected by uniform films. JOURNAL OFAPPLIED PHYSICS 45 (10):4563-4565, 1974.[71] T. G. M. Kle<strong>in</strong>penn<strong>in</strong>g <strong>and</strong> A. H. de Kuijper. Relation between variance <strong>and</strong> sampleduration of 1/f <strong>noise</strong> signals. JOURNAL OF APPLIED PHYSICS 63 (1):43-45, 1988.[72] H. J. Butterweck. Noise voltages of bulk resistors due to r<strong>and</strong>om fluctuations ofconductivity. Philips Res.Repts 30 (Issue <strong>in</strong> honour of C.J. Bouwkamp):316*-321*, 1975.[73] T. G. M. Kle<strong>in</strong>penn<strong>in</strong>g <strong>and</strong> A. J. Holden. 1/f <strong>noise</strong> <strong>in</strong> n-p-n GaAs/AlGaAs heterojunctionbipolar transistors: impact of <strong>in</strong>tr<strong>in</strong>sic transistor <strong>and</strong> parasitic series resistances. IEEETRANSACTIONS ON ELECTRON DEVICES 40 (6):1148-1153, 1993.[74] L.K.J. V<strong>and</strong>amme. To be publishedL.K.J. V<strong>and</strong>amme / Noise / 26-02-2004

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!