10.07.2015 Views

Bloch Equation - Center for Functional MRI

Bloch Equation - Center for Functional MRI

Bloch Equation - Center for Functional MRI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Phase with time-varying gradientk x =0; k y =0k x =0; k y ≠0TT Liu, BE280A, UCSD Fall 2008Fig 3.12 from NishimuraTT Liu, BE280A, UCSD Fall 2008G x (t)K-space trajectoryG y (t)k ytt 1 t 2!k y(t 4)k y(t 3)kt 3 t x4 k x(t! 1) k x(t 2)!!TT Liu, BE280A, UCSD Fall 2008TT Liu, BE280A, UCSD Fall 2008 Nishimura 19966


G x (t)K-space trajectoryG x (t)Spin-WarpG y (t)k ytt 1 t 2G y (t)t 1k yk xTT Liu, BE280A, UCSD Fall 2008k xTT Liu, BE280A, UCSD Fall 2008k-spaceImage spacek-spaceyk yxFourier Trans<strong>for</strong>mk xTT Liu, BE280A, UCSD Fall 2008TT Liu, BE280A, UCSD Fall 20087


!Static Gradient FieldsIn a uni<strong>for</strong>m magnetic field, the transverse magnetizationis given by:M(t) = M(0)e " j# 0t e "t /T 2In the presence of non time-varying gradients we haveM( r ) = M( ,0)e " j#B z ( r= M( ,0)e " j# ( B 0+ G r$ r= M( r ,0)e " j% 0 t e " j# rr )t e " t /T 2 ( r )r )t e " t /T 2 ( r )G $ r t e " t /T 2 ( r )Time-Varying Gradient FieldsIn the presence of time-varying gradients the frequencyas a function of space and time is:!( ) = #B z( r" r ,tr ,t)= #B 0+ # G r(t) $ r= " 0+ %"( r ,t)!TT Liu, BE280A, UCSD Fall 2008TT Liu, BE280A, UCSD Fall 2008PhasePhase = angle of the magnetization phasorFrequency = rate of change of angle (e.g. radians/sec)Phase = time integral of frequencyt( ) = # $( r" r ,t& r ,%) d%0= #$ 0t + '" r ,t( )Phase with constant gradientWhere the incremental phase due to the gradients is!t( ) = $ ' "%( r0t= $ ' ( G v( r"# r ,t0r ,& ) d&r ,& ) ) rd&!t( ) = $ ' "%( r1"# r ,t 10r ,&)"# r t( ,t 3 ) = $ ' "%( r30t( ) = $ ' "%( r2d&"# r ,t 2r ,&) d&0= $"%( r )t 2!if "% is non - time varying.r ,&) d&!TT Liu, BE280A, UCSD Fall 2008TT Liu, BE280A, UCSD Fall 2008!9


Time-Varying Gradient FieldsSignal <strong>Equation</strong>!The transverse magnetization is then given byM( r ,t) = M( r ,0)e "t /T 2 ( r ) e #(r r ,t )= M( r ,0)e "t /T 2 ( r ) e " j$ 0 t exp " j= M( r ,0)e "t /T 2( rr ) e " j$ 0t exp " j(t( ' %$( r ,t)d&o )t r( ' G (&) ) r d&o )!Signal from a volumes r(t) = " M( r ,t) dV= M(x, y,z,0)e #t /T 2 ( r ) e # j$ 0 t t r" exp # j% " G (&) ' r d& dxdydzV" "x y z( o )For now, consider signal from a slice along z and dropthe T 2 term. Definez 0 +$z / 2To obtain''x ym(x, y) " % M( r ,t) dzz 0 #$z / 2s r(t) = ! m(x, y)e " j# 0t exp " j$( 'o )t rG (%) & r d% dxdyTT Liu, BE280A, UCSD Fall 2008!TT Liu, BE280A, UCSD Fall 2008Signal <strong>Equation</strong>Demodulate the signal to obtainMR signal is Fourier Trans<strong>for</strong>ms(t) = e j" 0 t s r(t)''x y= m(x, y)exp # j$'' y(t r' G (%) & r d%o ) dxdy(t')= m(x, y)exp # j$o[ G x(%)x + G y(%)y]d%dxdyx''x y( ( ))= m(x, y)exp # j2( k x(t)x + k y(t)ydxdys(t) = $ m(x, y)exp " j2# k x(t)x + k y(t)y dxdy$x y( )= M k x(t),k y(t)[ ]kx (t ),k y (t )= F m(x, y)( ( ))!Wherek x(t) = "2#k y(t) = "2#%%t0t0G x($)d$G y($)d$!TT Liu, BE280A, UCSD Fall 2008TT Liu, BE280A, UCSD Fall 2008!10


G x (t) = 1 Gauss/cmExamplett 2 = 0.235msk y!k xk x(t 1) k x(t 2)k x(t 2) = " t% G x($ )d$2#0! = 4257Hz /G &1G /cm &0.235 '10 (3 s=1 cm (11 cmTT Liu, BE280A, UCSD Fall 2008!12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!