30.01.2015 Views

3 slides/page - Center for Functional MRI

3 slides/page - Center for Functional MRI

3 slides/page - Center for Functional MRI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Bioengineering 280A<br />

Principles of Biomedical Imaging<br />

Fall Quarter 2004<br />

Lecture 5<br />

Sampling<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

1. Overview of Sampling<br />

2. 1D Sampling<br />

3. 2D Sampling<br />

4. Aliasing<br />

Topics<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Analog vs. Digital<br />

The Analog World:<br />

Continuous time/space, continuous valued signals or<br />

images, e.g. vinyl records, photographs, x-ray films.<br />

The Digital World:<br />

Discrete time/space, discrete-valued signals or<br />

images, e.g. CD-Roms, DVDs, digital photos, digital<br />

x-rays, CT, <strong>MRI</strong>, ultrasound.<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

1


The Process of Sampling<br />

g(x)<br />

Δx<br />

sample<br />

g[n]=g(n Δx)<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Questions<br />

How finely do we need to sample<br />

What happens if we don’t sample finely<br />

enough<br />

Can we reconstruct the original signal or<br />

image from its samples<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Sampling in the Time Domain<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

2


Sampling in Image Space<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Sampling in k-space<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Sampling in k-space<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

3


Comb Function<br />

comb(x) = δ(x − n)<br />

∞<br />

∑<br />

n=−∞<br />

€<br />

-5 -4 -3 -2 -1 0 1 2 3 4 5<br />

x<br />

Other names: Impulse train, bed of nails,<br />

shah function.<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Scaled Comb Function<br />

⎛<br />

comb<br />

x ⎞<br />

⎜ ⎟ =<br />

⎝ Δx ⎠<br />

∞<br />

∑<br />

n=−∞<br />

δ( x<br />

Δx − n)<br />

∞<br />

= ∑ δ( x − nΔx )<br />

Δx<br />

n=−∞<br />

∞<br />

∑<br />

= Δx δ(x − nΔx)<br />

n=−∞<br />

x<br />

€<br />

Δx<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

€<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

1D spatial sampling<br />

g S<br />

(x) = g(x) 1 Δx comb ⎛ x ⎞<br />

⎜ ⎟<br />

⎝ Δx ⎠<br />

Recall the sifting property<br />

∞<br />

∑<br />

= g(x) δ(x − nΔx)<br />

∞<br />

∑<br />

n=−∞<br />

= g(nΔx)δ(x − nΔx)<br />

∞<br />

n=−∞<br />

∞<br />

∫<br />

−∞<br />

g(x)δ(x − a) = g(a)<br />

But we can also write ∫ g(a)δ(x − a) = g(a) ∫ δ(x − a) = g(a)<br />

So, g(x)δ(x − a) = g(a)δ(x − a)<br />

−∞<br />

−∞<br />

∞<br />

€<br />

4


1D spatial sampling<br />

g(x)<br />

comb(x/Δx)/ Δx<br />

x<br />

Δx<br />

g S (x)<br />

x<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Fourier Trans<strong>for</strong>m of comb(x)<br />

F[ comb(x) ] = comb(k x<br />

)<br />

∞<br />

∑<br />

= δ(k x<br />

− n)<br />

n=−∞<br />

€<br />

⎡<br />

F<br />

1 Δx comb( x<br />

⎣<br />

⎢<br />

Δx ) ⎤<br />

⎦<br />

⎥ = 1<br />

Δx Δxcomb(k xΔx)<br />

∞<br />

∑<br />

= δ(k x<br />

Δx − n)<br />

n=−∞<br />

= 1<br />

Δx<br />

∞<br />

∑<br />

n=−∞<br />

δ(k x<br />

− n Δx )<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

€<br />

Fourier Trans<strong>for</strong>m of comb(x/ Δx)<br />

comb(x/ Δx)/ Δx<br />

Δx<br />

F<br />

x<br />

1/Δx<br />

comb(k x Δx)<br />

1/Δx<br />

k x<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

5


Fourier Trans<strong>for</strong>m of g S (x)<br />

⎡<br />

F[ g S<br />

(x)] = F g(x) 1 Δx comb ⎛ x ⎞ ⎤<br />

⎢<br />

⎜ ⎟ ⎥<br />

⎣<br />

⎝ Δx ⎠ ⎦<br />

⎡<br />

= G(k x<br />

) ∗ F 1 Δx comb ⎛ x ⎞ ⎤<br />

⎢ ⎜ ⎟ ⎥<br />

⎣ ⎝ Δx ⎠ ⎦<br />

= G(k x<br />

) ∗ 1 Δx<br />

= 1 Δx<br />

= 1 Δx<br />

∞<br />

∑<br />

n=−∞<br />

∞<br />

∑<br />

n=−∞<br />

∞<br />

∑<br />

n=−∞<br />

⎛<br />

δ k x<br />

− n ⎞<br />

⎜ ⎟<br />

⎝ Δx ⎠<br />

⎛<br />

G(k x<br />

) ∗δ k x<br />

− n ⎞<br />

⎜ ⎟<br />

⎝ Δx ⎠<br />

⎛<br />

G k x<br />

− n ⎞<br />

⎜ ⎟<br />

⎝ Δx ⎠<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

€<br />

Fourier Trans<strong>for</strong>m of g S (x)<br />

G(k x )<br />

k x<br />

1/Δx<br />

G S (k x )<br />

k x<br />

1/Δx<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Nyquist Condition<br />

G(k x )<br />

K S<br />

-B<br />

B<br />

k x<br />

G S (k x )<br />

k x<br />

K S =1/Δx<br />

To avoid overlap, we require that 1/Δx>2B or<br />

K S > 2B where K S =1/ Δx is the sampling frequency<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

6


Reconstruction from Samples<br />

K S<br />

G S (k x )<br />

K S =1/Δx<br />

Multiply by<br />

(1/K S )rect(k x /K S )<br />

(1/K S ) G S (k x )rect(k x /K S )<br />

=G(k x )<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Reconstruction from Samples<br />

If the Nyquist condition is met, then<br />

G ˆ<br />

S<br />

(k x<br />

) = 1 G S<br />

(k x<br />

)rect(k x<br />

/K S<br />

) = G(k x<br />

)<br />

K S<br />

And the signal can be reconstructed by convolving the sample<br />

with a sinc function<br />

€<br />

g ˆ S<br />

(x) = g S<br />

(x) ∗ sinc(K s<br />

x)<br />

∞<br />

= ∑g(nΔX)δ(x −nΔX) ∗sinc(K s<br />

x)<br />

n=−∞<br />

∞<br />

∑<br />

= g(nΔX) sinc(K s<br />

(x − nΔx))<br />

n=−∞<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

€<br />

Example Cosine Reconstruction<br />

cos(2πk 0 x)<br />

-k 0 k 0<br />

K S >2k 0<br />

-k 0 k 0<br />

K S<br />

K S =2k 0<br />

-k 0<br />

K S<br />

k 0<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

7


Cosine Example with K S =2k 0<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Example with K s =4k 0<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Example with K s =8k 0<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

8


Sine Example with K s =2k 0<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Example Sine Reconstruction<br />

-k 0<br />

-k 0<br />

-k 0<br />

K S<br />

2jsin(2πk 0 x)<br />

k 0<br />

K S >2k 0<br />

k 0<br />

K S<br />

K S =2k 0<br />

Aliased!<br />

k 0<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Aliasing<br />

-B<br />

G(k x )<br />

k x<br />

B<br />

K S<br />

Aliasing occurs when the Nyquist condition is not satisfied.<br />

This occurs <strong>for</strong> K S ≤ 2B<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

9


Aliasing Example<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Aliasing Example<br />

cos(2πk 0 x)<br />

-k 0 k 0<br />

K S =k 0<br />

-k 0 k 0<br />

K S<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Aliasing Example<br />

cos(2πk 0 x)<br />

-k 0 k 0<br />

2k 0 >K S >k 0<br />

-k 0 k 0<br />

K S<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

10


Practical Considerations<br />

Why sample higher than the Nyquist frequency<br />

-- true sinc interpolation is not practical since the sinc<br />

function goes from -infinity to infinity<br />

-- the requirements on the low-pass filter are reduced.<br />

Hard<br />

-k 0 k 0<br />

Easier<br />

-k 0 k 0<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

K S<br />

Fourier Sampling<br />

F<br />

Instead of sampling the<br />

signal, we sample its Fourier<br />

Trans<strong>for</strong>m<br />

<br />

F -1<br />

Sample<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Fourier Sampling<br />

(1 /Δk x ) comb(k x /Δk x )<br />

k x<br />

Δk x<br />

G S<br />

(k x<br />

) = G(k x<br />

) 1 ⎛<br />

comb<br />

k ⎞<br />

x<br />

⎜ ⎟<br />

Δk x ⎝ Δk x ⎠<br />

∞<br />

= G(k x<br />

) ∑δ(<br />

k x<br />

− nΔk x<br />

)<br />

∞<br />

n=−∞<br />

= ∑G(nΔk x<br />

)δ( k x<br />

− nΔk x<br />

)<br />

n=−∞<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

€<br />

11


Fourier Sampling -- Inverse Trans<strong>for</strong>m<br />

Χ =<br />

*<br />

1/Δk x<br />

Δk x<br />

=<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Fourier Sampling -- Inverse Trans<strong>for</strong>m<br />

g S<br />

(x) = F −1 [ G S<br />

(k x<br />

)]<br />

⎡<br />

= F −1 G(k x<br />

) 1 ⎛<br />

comb<br />

k ⎞ ⎤<br />

x<br />

⎢<br />

⎜ ⎟ ⎥<br />

⎣ Δk x ⎝ Δk x ⎠ ⎦<br />

⎡<br />

= F −1 [ G(k x<br />

)] ∗ F 1 ⎛<br />

−1 comb<br />

k ⎞ ⎤<br />

x<br />

⎢ ⎜ ⎟ ⎥<br />

⎣ Δk x ⎝ Δk x ⎠ ⎦<br />

= g(x) ∗comb( xΔk x )<br />

∞<br />

= g(x) ∗ ∑δ(xΔk x<br />

− n)<br />

n=−∞<br />

= g(x) ∗ 1<br />

Δk x<br />

= 1<br />

Δk x<br />

∞<br />

∑<br />

n=−∞<br />

g(x<br />

∞<br />

∑<br />

n=−∞<br />

δ(x<br />

− n<br />

Δk x<br />

)<br />

− n<br />

Δk x<br />

)<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

€<br />

Nyquist Condition<br />

FOV (Field of View)<br />

1/Δk x<br />

To avoid overlap, 1/Δk x > FOV, or equivalently, Δk x


Aliasing<br />

FOV (Field of View)<br />

1/Δk x<br />

Aliasing occurs when 1/Δk x < FOV<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Aliasing Example<br />

Δk x =1<br />

1/Δk x =1<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

2D Comb Function<br />

∞<br />

comb(x,y) = δ(x − m,y − n)<br />

∞<br />

∑ ∑<br />

m=−∞ n=−∞<br />

∞ ∞<br />

∑ ∑<br />

= δ(x − m)δ(y − n)<br />

m=−∞ n=−∞<br />

= comb(x)comb(y)<br />

€<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

13


Scaled 2D Comb Function<br />

comb(x /Δx, y /Δy) = comb(x /Δx)comb(y /Δy)<br />

∞<br />

∞<br />

∑ ∑<br />

= ΔxΔy δ(x − mΔx)δ(y − nΔy)<br />

m=−∞ n=−∞<br />

€<br />

Δy<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Δx<br />

* =<br />

1/∆k<br />

X =<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

2D k-space sampling<br />

1 ⎛<br />

G S<br />

(k x<br />

,k y<br />

) = G(k x<br />

,k y<br />

) comb<br />

k x<br />

, k ⎞<br />

y<br />

Δk x<br />

Δk<br />

⎜<br />

y ⎝ Δk x<br />

Δk<br />

⎟<br />

y ⎠<br />

∞<br />

∞<br />

= G(k x<br />

,k y<br />

) ∑ ∑δ(<br />

k x<br />

− mΔk x<br />

,k y<br />

− nΔk y<br />

)<br />

∞<br />

∞<br />

m=−∞ n=−∞<br />

= ∑ ∑G(mΔk x<br />

,nΔk y<br />

)δ( k x<br />

− mΔk x<br />

,k y<br />

− nΔk y<br />

)<br />

m=−∞ n=−∞<br />

€<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

14


2D k-space sampling<br />

[ ]<br />

g S<br />

(x, y) = F −1 G S<br />

(k x<br />

,k y<br />

)<br />

⎡<br />

1 ⎛<br />

= F −1 G(k x<br />

,k y<br />

) comb<br />

k x<br />

, k ⎞ ⎤<br />

y<br />

⎢<br />

Δk x<br />

Δk<br />

⎜<br />

y ⎝ Δk x<br />

Δk<br />

⎟ ⎥<br />

⎣ ⎢<br />

y ⎠ ⎦ ⎥<br />

⎡<br />

1 ⎛<br />

= F −1 [ G(k x<br />

,k y<br />

)] ∗ F −1 comb<br />

k x<br />

, k ⎞ ⎤<br />

y<br />

⎢<br />

Δk x<br />

Δk<br />

⎜<br />

y ⎝ Δk x<br />

Δk<br />

⎟ ⎥<br />

⎣ ⎢<br />

y ⎠ ⎦ ⎥<br />

= g(x, y) ∗∗comb( xΔk x )comb( yΔk y )<br />

∞ ∞<br />

= g(x) ∗∗ ∑ ∑δ(xΔk x<br />

− m) δ(yΔk y<br />

− n)<br />

m=−∞<br />

n=−∞<br />

∞<br />

1<br />

= g(x) ∗∗ ∑<br />

Δk x<br />

Δk y m=−∞<br />

∞ ∞<br />

1<br />

= ∑ ∑g(x<br />

Δk x<br />

Δk y<br />

m=−∞<br />

n=−∞<br />

∞<br />

∑<br />

n=−∞<br />

δ(x<br />

− m<br />

Δk x<br />

)δ(y − n<br />

Δk y<br />

)<br />

− m<br />

Δk x<br />

, y − n<br />

Δk y<br />

)<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

€<br />

Nyquist Conditions<br />

FOV X<br />

1/∆k Y > FOV Y<br />

1/∆k X > FOV X<br />

1/∆k Y<br />

FOV Y<br />

1/∆k X<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

Aliasing<br />

T.T. Liu, BE280A, UCSD Fall 2004<br />

15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!