30.01.2015 Views

Role of Temperature and Organic Degradation on the Persistence of ...

Role of Temperature and Organic Degradation on the Persistence of ...

Role of Temperature and Organic Degradation on the Persistence of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Role</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Organic</str<strong>on</strong>g> <str<strong>on</strong>g>Degradati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Persistence</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Stable<br />

Isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> Carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Nitrogen in Aquaculture Waste<br />

by<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Mieczyslaw Osuchowski<br />

A Thesis<br />

presented to<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph<br />

In partial fulfillment <str<strong>on</strong>g>of</str<strong>on</strong>g> requirements<br />

for <strong>the</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Master <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

in<br />

Animal <str<strong>on</strong>g>and</str<strong>on</strong>g> Poultry Science<br />

Guelph, Ontario, Canada<br />

© Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Mieczyslaw Osuchowski, May 2013


ABSTRACT<br />

<str<strong>on</strong>g>Role</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Organic</str<strong>on</strong>g> <str<strong>on</strong>g>Degradati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Persistence</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Stable Isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> Carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Nitrogen in Aquaculture Waste<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> M. Osuchowski<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph, 2012<br />

Advisor:<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Richard D. Moccia<br />

This study evaluated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> organic degradati<strong>on</strong> <strong>on</strong> <strong>the</strong> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> δ13C <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

δ15N in aquaculture waste. <str<strong>on</strong>g>Organic</str<strong>on</strong>g> degradati<strong>on</strong> time showed a significant linear (p


Acknowledgments<br />

This research project would not have been possible without <strong>the</strong> support <str<strong>on</strong>g>of</str<strong>on</strong>g> many people. I would<br />

first like to express my sincere gratitude to my advisor Rich Moccia who provided me with<br />

excellent research opportunities, challenged me <str<strong>on</strong>g>and</str<strong>on</strong>g> encouraged me to stay <strong>on</strong> course <str<strong>on</strong>g>and</str<strong>on</strong>g> fulfill a<br />

milest<strong>on</strong>e in my academic career.<br />

I would like to thank my advisory committee members, David Bevan, Ma<strong>the</strong>w Wells <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Michael Power without whose knowledge, advice <str<strong>on</strong>g>and</str<strong>on</strong>g> technical assistance this study would not<br />

have been possible.<br />

A very special thank you to Bill Szkotnicki <str<strong>on</strong>g>and</str<strong>on</strong>g> Margaret Quint<strong>on</strong> who provided me with<br />

invaluable guidance <str<strong>on</strong>g>and</str<strong>on</strong>g> statistical analysis input, great dedicati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> expert advice <strong>on</strong> setting<br />

up my experiment.<br />

I would like to thank my colleagues who provided a fantastic atmosphere <str<strong>on</strong>g>and</str<strong>on</strong>g> orientated me in<br />

my Master’s studies. Thank you Fern<str<strong>on</strong>g>and</str<strong>on</strong>g>o Salazar, Jacqui Milne <str<strong>on</strong>g>and</str<strong>on</strong>g> Mike Glinka for your<br />

support, advice <str<strong>on</strong>g>and</str<strong>on</strong>g> help in <strong>the</strong> field.<br />

A big thank you to Michael Burke <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> staff at <strong>the</strong> Alma Research Stati<strong>on</strong> for providing<br />

excellent resources in running my experiment <str<strong>on</strong>g>and</str<strong>on</strong>g> fur<strong>the</strong>r educating me in research practices in<br />

<strong>the</strong> field <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture.<br />

I would also like to thank George van der Merwe from Molecular <str<strong>on</strong>g>and</str<strong>on</strong>g> Cellular Biology, for<br />

generously <str<strong>on</strong>g>and</str<strong>on</strong>g> timely providing me vital incubator equipment <str<strong>on</strong>g>and</str<strong>on</strong>g> advice.<br />

A special thanks goes to all <strong>the</strong> cage aquaculture staff up north for <strong>the</strong>ir great hospitality <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

unwavering assistance in providing access to all my data collecti<strong>on</strong>s.<br />

Lastly, I thank my family <str<strong>on</strong>g>and</str<strong>on</strong>g> friends for not giving up <strong>on</strong> me, supporting me through all my<br />

adventures <str<strong>on</strong>g>and</str<strong>on</strong>g> always being <strong>the</strong>re for me in <strong>the</strong> l<strong>on</strong>g stretch.<br />

iii


Table <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>tents<br />

Abstract.........................................................................................................................................ii<br />

Acknowledgements......................................................................................................................iii<br />

Table <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>tents……………………………………………………………………………......iv<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables……………………………………………………………………………………vii<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures............................................................................................................................viii<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Appendices……………………………………………………………………………….xi<br />

Declarati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Work Performed………………………………………………………………xiii<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> abbreviati<strong>on</strong>s……………………………………………………………………………xiv<br />

Chapter 1: Literature Review………………………………………………………………….1<br />

1.1 Aquaculture Introducti<strong>on</strong>: A Global <str<strong>on</strong>g>and</str<strong>on</strong>g> Canadian Industry Perspective ............... ..1<br />

1.1 Regulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Envir<strong>on</strong>mental Management in Aquaculture……………………..3<br />

1.2 Stable Isotopes as Tools <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Management ................................... ..15<br />

1.3 Stable Isotope Applicati<strong>on</strong> Aquaculture ................................................................ .2<br />

Chapter 2: Assessing <strong>the</strong> Use <str<strong>on</strong>g>of</str<strong>on</strong>g> Stable Isotopes as Tracers <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquaculture Waste Effluent<br />

in Sediments at Cage Aquaculture ...................................................................................... 25<br />

2.1 Introducti<strong>on</strong> ....................................................................................................... .25<br />

2.2 Methodology .............................................................................................................. .26<br />

2.2.1 Inactive Site Sediment Sampling ............................................................. .26<br />

2.2.2 Active Site Sediment Sampling ..................................................................... .28<br />

2.2.3 Feed Sampling <str<strong>on</strong>g>and</str<strong>on</strong>g> Preparati<strong>on</strong> ................................................................ .30<br />

2.2.4 Statistical Analysis ................................................................................... .30<br />

2. 3 Results .............................................................................................................. .31<br />

2.4 Discussi<strong>on</strong> ........................................................................................................... 37<br />

2.4.1 Carb<strong>on</strong> Isotopes ...................................................................................... 37<br />

2.4.2 Nitrogen Isotopes .................................................................................... 40<br />

2.5 General C<strong>on</strong>clusi<strong>on</strong> ............................................................................................. 43<br />

iv


Chapter 3: L<strong>on</strong>g Term M<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> Large Lake, Vertical <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles:<br />

Implicati<strong>on</strong>s to Aquaculture Management ..................................................................... 44<br />

3.1 Introducti<strong>on</strong>…………………………………………………………………… 44<br />

3.2. Methodology………………………………………………………………….. 46<br />

3.2.1<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> Logging Equipment Set Up ................................................ 46<br />

3.2.2 <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> Data Statistical Analysis .................................................... 53<br />

3.3. Results .............................................................................................................. 54<br />

3.4. Discussi<strong>on</strong> .......................................................................................................... 64<br />

3.5 C<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Future Research Ideas ................................................................. 75<br />

Chapter 4: <str<strong>on</strong>g>Role</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Organic</str<strong>on</strong>g> <str<strong>on</strong>g>Degradati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Persistence</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Stable<br />

Isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> Carb<strong>on</strong> (δ 13 C) <str<strong>on</strong>g>and</str<strong>on</strong>g> Nitrogen (δ 15 N) in Aquaculture Waste .............................. 76<br />

4.1 Introducti<strong>on</strong> ......................................................................................................... 76<br />

4.2 Hypo<strong>the</strong>sis <str<strong>on</strong>g>and</str<strong>on</strong>g> Objectives ................................................................................... 77<br />

4.3.Methodology .......................................................................................................................... 78<br />

4.3.1. Setup <str<strong>on</strong>g>of</str<strong>on</strong>g> Collecting Tanks, Fish Distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Feeding Schedule ...... 78<br />

4.3.2. Faeces Incubati<strong>on</strong> Preparati<strong>on</strong> ................................................................ 79<br />

4.3.3. <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> Incubati<strong>on</strong> Setup ................................................................ 81<br />

4.3.4. Sample Collecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Preparati<strong>on</strong> for Stable Isotope Analysis ............. 81<br />

4.3.5. Feed Sample Preparati<strong>on</strong> ........................................................................ 82<br />

4.3.6. Statistical Analysis .................................................................................. 82<br />

4.4. Results ............................................................................................................... 82<br />

4.4.1. Carb<strong>on</strong> Isotopes ...................................................................................... 82<br />

4.4.2. Nitrogen Isotopes .................................................................................... 89<br />

4.5 Discussi<strong>on</strong> .......................................................................................................... 97<br />

vi


4.6 General C<strong>on</strong>clusi<strong>on</strong> .......................................................................................... 107<br />

Chapter 5. Overall C<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> future research ideas................................................ 109<br />

References .......................................................................................................................... 114<br />

Appendices ......................................................................................................................... 130<br />

vii


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables<br />

Table 1. Active site coordinates ............................................................................................... 28<br />

Table 2. Simple statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment samples from active sites,<br />

inactive sites <str<strong>on</strong>g>and</str<strong>on</strong>g> feed samples ................................................................................................. 32<br />

Table 3. Signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N from sediment samples <str<strong>on</strong>g>and</str<strong>on</strong>g> feed at active sites ................ 33<br />

Table 4. Sediment δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures from inactive site La Cloche ................................ 35<br />

Table 5. Sediment signatures δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N from inactive site Grassy Bay ............................... 36<br />

Table 6. Site coordinates .......................................................................................................... 49<br />

Table 7. Site locati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> logger deployment details……………………………………. ......... 50<br />

Table 8. Initial data logging start, <str<strong>on</strong>g>of</str<strong>on</strong>g>floading <str<strong>on</strong>g>and</str<strong>on</strong>g> final logging dates at <strong>the</strong> 8 aquaculture<br />

sites……………………………………………………………………………………….………52<br />

Table 9. Estimated fall turnover dates for each aquaculture site ................................................ 62<br />

Table 10. Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature data recorded from May 25 to<br />

November 28 at <strong>the</strong> 8 aquaculture sites, with 3 depth z<strong>on</strong>es; whole water column (WWC),<br />

cage envir<strong>on</strong>ment (CE), below cage envir<strong>on</strong>ment (BCE) ......................................................... 63<br />

Table 11. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed effects <strong>on</strong> <strong>the</strong> δ 13 C isotope signatures ........................................... 87<br />

Table 12. Orthog<strong>on</strong>al c<strong>on</strong>trasts <str<strong>on</strong>g>of</str<strong>on</strong>g> mean C isotope values between incubati<strong>on</strong> temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

time intervals, showing significance <str<strong>on</strong>g>of</str<strong>on</strong>g> linear (L), quadratic (Q) <str<strong>on</strong>g>and</str<strong>on</strong>g> cubic (C) effects <str<strong>on</strong>g>of</str<strong>on</strong>g> time <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

temperature <strong>on</strong> <strong>the</strong> δ 13 C isotope signature ............................................................................... 88<br />

Table 13. Estimated <str<strong>on</strong>g>of</str<strong>on</strong>g> LSM <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C isotope values corresp<strong>on</strong>ding to individual <str<strong>on</strong>g>and</str<strong>on</strong>g> combined<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> time ................................................................................................ 89<br />

Table 14. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed effects <strong>on</strong> <strong>the</strong> δ 15 N isotope signature ........................................... 94<br />

Table 15. Orthog<strong>on</strong>al c<strong>on</strong>trasts <str<strong>on</strong>g>of</str<strong>on</strong>g> mean N isotope values between incubati<strong>on</strong> temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

time intervals, showing significance <str<strong>on</strong>g>of</str<strong>on</strong>g> linear (L), quadratic (Q) <str<strong>on</strong>g>and</str<strong>on</strong>g> cubic (C) effects <str<strong>on</strong>g>of</str<strong>on</strong>g> time <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

temperature <strong>on</strong> <strong>the</strong> δ 15 N isotope signature ................................................................................ 95<br />

Table 16. Estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> LSM <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 15 N isotope values corresp<strong>on</strong>ding to individual <str<strong>on</strong>g>and</str<strong>on</strong>g> combined<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> time ................................................................................................ 96<br />

viii


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures<br />

Figure 1. Grassy Bay (inactive) site sampling pattern relative to shoreline .............................. 26<br />

Figure 2. La Cloche (inactive) site sampling patterns relative to shoreline ............................... 27<br />

Figure 3. Locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ekman grab sediment sampling sites around <strong>the</strong> Lake Hur<strong>on</strong> drainage<br />

basin ...................................................................................................................................... 29<br />

Figure 4. Signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N sediment samples <str<strong>on</strong>g>and</str<strong>on</strong>g> feed from active sites ................ 34<br />

Figure 5. The δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures from inactive sites: Grassy Bay <str<strong>on</strong>g>and</str<strong>on</strong>g> La Cloche .......... 36<br />

Figure 6. Great Lakes regi<strong>on</strong> showing locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eight sites m<strong>on</strong>itored in <strong>the</strong> North Channel<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Georgian Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Lake Hur<strong>on</strong> ........................................................................................... 48<br />

Figure 7. Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> cages <str<strong>on</strong>g>and</str<strong>on</strong>g> depths <str<strong>on</strong>g>of</str<strong>on</strong>g> individual loggers at each m<strong>on</strong>itoring site site<br />

.............................................................................................................................................. 51<br />

Figure 8. Site 1 temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> cage envir<strong>on</strong>ment (0.5 & 20m) <str<strong>on</strong>g>and</str<strong>on</strong>g> maximum depth<br />

(33.5m) from May through December 2007. ........................................................................... 55<br />

Figure 9. Site 2 temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> cage envir<strong>on</strong>ment (0.5 & 26.5m) <str<strong>on</strong>g>and</str<strong>on</strong>g> maximum depth<br />

(73.5m) from May through December 2007............................................................................ 55<br />

Figure 10. Site 3 temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> cage envir<strong>on</strong>ment (0.5 & 9m) <str<strong>on</strong>g>and</str<strong>on</strong>g> maximum depth (16m)<br />

from May through December 2007 ......................................................................................... 56<br />

Figure 11. Site 4 temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> cage envir<strong>on</strong>ment (0.5 & 14m) <str<strong>on</strong>g>and</str<strong>on</strong>g> maximum depth<br />

(27m) from May through December 2007 ..................................................................................... 56<br />

Figure 12. Site 5 temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> cage envir<strong>on</strong>ment (0.5 & 12m) <str<strong>on</strong>g>and</str<strong>on</strong>g> maximum depth<br />

(16m) from May through December 2007 ..................................................................................... 57<br />

Figure 13. Site 6 temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> cage envir<strong>on</strong>ment (0.5 & 9m) <str<strong>on</strong>g>and</str<strong>on</strong>g> maximum depth (18m<br />

from May through December 2007 ......................................................................................... 57<br />

Figure 14. Whisker box-plot <str<strong>on</strong>g>of</str<strong>on</strong>g> whole water column (WWC) temperature range at <strong>the</strong> 8<br />

m<strong>on</strong>itored sites from May 25 – November 28, 2007, yellow box represents 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data<br />

points between <strong>the</strong> 1 st <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 rd quartiles, whiskers mark <strong>the</strong> total range <str<strong>on</strong>g>of</str<strong>on</strong>g> temperatures ........... 58<br />

Figure 15. Whisker box-plot <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cage envir<strong>on</strong>ment (CE) temperature range at <strong>the</strong> 8 m<strong>on</strong>itored<br />

sites from May 25 – November 28, 2007, yellow box represents 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data points<br />

between <strong>the</strong> 1 st <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 rd quartiles, whiskers mark <strong>the</strong> total range <str<strong>on</strong>g>of</str<strong>on</strong>g> temperatures ...................... 59<br />

ix


Figure 16. Whisker box-plot <str<strong>on</strong>g>of</str<strong>on</strong>g> below cage envir<strong>on</strong>ment (BCE) temperature range at <strong>the</strong> 8<br />

m<strong>on</strong>itored sites from May 25 – November 28, 2007, yellow box represents 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data<br />

points between <strong>the</strong> 1 st <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 rd quartiles, whiskers mark <strong>the</strong> total range <str<strong>on</strong>g>of</str<strong>on</strong>g> temperatures .... 60<br />

Figure 17. Incubati<strong>on</strong> experimental design setup showing faecal sample preparati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

treatment allocati<strong>on</strong> ........................................................................................................ 80<br />

Figure 18. Wireframe plot <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> isotope (δ 13 C) signature change, where C = δ 13 C, T =<br />

temperature ( 0 C) <str<strong>on</strong>g>and</str<strong>on</strong>g> t = time ............................................................................................ 84<br />

Figure 19. Plot <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> signature change <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> least square mean (LSM) <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> isotope<br />

signature (δ 13 C) over temperature .................................................................................... 85<br />

Figure 20. Plot <str<strong>on</strong>g>of</str<strong>on</strong>g> change in <strong>the</strong> least square mean (LSM) <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> isotope (δ 13 C) signature<br />

over time (hours) ................................................................................................................ 86<br />

Figure 21. Wireframe plot <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nitrogen isotope signature (δ 15 N) change over time <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

temperature ............................................................................................................................ 91<br />

Figure 22. Plot <str<strong>on</strong>g>of</str<strong>on</strong>g> change in <strong>the</strong> least square mean (LSM) <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen isotope signature (δ 15 N)<br />

over temperature ( o C) ............................................................................................................. 92<br />

Figure 23. Plot <str<strong>on</strong>g>of</str<strong>on</strong>g> change in LSM <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 15 N signature over time (hours) .................................... 93<br />

Figure 24.Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> benthic nitrogen cycle showing major degradati<strong>on</strong> pathways<br />

associated with organic degradati<strong>on</strong> ................................................................................. 107<br />

Figure 25. Wireframe plot <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for Site 1 July 30 to August 13, 2007............ 130<br />

Figure 26. Wireframe plot <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for Site 1 from August 13 to August 27,<br />

2007 ........................................................................................................................................ 131<br />

Figure 27.Wireframe plot <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for Site 1 August 27 to September 10, 2007. 132<br />

Figure 28. Wire frame chart for Site 2 July 30 to August 13, 2007 ........................................... 133<br />

Figure 29. Wire frame chart for Site 2 August 13 to August 27, 2007 ....................................... 134<br />

Figure 30. Wire frame chart for Site 2 August 27 to September 10, 2007……………………..135<br />

Figure 31. Wire frame chart for site 3 July 30 to August 13, 2007……………………………136<br />

Figure 32. Wire frame chart for site 3 August 13 to August 27, 2007…………………………137<br />

Figure 33. Wire frame chart for site 3 August 27 to Sept 10, 2007……………………………..138<br />

Figure 34. Wire frame plot for site 4 July 30 to August 13, 2007…………………………….....139<br />

x


Figure 35. Wire frame plot for site 4 from August 13 to August 27, 2007……………………...140<br />

Figure 36. Wire frame plot for site 4 from August 13 to August 27, 2007…………………….141<br />

Figure 37. Wire frame plot for site 4 from August 27 to September 10, 2007…………………142<br />

Figure 38. Wire frame chart for site 5 July 30 to August 13, 2007…………………………….143<br />

Figure 39. Wire frame plot for site 5 from August 13 to August 27, 2007…………………….144<br />

Figure 40. Wire frame chart for site 5 from August 27 to September 10, 2010………………..145<br />

Figure 41. Wire frame diagram for site 6 from July 30 to August 13, 2007…………………...146<br />

Figure 42. Wire frame diagram for site 6 from August 13 to August 27, 2007…………….…147<br />

Figure 43. Wire frame diagram for site 6 from August 27 to September 10, 2070…………….148<br />

Figure 44. Wire frame diagram for site 7 from July 30 to August 13, 2007…………………...149<br />

Figure 45. Wire frame diagram for site 7 from August 13 to August 27, 2007………………..150<br />

Figure 46. Wire frame diagram for site 7 from August 27 to September 10, 2070…………..151<br />

Figure 47. Wire frame chart diagram for site 8 from July 30 to August 13, 2007…………..…152<br />

Figure 48. Wire frame diagram for site 8 from August 13 to August 27, 2007……………..…153<br />

Figure 49. Wire frame diagram for site 8 from August 27 to September 10, 2007……………..154<br />

xi


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Appendices<br />

Appendix I:<br />

Wire frame plots (Chapter 3)………………………………………………… ....................... 128<br />

Appendix II:<br />

Spectral density (Chapter 3)………………………………………………………………...…152<br />

xii


Declarati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Work performed<br />

All work reported in this <strong>the</strong>sis was performed by me with <strong>the</strong> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> following:<br />

Isotopic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> samples was carried by William Mark <str<strong>on</strong>g>and</str<strong>on</strong>g> staff <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Envir<strong>on</strong>mental<br />

Isotopes Laboratory, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Waterloo.<br />

Statistical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment samples <str<strong>on</strong>g>and</str<strong>on</strong>g> feeds used at farm sites was performed by Margaret<br />

Quint<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Bill Szkotnicki Animal <str<strong>on</strong>g>and</str<strong>on</strong>g> Poultry Science, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph.<br />

Fourier analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature data <str<strong>on</strong>g>and</str<strong>on</strong>g> statistical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> data performed by Bill<br />

Szkotnicki, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph.<br />

xiii


List <str<strong>on</strong>g>of</str<strong>on</strong>g> abbreviati<strong>on</strong>s<br />

AWATS Aquaculture Waste Transport Simulator<br />

BCE Below cage envir<strong>on</strong>ment (BCE)<br />

C Carb<strong>on</strong><br />

CE Cage envir<strong>on</strong>ment (CE)<br />

Cu Copper<br />

DF Degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> Freedom<br />

DFO Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceans<br />

DST Decisi<strong>on</strong> Support Tool<br />

GLM General Linear Model<br />

H Hydrogen<br />

LSM Least square means<br />

LE Linear effect<br />

m Meter<br />

MOM Modelling-On growing fish farms-M<strong>on</strong>itoring<br />

n Sample size<br />

N Nitrogen<br />

O 2<br />

P<br />

POM<br />

QE<br />

SD<br />

δ<br />

SOK<br />

S<br />

t<br />

T<br />

Zn<br />

WWC<br />

δ 13 C<br />

Oxygen<br />

Phosphorus<br />

Particulate organic matter<br />

Quadratic effect<br />

St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong><br />

Stable isotope ratio<br />

State-<str<strong>on</strong>g>of</str<strong>on</strong>g>-Knowledge Initiative<br />

Sulfur<br />

Time<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g><br />

Zinc<br />

Whole water column<br />

Stable Isotope <str<strong>on</strong>g>of</str<strong>on</strong>g> Carb<strong>on</strong><br />

δ 15 N Stable Isotope <str<strong>on</strong>g>of</str<strong>on</strong>g> Nitrogen<br />

xiv


Chapter 1. Literature Review<br />

1.1 Aquaculture Introducti<strong>on</strong>: A Global <str<strong>on</strong>g>and</str<strong>on</strong>g> Canadian Industry Perspective<br />

Global aquaculture has reached a new milest<strong>on</strong>e in recent years by producing half (50%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

world’s annual total food fish supply <str<strong>on</strong>g>of</str<strong>on</strong>g> 148 milli<strong>on</strong> t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> fish in 2010 (FAO, 2012).<br />

Aquaculture is <strong>the</strong> fastest growing animal-food producing sector in <strong>the</strong> world, growing at an<br />

average annual growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 8.7% since 1970, while capture fisheries producti<strong>on</strong> has not grown<br />

since <strong>the</strong> mid-1980’s (FAO, 2008). This trend is a result <str<strong>on</strong>g>of</str<strong>on</strong>g> over-exploited wild fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> a<br />

rapidly growing human populati<strong>on</strong>. Canadian aquaculture producti<strong>on</strong> in 2011 reached 163 036<br />

t<strong>on</strong>nes, worth 845 milli<strong>on</strong> dollars, <str<strong>on</strong>g>of</str<strong>on</strong>g> which salm<strong>on</strong>ids producti<strong>on</strong> made up 606 milli<strong>on</strong> (Statistics<br />

Canada, 2011). Although <strong>the</strong> industry has more than tripled over <strong>the</strong> past 20 years, from <strong>the</strong> year<br />

2010 to 2011, <strong>the</strong> gross output by aquaculture producers decreased by 15.2% <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> gross value<br />

was down 29.9% (Statistics Canada, 2011). These figures are a reflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> structural<br />

changes taking place throughout <strong>the</strong> industry in <strong>the</strong> face <str<strong>on</strong>g>of</str<strong>on</strong>g> emerging new technologies <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

envir<strong>on</strong>mental c<strong>on</strong>cerns.<br />

The province <str<strong>on</strong>g>of</str<strong>on</strong>g> Ontario, although by no means a major c<strong>on</strong>tributor to nati<strong>on</strong>al producti<strong>on</strong>, is a<br />

prime example where <strong>the</strong> industry is making such changes. Ontario aquaculture is primarily<br />

focused <strong>on</strong> <strong>the</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow trout (Oncorhynchus mykiss) with minor finfish species<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> tilapia, Arctic char, brook trout, smallmouth <str<strong>on</strong>g>and</str<strong>on</strong>g> largemouth bass, as well as<br />

cyprinid baitfish (Moccia <str<strong>on</strong>g>and</str<strong>on</strong>g> Bevan, 2007). During <strong>the</strong> 1980’s <str<strong>on</strong>g>and</str<strong>on</strong>g> early 1990’s <strong>the</strong> primary<br />

producti<strong>on</strong> method <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow trout was l<str<strong>on</strong>g>and</str<strong>on</strong>g>-based intensive culture, producing around 2000<br />

t<strong>on</strong>nes annually (Moccia <str<strong>on</strong>g>and</str<strong>on</strong>g> Bevan, 2007). With <strong>the</strong> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Norwegian cage-<br />

1


aquaculture technology in <strong>the</strong> Great Lakes in <strong>the</strong> early 1980’s, <strong>the</strong> industry rapidly shifted from<br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g>-based to open water operati<strong>on</strong>s in <strong>the</strong> late 1990’s, which currently account for 78% <str<strong>on</strong>g>of</str<strong>on</strong>g> total<br />

provincial producti<strong>on</strong> at 4100 t<strong>on</strong>nes, worth 15.7 milli<strong>on</strong> dollars (Statistics Canada, 2007). In<br />

additi<strong>on</strong> to this value, <strong>the</strong> aquaculture industry c<strong>on</strong>tributes significantly to community <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

regi<strong>on</strong>al ec<strong>on</strong>omies, providing upwards <str<strong>on</strong>g>of</str<strong>on</strong>g> 60 milli<strong>on</strong> dollars in indirect ec<strong>on</strong>omic c<strong>on</strong>tributi<strong>on</strong><br />

through a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> industry sectors including: manufacturing, retail <str<strong>on</strong>g>and</str<strong>on</strong>g> wholesale trade,<br />

c<strong>on</strong>structi<strong>on</strong>, transportati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> business services (NOAA, 2007).<br />

Despite <strong>the</strong>se benefits <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> strategic positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ontario with regard to availability <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a c<strong>on</strong>sumer market <strong>on</strong> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> border, producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow trout has<br />

fluctuated around 4000 t<strong>on</strong>nes with recent decline for over <strong>the</strong> last decade. A major c<strong>on</strong>tributing<br />

factor to <strong>the</strong> slow growth <str<strong>on</strong>g>of</str<strong>on</strong>g> open water cage culture in Ontario is <strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al<br />

government regulati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> guidelines regarding exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ing existing sites <str<strong>on</strong>g>and</str<strong>on</strong>g> accessing new<br />

<strong>on</strong>es. This stems from <strong>the</strong> fact that open-water cage aquaculture is a first generati<strong>on</strong> industry,<br />

that has pi<strong>on</strong>eered <str<strong>on</strong>g>and</str<strong>on</strong>g> researched many <str<strong>on</strong>g>of</str<strong>on</strong>g> its own structural changes, that have made it possible<br />

to successful move away from less efficient, l<str<strong>on</strong>g>and</str<strong>on</strong>g> based systems. As is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten <strong>the</strong> case with new<br />

industries, <strong>the</strong>re is a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> a sound scientific knowledge base <strong>on</strong> <strong>the</strong> envir<strong>on</strong>mental impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

freshwater cage culture in <strong>the</strong> Great Lakes, leaving <strong>the</strong> numerous government regulatory<br />

agencies resp<strong>on</strong>sible for ensuring sustainability, lagging behind in creating a coherent framework<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> policies that could move <strong>the</strong> industry forward.<br />

This work is aimed at addressing <strong>the</strong> envir<strong>on</strong>mental impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> cage aquaculture waste deposited<br />

<strong>on</strong> <strong>the</strong> lake bottom, through <strong>the</strong> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new tools used to identify waste sediment, in<br />

2


particular stable isotopes <str<strong>on</strong>g>and</str<strong>on</strong>g> how temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> organic degradati<strong>on</strong> play a potential role in<br />

<strong>the</strong>se assessments.<br />

1.2 Regulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Envir<strong>on</strong>mental Management in Aquaculture<br />

The main issues preventing <strong>the</strong> expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> industry in Ontario arise from <strong>the</strong> very nature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

intensive open water cage aquaculture. Operati<strong>on</strong>s are located over a large regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> public<br />

water that has different local envir<strong>on</strong>mental characteristics, making it difficult to predict<br />

envir<strong>on</strong>mental impacts <str<strong>on</strong>g>and</str<strong>on</strong>g> apply a universally functi<strong>on</strong>al regulatory framework. In additi<strong>on</strong> to<br />

<strong>the</strong> input cage aquaculture wastes, open water sites are exposed to anthropogenic polluti<strong>on</strong> that is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten unidentified or quantified. Fur<strong>the</strong>rmore, by being within public recreati<strong>on</strong>al use z<strong>on</strong>es, <strong>the</strong><br />

industry has become <strong>the</strong> target <str<strong>on</strong>g>of</str<strong>on</strong>g> many special interest groups with powerful lobbying<br />

envir<strong>on</strong>mentalists that <str<strong>on</strong>g>of</str<strong>on</strong>g>ten provide misinformati<strong>on</strong>, driven by c<strong>on</strong>flicting interests, to <strong>the</strong><br />

regulatory bodies. In Ontario, <strong>the</strong> agencies resp<strong>on</strong>sible for overseeing <strong>the</strong> envir<strong>on</strong>mental<br />

sustainability <str<strong>on</strong>g>and</str<strong>on</strong>g> licensing <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong>s <strong>on</strong> <strong>the</strong> Provincial level include: <strong>the</strong> Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural<br />

Resources, Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Envir<strong>on</strong>ment, <strong>the</strong> local C<strong>on</strong>servati<strong>on</strong> Authorities, <strong>the</strong> Ontario<br />

Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Municipal Affairs <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> Housing <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> local Municipalities. On <strong>the</strong> Federal<br />

level, <strong>the</strong>se agencies include: Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceans Canada, Agriculture <str<strong>on</strong>g>and</str<strong>on</strong>g> Agri-Food Canada,<br />

Health Canada <str<strong>on</strong>g>and</str<strong>on</strong>g> Envir<strong>on</strong>ment Canada. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se agencies administer <strong>the</strong>ir own respective<br />

legislati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> permits, pertinent to cage aquaculture, <str<strong>on</strong>g>and</str<strong>on</strong>g> although <strong>the</strong>re is c<strong>on</strong>siderable overlap<br />

in m<str<strong>on</strong>g>and</str<strong>on</strong>g>ate between <str<strong>on</strong>g>and</str<strong>on</strong>g> within agencies, <strong>the</strong> operator must acquire all <strong>the</strong> separate permits<br />

necessary within a specific timeframe to proceed (Moccia <str<strong>on</strong>g>and</str<strong>on</strong>g> Bevan, 2000). This process is<br />

time c<strong>on</strong>suming <str<strong>on</strong>g>and</str<strong>on</strong>g> complex because agencies have different definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sustainability <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

3


each applies numerous Acts regarding <strong>the</strong> use, treatment, management <str<strong>on</strong>g>and</str<strong>on</strong>g> disposal <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

used for culture (Moccia <str<strong>on</strong>g>and</str<strong>on</strong>g> Bevan, 2000).<br />

Open water aquaculture has no specific point <str<strong>on</strong>g>of</str<strong>on</strong>g> water uptake or effluent release making it<br />

difficult to set limits <str<strong>on</strong>g>and</str<strong>on</strong>g> treatments <strong>on</strong> wastewater as is <strong>the</strong> case with l<str<strong>on</strong>g>and</str<strong>on</strong>g> based operati<strong>on</strong>s.<br />

Cage aquaculture waste producti<strong>on</strong> estimates are made by <strong>the</strong> Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment based <strong>on</strong><br />

<strong>the</strong> maximum set limits <str<strong>on</strong>g>of</str<strong>on</strong>g> fish that can be farmed at particular sites which in turn is regulated by<br />

<strong>the</strong> Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Resources (Moccia <str<strong>on</strong>g>and</str<strong>on</strong>g> Bevan, 2000). This process is not necessarily<br />

effective in ensuring water quality c<strong>on</strong>sidering that different sites, though similarly classified,<br />

can potentially resp<strong>on</strong>d differently to <strong>the</strong> same quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture waste. In additi<strong>on</strong>, as<br />

previously menti<strong>on</strong>ed, cage aquaculture occurs in recreati<strong>on</strong>al public waters <str<strong>on</strong>g>and</str<strong>on</strong>g> sites will have<br />

unknown background levels <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic <str<strong>on</strong>g>and</str<strong>on</strong>g> natural materials which can compromise<br />

fur<strong>the</strong>r assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental impact across sites. Most importantly, it is <strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

knowledge <strong>on</strong> how aquaculture waste, composed primarily <str<strong>on</strong>g>of</str<strong>on</strong>g> fish metabolic waste <str<strong>on</strong>g>and</str<strong>on</strong>g> uneaten<br />

feed, is cycled by <strong>the</strong> freshwater envir<strong>on</strong>ment that has caused public <str<strong>on</strong>g>and</str<strong>on</strong>g> regulatory c<strong>on</strong>cern,<br />

effectively stopping industry expansi<strong>on</strong>. Fur<strong>the</strong>rmore, aquaculture operati<strong>on</strong>s around <strong>the</strong> world<br />

have shown <strong>the</strong>ir potential for causing envir<strong>on</strong>mental effects that include nutrient enrichment,<br />

habitat alterati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> damage to wild fish populati<strong>on</strong>s (Carr et al., 1990; Gross, 1998; J<strong>on</strong>es et<br />

al., 2001; Mazzola <str<strong>on</strong>g>and</str<strong>on</strong>g> Sara 2001; Burford et al, 2002; Cole et al., 2002; Cromey et al., 2002;<br />

Bureau et al., 2003; Carroll et al., 2003; Fern<str<strong>on</strong>g>and</str<strong>on</strong>g>es <str<strong>on</strong>g>and</str<strong>on</strong>g> Reid, 2003; Brooks et al., 2004;<br />

Demps<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 2004; Papatryph<strong>on</strong>, 2005; Thomps<strong>on</strong> et al., 2005; DFO, 2006; Reid et al.,<br />

2006; Stewart et al., 2006; Kullman et al., 2007; Milne, 2012).<br />

4


The envir<strong>on</strong>mental impact <str<strong>on</strong>g>and</str<strong>on</strong>g> management studies <strong>on</strong> cage aquaculture <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong>ids have been<br />

predominantly c<strong>on</strong>centrated in marine coastal areas, where in c<strong>on</strong>trast, literature regarding<br />

Canadian aquaculture, especially in freshwater, has been limited in <strong>the</strong> past ( Kullman et al.,<br />

2007; Blanchfield, 2009; Kullman et al., 2009; Johnst<strong>on</strong> et al., 2010). In an effort to improve<br />

public c<strong>on</strong>fidence <str<strong>on</strong>g>and</str<strong>on</strong>g> global competitiveness in Canadian aquaculture a $75 milli<strong>on</strong> Program for<br />

Sustainable Aquaculture was launched by Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceans Canada in 2000 (DFO, 2003).<br />

The primary objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> program was to ensure envir<strong>on</strong>mentally sustainable development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> aquaculture sector, achieved primarily through a scientific review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential<br />

envir<strong>on</strong>mental effects <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture in marine <str<strong>on</strong>g>and</str<strong>on</strong>g> freshwater ecosystems. This review, referred<br />

to as <strong>the</strong> State-<str<strong>on</strong>g>of</str<strong>on</strong>g>-Knowledge (SOK) Initiative, described <strong>the</strong> current status <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific<br />

knowledge <str<strong>on</strong>g>and</str<strong>on</strong>g> provided future research recommendati<strong>on</strong>s encompassing marine finfish <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

shellfish, <str<strong>on</strong>g>and</str<strong>on</strong>g> freshwater finfish in Canadian aquaculture under three main <strong>the</strong>mes: impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

waste (nutrient <str<strong>on</strong>g>and</str<strong>on</strong>g> organic matter), chemicals used by <strong>the</strong> industry (pesticides, drugs <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

antifoulants), <str<strong>on</strong>g>and</str<strong>on</strong>g> interacti<strong>on</strong>s between farmed fish <str<strong>on</strong>g>and</str<strong>on</strong>g> wild species (disease transfer, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

genetic <str<strong>on</strong>g>and</str<strong>on</strong>g> ecological interacti<strong>on</strong>s) (DFO, 2006).<br />

It is important to note that envir<strong>on</strong>mental effects <str<strong>on</strong>g>of</str<strong>on</strong>g> cage aquaculture are site-specific, depending<br />

<strong>on</strong> <strong>the</strong> envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> operati<strong>on</strong>al details at each site locati<strong>on</strong> (DFO, 2006). The<br />

SOK initiative does not address <strong>the</strong>se issues but instead summarizes available scientific<br />

knowledge <strong>on</strong> recognized measurable affects that when observed at <strong>the</strong> ecosystem level, can<br />

generally be categorized into three main broad-scale changes:<br />

1) Eutrophicati<strong>on</strong> (nutrient <str<strong>on</strong>g>and</str<strong>on</strong>g> organic matter enrichment leading to increased dissolved<br />

inorganic nutrient c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> decreased dissolved oxygen (DO)<br />

5


2) Sedimentati<strong>on</strong> (direct settling <str<strong>on</strong>g>of</str<strong>on</strong>g> feed pellets, faeces, increased organic matter flocculati<strong>on</strong><br />

leading to higher depositi<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> small particles, changes in turbidity)<br />

3) Food web structure <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong> (changes in plankt<strong>on</strong>ic, fish <str<strong>on</strong>g>and</str<strong>on</strong>g> benthic community<br />

compositi<strong>on</strong>, enhanced/decreased productivity, behavioral avoidance, stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> harmful<br />

algal blooms, intertidal/macro algal community effects).<br />

The effects outlined above are complex <str<strong>on</strong>g>and</str<strong>on</strong>g> directly related to <strong>the</strong> producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> release <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic waste <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> interacti<strong>on</strong>s between cultured <str<strong>on</strong>g>and</str<strong>on</strong>g> wild species. In order to reveal <strong>the</strong><br />

potential envir<strong>on</strong>mental effects <str<strong>on</strong>g>and</str<strong>on</strong>g> fill knowledge gaps, a vast array <str<strong>on</strong>g>of</str<strong>on</strong>g> different studies have<br />

been c<strong>on</strong>ducted, from laboratory based computer modeling to direct infield sampling <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

observati<strong>on</strong>s. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> vital studies addressing envir<strong>on</strong>mental management will be<br />

summarized here.<br />

Key Studies<br />

Waste producti<strong>on</strong> or nutrient loading from a cage aquaculture facility is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish size,<br />

species, water temperature, feed compositi<strong>on</strong>, rati<strong>on</strong>, feeding methods <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r factors. The<br />

nutriti<strong>on</strong>al comp<strong>on</strong>ents released as waste that are biologically limiting <str<strong>on</strong>g>and</str<strong>on</strong>g> resp<strong>on</strong>sible for <strong>the</strong><br />

eutrophicati<strong>on</strong> in freshwater <str<strong>on</strong>g>and</str<strong>on</strong>g> marine water are phosphorous <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen respectively (Tyrell,<br />

1999; Huds<strong>on</strong> et al., 1999). Researchers have successfully used changes in levels <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial<br />

populati<strong>on</strong>s, chlorophyll, algal biomass <str<strong>on</strong>g>and</str<strong>on</strong>g> phytoplankt<strong>on</strong> to dem<strong>on</strong>strate increased primary<br />

productivity as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture nutrient input in marine <str<strong>on</strong>g>and</str<strong>on</strong>g> fresh waters (Ruokolahti,<br />

1988; Munro et al., 1985; Eloranta <str<strong>on</strong>g>and</str<strong>on</strong>g> Palomaki, 1986; Carr <str<strong>on</strong>g>and</str<strong>on</strong>g> Goulder, 1990; Kelly, 1993;<br />

Smith et al., 2001).<br />

6


In order to quantify nutrient loading Cho <str<strong>on</strong>g>and</str<strong>on</strong>g> Bureau (1998) developed a mass balance<br />

bioenergetics based model to estimate waste output by using parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nutriti<strong>on</strong>al energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> feed, <strong>the</strong> difference in nutrient ingesti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> retenti<strong>on</strong> by <strong>the</strong> fish, <str<strong>on</strong>g>and</str<strong>on</strong>g> a <strong>the</strong>rmal growth<br />

coefficient. The ability to estimate <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> potentially released waste based <strong>on</strong> <strong>the</strong> above<br />

variables is a crucial step in predicting <str<strong>on</strong>g>and</str<strong>on</strong>g> managing <strong>the</strong> potential impact.<br />

Regulatory agencies are primarily c<strong>on</strong>cerned with c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended solids, total<br />

phosphorous <str<strong>on</strong>g>and</str<strong>on</strong>g> total nitrogen entering <strong>the</strong> receiving envir<strong>on</strong>ment (Naylor et al., 1999). Waste<br />

produced by cultured fish is released in soluble (digested n<strong>on</strong> retained feed materials) <str<strong>on</strong>g>and</str<strong>on</strong>g> solid<br />

(undigested material in faeces) forms. Comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental c<strong>on</strong>cern in <strong>the</strong> waste<br />

stream from cultured fish such as phosphorous (P), nitrogen (N) <str<strong>on</strong>g>and</str<strong>on</strong>g> biodegradable matter are<br />

closely associated with <strong>the</strong> settleable solid waste form (Naylor et al., 1999). The fecal solid<br />

waste comp<strong>on</strong>ent is estimated to range from 15-30% <str<strong>on</strong>g>of</str<strong>on</strong>g> applied feed <str<strong>on</strong>g>and</str<strong>on</strong>g> uneaten feed can range<br />

from 3-40% <str<strong>on</strong>g>of</str<strong>on</strong>g> that used (West<strong>on</strong> et al., 1996; Bureau et al., 2003). It is clear that feed<br />

digestibility <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient c<strong>on</strong>tent are <strong>the</strong> main biological factors at <strong>the</strong> source <str<strong>on</strong>g>of</str<strong>on</strong>g> determining<br />

waste output (Cho <str<strong>on</strong>g>and</str<strong>on</strong>g> Bureau, 2001).<br />

Based <strong>on</strong> this knowledge <str<strong>on</strong>g>and</str<strong>on</strong>g> with <strong>the</strong> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> reducing envir<strong>on</strong>mental impact at <strong>the</strong> source, new<br />

diet formulati<strong>on</strong>s with high digestibility <str<strong>on</strong>g>and</str<strong>on</strong>g> quality ingredients have increased nutrient retenti<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently reduced <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> soluble <str<strong>on</strong>g>and</str<strong>on</strong>g> settleable waste comp<strong>on</strong>ents, in particular<br />

phosphorous (Thorpe <str<strong>on</strong>g>and</str<strong>on</strong>g> Cho, 1995). However significant amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> remaining solid <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

soluble waste are released in open water cage culture <str<strong>on</strong>g>and</str<strong>on</strong>g> underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <strong>the</strong> fate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se<br />

7


effluents (especially <strong>the</strong> solid fracti<strong>on</strong>) within <strong>the</strong> receiving envir<strong>on</strong>ment are <str<strong>on</strong>g>of</str<strong>on</strong>g> main c<strong>on</strong>cern for<br />

envir<strong>on</strong>mental management agencies.<br />

A major challenge to modeling waste loading <str<strong>on</strong>g>and</str<strong>on</strong>g> quantifying local <str<strong>on</strong>g>and</str<strong>on</strong>g> far-field effects at open<br />

water sites are <strong>the</strong> numerous, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten highly site-specific, envir<strong>on</strong>mental variables involved. As<br />

described above, a main c<strong>on</strong>cern <str<strong>on</strong>g>and</str<strong>on</strong>g> recognized final ecosystem resp<strong>on</strong>se to increased nutrient<br />

levels, both natural <str<strong>on</strong>g>and</str<strong>on</strong>g> anthropogenic, is <strong>the</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong>, where <strong>the</strong> receiving<br />

envir<strong>on</strong>ment shifts trophic status from low to high primary productivity (Nix<strong>on</strong>, 1995). A<br />

simple <str<strong>on</strong>g>and</str<strong>on</strong>g> comm<strong>on</strong> observati<strong>on</strong> made within close proximity to a cage aquaculture site, is <strong>the</strong><br />

increased level <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended particulate matter in <strong>the</strong> water column, primarily from fish faeces as<br />

well as unc<strong>on</strong>sumed feed.<br />

The identificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> direct attributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental effects, in particular far-field, to a cage<br />

aquaculture operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> solid <str<strong>on</strong>g>and</str<strong>on</strong>g> dissolved waste fracti<strong>on</strong> is a fundamental envir<strong>on</strong>mental<br />

management goal <str<strong>on</strong>g>and</str<strong>on</strong>g> challenge for many researchers. Predicting or quantifying waste impacts<br />

at open water sites is difficult because potential effects depend <strong>on</strong> many variables starting with<br />

operating procedures, feed type <str<strong>on</strong>g>and</str<strong>on</strong>g> feeding technique <str<strong>on</strong>g>and</str<strong>on</strong>g> more importantly site characteristics.<br />

Physical, chemical <str<strong>on</strong>g>and</str<strong>on</strong>g> biological will also influence how <strong>the</strong> waste is dispersed <str<strong>on</strong>g>and</str<strong>on</strong>g> fur<strong>the</strong>r<br />

cycled within <strong>the</strong> receiving envir<strong>on</strong>ment (Beveridge, 1987; Cole, 2002; Findlay <str<strong>on</strong>g>and</str<strong>on</strong>g> Watling,<br />

1997). Fur<strong>the</strong>r complicati<strong>on</strong>s can arise in attributing anthropogenic wastes to aquaculture sites<br />

when many o<strong>the</strong>r potential sources can c<strong>on</strong>tribute wastes very similar in biochemical<br />

compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental effect within <strong>the</strong> geographical range <str<strong>on</strong>g>of</str<strong>on</strong>g> interest (Dell’Anno et al.,<br />

2002; Einen et al., 1995; Nix<strong>on</strong>, 1995; Strain <str<strong>on</strong>g>and</str<strong>on</strong>g> Yeats, 1999; Strain et al., 1995).<br />

8


Many different modeling approaches have been used, however; <strong>the</strong>y all share <strong>the</strong> same principle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> creating a waste loading schematic based <strong>on</strong> relative site specific variables c<strong>on</strong>trolling waste<br />

input <str<strong>on</strong>g>and</str<strong>on</strong>g> a resulting, measurable envir<strong>on</strong>mental effect (DFO, 2003). Although <strong>the</strong> dissolved<br />

wastes <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> (C) , nitrogen (N) <str<strong>on</strong>g>and</str<strong>on</strong>g> phosphorus (P) released through gill <str<strong>on</strong>g>and</str<strong>on</strong>g> urinary<br />

excreti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cultured fish are <str<strong>on</strong>g>of</str<strong>on</strong>g> potential c<strong>on</strong>cern, <strong>the</strong>ir rapid diluti<strong>on</strong> in open water sites with<br />

adequate water exchange has warranted less attenti<strong>on</strong> than solid wastes, with <strong>the</strong> assumpti<strong>on</strong> that<br />

effects will be highly localized <str<strong>on</strong>g>and</str<strong>on</strong>g> temporary (Brooks et al., 2002; DFO, 2003). Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

solid waste settles <strong>on</strong> sediments directly below <strong>the</strong> cages where <strong>the</strong>y undergo bacterial<br />

degradati<strong>on</strong> (Enell <str<strong>on</strong>g>and</str<strong>on</strong>g> L<str<strong>on</strong>g>of</str<strong>on</strong>g>, 1993; Findlay <str<strong>on</strong>g>and</str<strong>on</strong>g> Watling, 1997; Elberiz<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Kelly, 1998;<br />

Johanss<strong>on</strong> et al., 1998). However, potential for far-field dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wastes due to hydrographic<br />

c<strong>on</strong>diti<strong>on</strong>s such as currents, waves, tides <str<strong>on</strong>g>and</str<strong>on</strong>g> bottom topography make waste accumulati<strong>on</strong> a<br />

spatially variable <str<strong>on</strong>g>and</str<strong>on</strong>g> highly site specific impact (Cromey et al., 2002).<br />

Holmer (1991) collected sediment samples c<strong>on</strong>taining nutrients <str<strong>on</strong>g>and</str<strong>on</strong>g> elemental c<strong>on</strong>centrati<strong>on</strong>s<br />

directly attributable to a Danish coastal aquaculture site 1.2 kilometers away. In a ano<strong>the</strong>r study<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> central coast <str<strong>on</strong>g>of</str<strong>on</strong>g> British Colombia, Su<strong>the</strong>rl<str<strong>on</strong>g>and</str<strong>on</strong>g> et al. (2001) successfully identified material<br />

collected in sediment traps placed 500 meters (m) from a salm<strong>on</strong>id cage aquaculture site using C<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> N c<strong>on</strong>centrati<strong>on</strong> ratios. On <strong>the</strong> o<strong>the</strong>r side <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada, in <strong>the</strong> Western Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundy, Smith et<br />

al. (2005) used <strong>the</strong> trace metals zinc (Zn) <str<strong>on</strong>g>and</str<strong>on</strong>g> copper (Cu) to identify aquaculture waste within<br />

sediment cores collected 200 m from a cage site that had been removed five years prior. In <strong>the</strong><br />

Hu<strong>on</strong> Estuary, Tasmania, Australia, following a 12-m<strong>on</strong>th fish cage fallowing period <str<strong>on</strong>g>of</str<strong>on</strong>g> fish<br />

McGhie et al. (2000) used c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> C <str<strong>on</strong>g>and</str<strong>on</strong>g> N al<strong>on</strong>g with <strong>the</strong>ir isotopes to directly<br />

9


attribute sediments collected 30 m from <strong>the</strong> cage sites to <strong>the</strong> feed <str<strong>on</strong>g>and</str<strong>on</strong>g> faeces derived from <strong>the</strong><br />

aquaculture operati<strong>on</strong>. In ano<strong>the</strong>r study with <strong>the</strong> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> identifying aquaculture waste impact<br />

Johnsen et al. (1993) measured fatty acids, elemental sulfur (S) <str<strong>on</strong>g>and</str<strong>on</strong>g> pristine variables to indicate<br />

enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments 100 to 150m from salm<strong>on</strong>id net-pens <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> west coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Norway.<br />

The aforementi<strong>on</strong>ed studies exemplify <strong>the</strong> spatial <str<strong>on</strong>g>and</str<strong>on</strong>g> temporal variability <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture solid<br />

waste impacts <str<strong>on</strong>g>and</str<strong>on</strong>g> associated variables used in <strong>the</strong>ir identificati<strong>on</strong>.<br />

Despite <strong>the</strong> l<strong>on</strong>g range <str<strong>on</strong>g>of</str<strong>on</strong>g> waste dispersal at many sites, <strong>the</strong> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> significant l<strong>on</strong>g-term<br />

effects occur within close proximity (under 50m) to <strong>the</strong> cages where organic waste sediment<br />

accumulati<strong>on</strong> is greatest (Carroll et al., 2003; Brooks et al., 2004, Chou et al., 2002; McGhie et<br />

al., 2000; Johannessen et al., 1994; Morrisey et al., 2000). Sites in relatively shallow waters with<br />

weak or even moderate currents (low flushing rate) will accumulate significant amounts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic waste beneath cages due to <strong>the</strong> fast sinking rate <str<strong>on</strong>g>of</str<strong>on</strong>g> faecal pellets (4cm/s) <str<strong>on</strong>g>and</str<strong>on</strong>g> uneaten<br />

feed (10cm/s) as well as <strong>the</strong> additi<strong>on</strong>al baffling <str<strong>on</strong>g>of</str<strong>on</strong>g> currents by <strong>the</strong> submerged cage structure<br />

(Findlay <str<strong>on</strong>g>and</str<strong>on</strong>g> Whatling, 1997; Su<strong>the</strong>rl<str<strong>on</strong>g>and</str<strong>on</strong>g> et al., 2001; Moccia et al., 2007). Sites located in deep<br />

water with str<strong>on</strong>g currents accumulate significantly less organic waste <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> waste that does<br />

settle beneath <strong>the</strong> cages is fur<strong>the</strong>r dispersed over a larger area by means <str<strong>on</strong>g>of</str<strong>on</strong>g> bottom currents<br />

overcoming <strong>the</strong> low critical erosi<strong>on</strong> shear stress <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> settled waste causing resuspensi<strong>on</strong><br />

(Findlay <str<strong>on</strong>g>and</str<strong>on</strong>g> Watling, 1997; Cromey et al., 2002). Such sites are said to have a higher<br />

assimilative capacity for organic waste compared to locati<strong>on</strong>s where waste accumulates <strong>on</strong>ly<br />

below <strong>the</strong> cages.<br />

10


Assimilative capacity is a site’s ability to receive wastes while maintaining envir<strong>on</strong>mental<br />

quality (Fern<str<strong>on</strong>g>and</str<strong>on</strong>g>es, 2003). The benthic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> organic waste accumulati<strong>on</strong> are a dynamic<br />

interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physical, chemical <str<strong>on</strong>g>and</str<strong>on</strong>g> biological reacti<strong>on</strong>s that vary over time <str<strong>on</strong>g>and</str<strong>on</strong>g> space<br />

depending <strong>on</strong> operating practices <str<strong>on</strong>g>and</str<strong>on</strong>g> site characteristics that govern assimilative capacity such<br />

as bottom topography, site hydrodynamics, depth <str<strong>on</strong>g>and</str<strong>on</strong>g> water quality (Walker et al., 2003).<br />

Settled organic waste initially provides nutrients for <strong>the</strong> macro-fauna <str<strong>on</strong>g>and</str<strong>on</strong>g> aerobic bacteria<br />

communities which increasing in abundance, assimilate <str<strong>on</strong>g>and</str<strong>on</strong>g> decompose <strong>the</strong> waste while<br />

c<strong>on</strong>suming dissolved oxygen (DO) (Mann, 1982). As so<strong>on</strong> as <strong>the</strong> supply <str<strong>on</strong>g>of</str<strong>on</strong>g> DO through water<br />

exchange is exceeded by <strong>the</strong> dem<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> benthos, <strong>the</strong> decompositi<strong>on</strong> process shifts from<br />

aerobic to anaerobic, with a corresp<strong>on</strong>ding change in bacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> macro-fauna community<br />

structure (Mann, 1982). As <strong>the</strong> sediments become increasingly anoxic, c<strong>on</strong>diti<strong>on</strong>s become toxic<br />

to aerobic macro-fauna, accelerating <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> anoxia through <strong>the</strong> death <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment burrowing species. The aerobic bacteria are succeeded by anaerobic<br />

sulphate reducing <str<strong>on</strong>g>and</str<strong>on</strong>g> methanogenic bacterial communities which produce hydrogen sulfide<br />

(H 2 S) <str<strong>on</strong>g>and</str<strong>on</strong>g> methane gas (CH 4 ) respectively from <strong>the</strong> decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> waste sediments (Mann,<br />

1982). Such changes in benthic community structure have been a fundamental envir<strong>on</strong>mental<br />

m<strong>on</strong>itoring variable. The relati<strong>on</strong>ship between macro-fauna species diversity, abundance <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

biomass has been <strong>the</strong> most widely used index <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment organic enrichment not <strong>on</strong>ly from<br />

aquaculture waste but any source <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment organic waste (Pears<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Rosenberg, 1978;<br />

Carroll et al., 2003; Wildish et al., 2004).<br />

Although macro-faunal communities are a highly sensitive index <str<strong>on</strong>g>of</str<strong>on</strong>g> organic enrichment <strong>the</strong>ir<br />

accurate assessment requires labour intensive sampling, tax<strong>on</strong>omic expertise, <str<strong>on</strong>g>and</str<strong>on</strong>g> knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

11


natural seas<strong>on</strong>al community dynamics as well as species sensitivities to specific physical <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

chemical c<strong>on</strong>diti<strong>on</strong>s ( Crawford et al., 2002; Cromey et al, 2002; Hagrave et al., 2008, Borja et<br />

al., 2009). However, when used in c<strong>on</strong>juncti<strong>on</strong> with o<strong>the</strong>r indicators that may resp<strong>on</strong>d<br />

differentially to <strong>the</strong> same organic enrichment, benthic macro-faunal community indexes increase<br />

<strong>the</strong> scope <str<strong>on</strong>g>and</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> an envir<strong>on</strong>mental assessment.<br />

Sediment chemistry provides additi<strong>on</strong>al indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic organic enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> which <strong>the</strong><br />

most successfully used have been sulphide c<strong>on</strong>centrati<strong>on</strong>, redox potential, metals (copper (Cu),<br />

nickel (Ni), zinc (Zn), ir<strong>on</strong> (F), manganese (Mn)) <str<strong>on</strong>g>and</str<strong>on</strong>g> pH. Alternative indicators used for<br />

measuring benthic impact include total organic carb<strong>on</strong> (C), nitrogen (N), phosphorous (P) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

particle size. As menti<strong>on</strong>ed above, sediment chemistry parameters can give mixed results,<br />

identifying some sampled sites as not impacted by waste when biological parameters such as<br />

macro-faunal community index indicate a significant impact (Carroll et al., 2003). Due to <strong>the</strong><br />

inc<strong>on</strong>sistencies in indicator resp<strong>on</strong>ses to organic enrichment it has been suggested that multiple<br />

variables be included in m<strong>on</strong>itoring <strong>the</strong> benthic impact <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture waste (Crawford et al.,<br />

2002; Wildish et al., 2004). As a result a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> approaches have been taken, using different<br />

combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental indicators to model potential impacts <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>itor existing<br />

effects.<br />

A fundamental step in predicting <strong>the</strong> potential benthic effects at an aquaculture site begins with<br />

an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> amount <str<strong>on</strong>g>and</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> waste released. Cho <str<strong>on</strong>g>and</str<strong>on</strong>g> Bureau (1998) developed a fish<br />

nutriti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> bioenergetics based computer model, Fish-PrFEQ, that uses data <strong>on</strong> feed<br />

compositi<strong>on</strong>, fish growth, water temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> fish energy utilizati<strong>on</strong> to calculate final waste<br />

12


output in <strong>the</strong> form <str<strong>on</strong>g>of</str<strong>on</strong>g> total solid wastes as well as dissolved <str<strong>on</strong>g>and</str<strong>on</strong>g> solid forms <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

phosphorous. Although developed for hatchery use, <strong>the</strong> model has been successfully applied to<br />

marine fish species <str<strong>on</strong>g>and</str<strong>on</strong>g> is recommended as an accurate method <str<strong>on</strong>g>of</str<strong>on</strong>g> estimating aquaculture waste<br />

producti<strong>on</strong> (Davies <str<strong>on</strong>g>and</str<strong>on</strong>g> Slaski, 2003; Papatryph<strong>on</strong> et al., 2005).<br />

The dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> solid waste comp<strong>on</strong>ent is <str<strong>on</strong>g>of</str<strong>on</strong>g> primary envir<strong>on</strong>mental c<strong>on</strong>cern <str<strong>on</strong>g>and</str<strong>on</strong>g> several<br />

ma<strong>the</strong>matical sedimentati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> transport models have been developed for <strong>the</strong> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

predicting benthic enrichment. Ocean circulati<strong>on</strong> models such as <strong>the</strong> Princet<strong>on</strong> Ocean Model<br />

(Blumberg <str<strong>on</strong>g>and</str<strong>on</strong>g> Mellor, 1987) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> CANDIE ocean model (Sheng et al., 1998) predict coastal<br />

z<strong>on</strong>e transport <str<strong>on</strong>g>and</str<strong>on</strong>g> mixing <str<strong>on</strong>g>and</str<strong>on</strong>g> have been successfully used in estimating <strong>the</strong> dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic matter from coastal aquaculture sites. Dudley et al. (2000) developed a ma<strong>the</strong>matical<br />

model, Aquaculture Waste Transport Simulator (AWATS) that uses a two-dimensi<strong>on</strong>al flow<br />

model coupled with a particle-tracking waste transport model to generate a simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> waste<br />

dispersi<strong>on</strong>. The accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> predicted waste dispersi<strong>on</strong> can <strong>the</strong>n be validated by measuring<br />

benthic indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> enrichment within <strong>the</strong> predicted sedimentati<strong>on</strong> z<strong>on</strong>e. This approach is taken<br />

in <strong>the</strong> more recently developed computer particle tracking DEPOMOD model <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic<br />

enrichment which combines a particle tracking model <str<strong>on</strong>g>and</str<strong>on</strong>g> correlati<strong>on</strong>s between solid waste<br />

dispositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> resulting changes in benthic community structure (Cromey, 2002; Wildish et al.,<br />

2004). The DEPOMOD model also includes a resuspensi<strong>on</strong> model which redistributes <strong>the</strong><br />

settled waste based <strong>on</strong> predicted erosi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> depositi<strong>on</strong> events determined by <strong>the</strong> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> shear stress at <strong>the</strong> sediment water interface. In Norway a management system called<br />

Modelling-On growing fish farms-M<strong>on</strong>itoring (MOM) is used to adjust <strong>the</strong> local envir<strong>on</strong>mental<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> marine fish farms to <strong>the</strong> holding capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sites in use.<br />

13


The MOM system uses sediment traps as a first step to m<strong>on</strong>itor <strong>the</strong> organic waste load <str<strong>on</strong>g>of</str<strong>on</strong>g> a farm,<br />

<strong>the</strong>n a detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macro fauna presence is used to determine sediment acceptability, azoic being<br />

unacceptable. The main test <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> MOM system is a measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment pH <str<strong>on</strong>g>and</str<strong>on</strong>g> redox<br />

potential with <strong>the</strong> results plotted <strong>on</strong> a scoring diagram predicting <strong>the</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> site exploitati<strong>on</strong>. In<br />

additi<strong>on</strong>, a group <str<strong>on</strong>g>of</str<strong>on</strong>g> qualitative sediment variables such as thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> accumulated organic<br />

material, smell, colour, c<strong>on</strong>sistency <str<strong>on</strong>g>and</str<strong>on</strong>g> gas bubbles are assessed. L<strong>on</strong>g term envir<strong>on</strong>mental<br />

changes are determined by benthic macro faunal community studies based <strong>on</strong> fauna<br />

investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sediment. The MOM system also includes a simulati<strong>on</strong> model c<strong>on</strong>sisting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> three major models as follows:<br />

1) Fish- sub-model simulating emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved <str<strong>on</strong>g>and</str<strong>on</strong>g> particulate material from <strong>the</strong> farm.<br />

2) Dispersi<strong>on</strong> sub-model that simulates dispersi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> sedimentati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> excess feed <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

faecal pellets (based <strong>on</strong> current variability <str<strong>on</strong>g>and</str<strong>on</strong>g> sinking rates <str<strong>on</strong>g>of</str<strong>on</strong>g> feed pellets).<br />

3) Sediment sub-model which simulates <strong>the</strong> maximum organic depositi<strong>on</strong> <strong>on</strong> <strong>the</strong> sediment<br />

allowing for a viable benthic in fauna (determined using current velocity above <strong>the</strong> sediment <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong> difference between <strong>the</strong> oxygen c<strong>on</strong>centrati<strong>on</strong> in <strong>the</strong> turbulent boundary layer at <strong>the</strong> sediment<br />

surface <str<strong>on</strong>g>and</str<strong>on</strong>g> above water column).<br />

The remaining two sub models measure water quality in <strong>the</strong> net cage envir<strong>on</strong>ment (oxygen (O 2 )<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> amm<strong>on</strong>ia (NH 3 ) levels) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> recipient waters surrounding <strong>the</strong> farm (Secchi depth <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

oxygen). By combining <strong>the</strong> dispersi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> sediment sub-models it is possible to calculate <strong>the</strong><br />

maximum fish producti<strong>on</strong> that a site can sustain without <strong>the</strong> benthic infauna disappearing due to<br />

14


oxygen deficit. The MOM model has been implemented gradually since 1997 <str<strong>on</strong>g>and</str<strong>on</strong>g> represents a<br />

good example <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental management in aquaculture preventing over-exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sites <str<strong>on</strong>g>and</str<strong>on</strong>g> adjacent areas <str<strong>on</strong>g>and</str<strong>on</strong>g> ensuring quality rearing c<strong>on</strong>diti<strong>on</strong>s for <strong>the</strong> fish.<br />

1.3 Stable Isotopes as tools in Envir<strong>on</strong>mental Management<br />

Stable isotopes can be defined as different “species” <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same element that differ in<br />

<strong>the</strong>ir number <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore have different atomic masses but similar chemical<br />

properties. Different stable isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same element have <strong>the</strong> same chemical properties<br />

however, because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> difference in atomic mass <strong>the</strong>y have different reacti<strong>on</strong> rates causing<br />

products <str<strong>on</strong>g>and</str<strong>on</strong>g> reactants to accumulate different ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy to light isotopes, a process called<br />

fracti<strong>on</strong>ati<strong>on</strong>. All materials <strong>on</strong> <strong>the</strong> planet have been formed through physical <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical<br />

processes that through fracti<strong>on</strong>ati<strong>on</strong> have created unique distinguishable ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy to light<br />

stable isotopes between source <str<strong>on</strong>g>and</str<strong>on</strong>g> product materials. The stable isotope ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> a source<br />

material is c<strong>on</strong>sidered a distinct signature when it does not change or changes in a predictable<br />

way. The unique signature can <strong>the</strong>refore be used to attribute unknown materials to <strong>the</strong>ir source<br />

through comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir stable isotope ratios.<br />

In ecosystem <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental studies, <strong>the</strong> most extensively used stable isotopes are those <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carb<strong>on</strong> (C), nitrogen (N), sulfur (S), hydrogen (H) <str<strong>on</strong>g>and</str<strong>on</strong>g> oxygen (O). Isotopic compositi<strong>on</strong>s (δ<br />

values) in ecosystem <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental studies are expressed as parts per thous<str<strong>on</strong>g>and</str<strong>on</strong>g> differences<br />

from a designated internati<strong>on</strong>al st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard:<br />

15


δX = [(R sample - R st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard ) / R st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard ] × 1000<br />

13 15 13 12 15 14<br />

where δX = δ C or δ N <str<strong>on</strong>g>and</str<strong>on</strong>g> R= C/ C or N/ N<br />

All internati<strong>on</strong>al st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards are set at 0‰ by c<strong>on</strong>venti<strong>on</strong>. Carb<strong>on</strong>ate rock from <strong>the</strong> Pee Dee<br />

Belemnite formati<strong>on</strong> (Craig, 1957) <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen gas in <strong>the</strong> atmosphere (Mariotti, 1983) are<br />

normally used as <strong>the</strong> C <str<strong>on</strong>g>and</str<strong>on</strong>g> N st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards.<br />

Many biological reacti<strong>on</strong>s, such as digesti<strong>on</strong>, cause changes to <strong>the</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy to light isotopes<br />

for C <str<strong>on</strong>g>and</str<strong>on</strong>g> S isotopes. The reactant or source material sets an isotopic baseline ratio that can be<br />

altered in favour <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> light or heavy isotope depending <strong>on</strong> <strong>the</strong> reacti<strong>on</strong> (Peters<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Fry,<br />

1987). A 10% difference in ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy to light isotopes between reactants <str<strong>on</strong>g>and</str<strong>on</strong>g> products<br />

involves <strong>on</strong>ly minute absolute changes <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.04% <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.11% for δ 15 N <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 13 C, heavy isotopes<br />

respectively (Peters<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Fry, 1987). An underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential for fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

given sample is crucial in evaluating <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> unique source material isotope signatures for <strong>the</strong><br />

identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample source.<br />

A well-studied example <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>ati<strong>on</strong> is that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> δ 13 C in <strong>the</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<strong>the</strong>sis.<br />

Trought<strong>on</strong> et al. (1974) showed that terrestrial C3 plants are c<strong>on</strong>sistently depleted in <strong>the</strong> heavy<br />

δ 13 C compared to <strong>the</strong>ir source <str<strong>on</strong>g>of</str<strong>on</strong>g> C. In ano<strong>the</strong>r study <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C fracti<strong>on</strong>ati<strong>on</strong>, terrestrial C4 plants<br />

retained more <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> heavy δ 13 C during photosyn<strong>the</strong>sis compared to C3 plants in <strong>the</strong> latter study<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> different C fixing pathways <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two plant groups (Farquhar, 1983). A laboratory<br />

study <strong>on</strong> fracti<strong>on</strong>ati<strong>on</strong> effects in animals c<strong>on</strong>suming isotopically distinct diets showed that δ 13 C<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotope signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> whole bodies <str<strong>on</strong>g>of</str<strong>on</strong>g> animals reflected <strong>the</strong> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> diet c<strong>on</strong>sumed, with a general fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diet resulting in c<strong>on</strong>sistent enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

16


<strong>the</strong> animal body in δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N heavy isotopes (Deniro <str<strong>on</strong>g>and</str<strong>on</strong>g> Epstein, 1978; Deniro <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Epstein, 1981).<br />

Minagawa <str<strong>on</strong>g>and</str<strong>on</strong>g> Wada (1984) c<strong>on</strong>ducted a food web study in marine <str<strong>on</strong>g>and</str<strong>on</strong>g> freshwater<br />

envir<strong>on</strong>ments using δ 15 N <str<strong>on</strong>g>and</str<strong>on</strong>g> results showed that all c<strong>on</strong>sumers; zooplankt<strong>on</strong>, fish <str<strong>on</strong>g>and</str<strong>on</strong>g> birds<br />

exhibited an enrichment in δ 15 N with increasing trophic level. Fur<strong>the</strong>rmore, it has been shown<br />

that starving animals, through catabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir own tissues, become enriched in δ 15 N despite<br />

not c<strong>on</strong>suming any external nutrients (Hobs<strong>on</strong> et al., 1992). In general, trophic fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotopes results in c<strong>on</strong>sistent enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>sumer body as whole however<br />

Lorraine et al. (2002) found that individual organs <str<strong>on</strong>g>and</str<strong>on</strong>g> tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>sumer will have<br />

different degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> enrichment <str<strong>on</strong>g>and</str<strong>on</strong>g> can vary seas<strong>on</strong>ally with metabolism.<br />

The degree <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>ati<strong>on</strong> depends partly <strong>on</strong> <strong>the</strong> quality <str<strong>on</strong>g>and</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> source material (Post<br />

2002). Guelinckx (2008) studied <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> digesti<strong>on</strong> <strong>on</strong> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N <str<strong>on</strong>g>of</str<strong>on</strong>g> fish gut c<strong>on</strong>tents<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> found fracti<strong>on</strong>ati<strong>on</strong> effects differ between <strong>the</strong> foregut <str<strong>on</strong>g>and</str<strong>on</strong>g> hindgut <str<strong>on</strong>g>and</str<strong>on</strong>g> suggested fur<strong>the</strong>r<br />

research to identify o<strong>the</strong>r influencing factors such as temperature, diet quality, food rati<strong>on</strong>,<br />

c<strong>on</strong>sumer’s physiological status, as well as <strong>the</strong> underlying physiological mechanisms behind diet<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> tissue fracti<strong>on</strong>ati<strong>on</strong>.<br />

Although fracti<strong>on</strong>ati<strong>on</strong> can be an unpredictable <str<strong>on</strong>g>and</str<strong>on</strong>g> difficult to interpret process, with <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>trolled laboratory experiments to elucidate patterns in isotope discriminati<strong>on</strong> for specific<br />

reacti<strong>on</strong> pathways, stable isotope fracti<strong>on</strong>ati<strong>on</strong> becomes an accurate <str<strong>on</strong>g>and</str<strong>on</strong>g> informative variable <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

many physical <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical cycles. When fracti<strong>on</strong>ati<strong>on</strong> patterns are well understood, stable<br />

isotopes provide two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> valuable informati<strong>on</strong>: process informati<strong>on</strong> (reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> informati<strong>on</strong> <strong>on</strong> <strong>the</strong> origin <str<strong>on</strong>g>of</str<strong>on</strong>g> a material (source informati<strong>on</strong>) (Peters<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Fry, 1987).<br />

17


Stable isotopes have originally been used extensively by physical chemists <str<strong>on</strong>g>and</str<strong>on</strong>g> geochemists to<br />

study global elemental cycles however <strong>the</strong>ir potential use in many o<strong>the</strong>r fields <str<strong>on</strong>g>of</str<strong>on</strong>g> study such as<br />

microbiology, soil science, forensic science, biomedical sciences <str<strong>on</strong>g>and</str<strong>on</strong>g> food science has been<br />

recognized over recent decades. Specifically, stable isotopes have become important tools in<br />

studying elemental cycles in <strong>the</strong> ecosystems (Fry <str<strong>on</strong>g>and</str<strong>on</strong>g> Parker, 1979; Lichtfouse, 2000; Peters<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Fry, 1987). Stable isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N are comm<strong>on</strong>ly used in <strong>the</strong> study <str<strong>on</strong>g>of</str<strong>on</strong>g> trophic<br />

dynamics <str<strong>on</strong>g>and</str<strong>on</strong>g> animal migrati<strong>on</strong>s in aquatic <str<strong>on</strong>g>and</str<strong>on</strong>g> terrestrial ecosystems (Gannes et al., 1997;<br />

Hobs<strong>on</strong>, 1998; Thomps<strong>on</strong> et al., 2005). For example, <strong>the</strong> pelagic food web in Lake Baikal was<br />

shown to have an ideal, isotopically ordered structure using stable isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N<br />

examined across five ecological groups: phytoplankt<strong>on</strong>, mesozooplankt<strong>on</strong>, macrozooplankt<strong>on</strong><br />

amphipod, fish <str<strong>on</strong>g>and</str<strong>on</strong>g> seal (Yoshii et al., 1999).<br />

Yoshioka <str<strong>on</strong>g>and</str<strong>on</strong>g> Wada (1994) studied <strong>the</strong> seas<strong>on</strong>al food web dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a eutrophic lake using<br />

stable isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>, zooplankt<strong>on</strong>, benthic invertebrates <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

p<strong>on</strong>d smelt, revealing seas<strong>on</strong>al variati<strong>on</strong> in isotope compositi<strong>on</strong> based <strong>on</strong> diet shifts. In ano<strong>the</strong>r<br />

study aimed at revealing <strong>on</strong>togenetic shifts in dietary habits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> omnivorous opossum shrimp<br />

(Mysis relicta), Branstrator et al. (2000) used δ 15 N to show an increasing trend towards carnivory<br />

with increased maturity. The trophic status <str<strong>on</strong>g>and</str<strong>on</strong>g> food web interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> five Pacific salm<strong>on</strong><br />

species as well as <strong>the</strong>ir historical resp<strong>on</strong>se to oceanic physical processes was determined using<br />

stable isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N (Satterfield <str<strong>on</strong>g>and</str<strong>on</strong>g> Finney, 2002). In a Florida freshwater lake,<br />

Gu et al. (1997) studied <strong>the</strong> feeding diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blue tilapia (Oreochromis<br />

aureus) using δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N in <strong>the</strong> dorsal musculature revealing a surprisingly broad range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

18


isotope values indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> a large diet variati<strong>on</strong> within <strong>the</strong> populati<strong>on</strong>. In a similar study under<br />

laboratory c<strong>on</strong>diti<strong>on</strong>s, Salazar used δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N to show <strong>the</strong> isotopic signature <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong>id<br />

feed ingredients can be identified in different diets <str<strong>on</strong>g>and</str<strong>on</strong>g> traced post c<strong>on</strong>sumpti<strong>on</strong> to dorsal<br />

musculature <str<strong>on</strong>g>and</str<strong>on</strong>g> fish faeces (Salazar –Hermoso, 2007).<br />

Trophic dynamics have been studied using isotope techniques in many o<strong>the</strong>r commercially<br />

important finfish such as carp (Cyprinus carpio) (Gaye-Siessegger et al., 2004), red drum<br />

(Sciaenops ocellatus) (Herzka <str<strong>on</strong>g>and</str<strong>on</strong>g> Holt, 2000), Nile tilapias (Oreochromis niloticus) (Gaye-<br />

Siessegger et al., 2003) <str<strong>on</strong>g>and</str<strong>on</strong>g> Atlantic cod (Gadus morhua) (Schwarcz et al., 1998). Salazar –<br />

Hermoso (2007) data revealed that diets with varying ingredients showed unique δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N<br />

signatures that could be traced to fish musculature <str<strong>on</strong>g>and</str<strong>on</strong>g> waste collected in a laboratory setting. In<br />

ano<strong>the</strong>r study <str<strong>on</strong>g>of</str<strong>on</strong>g> trophic dynamics, Hanss<strong>on</strong> et al. (1997) described <strong>the</strong> pelagic food-web<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> three Baltic Sea coastal areas through <strong>the</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 15 N in particulate organic<br />

matter (mainly phytoplankt<strong>on</strong>), zooplankt<strong>on</strong> mysids (Mysis mixta <str<strong>on</strong>g>and</str<strong>on</strong>g> M. relicta), sprat (Sprattus<br />

sprattus), smelt (Osmerus eperlanus), four size classes <str<strong>on</strong>g>of</str<strong>on</strong>g> herring (Clupea harengus), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

pikeperch (Stizostedi<strong>on</strong> lucioperca), uncovering details <str<strong>on</strong>g>of</str<strong>on</strong>g> trophic interacti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> finfish species <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> effect <strong>on</strong> <strong>the</strong> isotope signatures by nearby sewage<br />

treatment plant.<br />

In additi<strong>on</strong> to providing informati<strong>on</strong> <strong>on</strong> local food web dynamics, changes in isotope<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sumers can be indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> shifts in dietary sources as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> migrati<strong>on</strong><br />

between isotopically distinct food webs (Hobs<strong>on</strong>, 1998). Limburg (1998) used δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N to<br />

distinguish between sea migrating (anadromous) blueback herring (Alosa aestivalis, Alosa<br />

19


sapidissima, Alosa pseudoharengus) <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-anadromous (freshwater residents) specimens <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different age groups in <strong>the</strong> Huds<strong>on</strong> River estuary, giving insight into migratory plasticity.<br />

In a study <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<strong>the</strong>rn fur seals (Callorhinus ursinus) from <strong>the</strong> Pribil<str<strong>on</strong>g>of</str<strong>on</strong>g> Isl<str<strong>on</strong>g>and</str<strong>on</strong>g>s,<br />

Alaska, Kurle <str<strong>on</strong>g>and</str<strong>on</strong>g> Worthy (2001) used δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> fur skin <str<strong>on</strong>g>and</str<strong>on</strong>g> potential prey to<br />

distinguish between <strong>the</strong> feeding ecology <str<strong>on</strong>g>and</str<strong>on</strong>g> foraging locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> migrating <str<strong>on</strong>g>and</str<strong>on</strong>g> nursing fur seal<br />

adult females <str<strong>on</strong>g>and</str<strong>on</strong>g> migrating juvenile males. In ano<strong>the</strong>r study <strong>on</strong> pinniped migrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

foraging, Burt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Koch (1999) used δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotopic compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e collagen <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nor<strong>the</strong>rn fur seals (Callorhinus ursinus), harbor seals (Phoca vitulina), California sea li<strong>on</strong>s<br />

(Zalophus californianus), <str<strong>on</strong>g>and</str<strong>on</strong>g> nor<strong>the</strong>rn elephant seals (Mirounga angustirostris) to distinguish<br />

between near-shore <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore foraging locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>g-distance migrati<strong>on</strong>s from high to<br />

middle latitudes. McCarthy <str<strong>on</strong>g>and</str<strong>on</strong>g> Waldr<strong>on</strong> (2000) successfully used δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotopes in<br />

adipose fin tissue <str<strong>on</strong>g>and</str<strong>on</strong>g> eggs <str<strong>on</strong>g>of</str<strong>on</strong>g> brown trout (Salmotrutta) to accurately identify eggs as <strong>the</strong><br />

progeny <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<strong>the</strong>r a migratory adult female or a freshwater resident.<br />

In additi<strong>on</strong> to applicati<strong>on</strong>s in animal migrati<strong>on</strong>s, stable isotopes have been used to investigate <strong>the</strong><br />

relati<strong>on</strong>ship between seas<strong>on</strong>ally varying ocean surface water productivity <str<strong>on</strong>g>and</str<strong>on</strong>g> corresp<strong>on</strong>ding<br />

variati<strong>on</strong>s in type <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended <str<strong>on</strong>g>and</str<strong>on</strong>g> sinking particles (Altabet, 1988; Altabet et al.,<br />

1991; Altabet et al., 1999; Holmes et al.,2002; Nakatsuka et al., 1992; Saino <str<strong>on</strong>g>and</str<strong>on</strong>g> Hattori, 1987; Wada<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Hattori, 1976). Stable isotopes have also been applied in numerous envir<strong>on</strong>mental studies<br />

involving <strong>the</strong> tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> foreign materials <str<strong>on</strong>g>and</str<strong>on</strong>g> pollutants, <str<strong>on</strong>g>and</str<strong>on</strong>g> assessments <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ecosystem<br />

resp<strong>on</strong>se to changing envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s (Kidd et al., 2001; Lajtha <str<strong>on</strong>g>and</str<strong>on</strong>g> Michener, 1994;<br />

McGhie et al., 2000; Yokoyama <str<strong>on</strong>g>and</str<strong>on</strong>g> Ishihi, 2007). For example, sources <str<strong>on</strong>g>and</str<strong>on</strong>g> historical levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

atmospheric lead polluti<strong>on</strong> have been calculated using lead stable isotope analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> lake<br />

20


sediments, ice cores, peat bogs as well as corals, trees <str<strong>on</strong>g>and</str<strong>on</strong>g> herbariums (Weiss et al., 1999). The<br />

input <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage into different ecosystems is routinely traced <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> envir<strong>on</strong>mental resp<strong>on</strong>se<br />

measured extensively using δ 15 N values (Carlier et al., 2007a; Costanzo et al., 2001; Piola et al.,<br />

2006; Rogers, 2003; Savage <str<strong>on</strong>g>and</str<strong>on</strong>g> Elmgren, 2004). The roles <str<strong>on</strong>g>of</str<strong>on</strong>g> allochth<strong>on</strong>ous <str<strong>on</strong>g>and</str<strong>on</strong>g> autochth<strong>on</strong>ous<br />

carb<strong>on</strong> in small aquatic ecosystems have been traced using stable isotope values <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C to label<br />

autochth<strong>on</strong>ous primary producti<strong>on</strong> (Cole et al., 2002).<br />

Various toxic pollutants such as petroleum products <str<strong>on</strong>g>and</str<strong>on</strong>g> industrial solvents, <strong>the</strong> source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hazardous volatile chemicals have been tracked between gaseous, aqueous <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-aqueous<br />

liquid phases using δ 13 C (Slater et al., 1999). In studies d<strong>on</strong>e <strong>on</strong> acid precipitati<strong>on</strong>, sulphur<br />

isotopes have been used to trace sulphur in atmospheric fallout (Ohizumi et al., 1997) in additi<strong>on</strong><br />

to measuring seas<strong>on</strong>al variati<strong>on</strong>s in sulphate from precipitati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> streams (Hesslein et al.,<br />

1988).<br />

Yoshinari <str<strong>on</strong>g>and</str<strong>on</strong>g> Wahlen (1985) investigated <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a wastewater treatment facility to<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric nitrous oxide using measures <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen stable isotopes in nitrous oxide<br />

produced from nitrificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> waste at <strong>the</strong> facility. In a large-scale study across 40 sites in <strong>the</strong><br />

Mississippi, Colorado, Rio Gr<str<strong>on</strong>g>and</str<strong>on</strong>g>e, <str<strong>on</strong>g>and</str<strong>on</strong>g> Columbia River basins, δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotopes were<br />

used to differentiate between seas<strong>on</strong>al changes over four years in particulate organic matter<br />

source materials <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> local nutrient sources <str<strong>on</strong>g>and</str<strong>on</strong>g> in-stream biogeochemical processes<br />

(Kendall et al., 2001).<br />

21


Sources <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir fate in different ecosystems such as rivers, estuaries, lago<strong>on</strong>s,<br />

salt-marshes, <str<strong>on</strong>g>and</str<strong>on</strong>g> lake sediments have also been determined using stable isotope techniques<br />

(Andrews et al., 1998; Boschker et al., 1999; Hodell <str<strong>on</strong>g>and</str<strong>on</strong>g> Schleske, 1998; Machas <str<strong>on</strong>g>and</str<strong>on</strong>g> Santos, 1999;<br />

Maren <str<strong>on</strong>g>and</str<strong>on</strong>g> Struck, 1997; McClell<str<strong>on</strong>g>and</str<strong>on</strong>g> et al., 1997; Peters<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Howarth, 1987; Thornt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

McManus, 1994).<br />

1.4 Stable isotope applicati<strong>on</strong>s in Aquaculture<br />

The aquaculture industry faces many challenges related to envir<strong>on</strong>mental sustainability, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

over recent years, stable isotopes have become a comm<strong>on</strong> tool applied to such issues as <strong>the</strong> fate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> waste effluent from open-water cage sites, identifying sources <str<strong>on</strong>g>of</str<strong>on</strong>g> polluti<strong>on</strong> within <strong>the</strong> vicinity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture sites, measuring effects <str<strong>on</strong>g>of</str<strong>on</strong>g> organic wastes <strong>on</strong> <strong>the</strong> receiving envir<strong>on</strong>ment, recovery<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organic waste affected sediments, nutrient allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> newly formulated aquaculture diets in<br />

cultured species as well as differentiating between farmed finfish escapees <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir wild<br />

c<strong>on</strong>specifics.<br />

A major issue in aquaculture has been differentiating between aquaculture waste <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r<br />

foreign pollutants. J<strong>on</strong>es et al. (2001) used δ 15 N <str<strong>on</strong>g>and</str<strong>on</strong>g> biological indicators to compare treated<br />

sewage effluent with <strong>the</strong> waste effluent <str<strong>on</strong>g>of</str<strong>on</strong>g> a shrimp farm, successfully distinguishing <strong>the</strong> source<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> impacts. In ano<strong>the</strong>r study <str<strong>on</strong>g>of</str<strong>on</strong>g> shrimp farm effluent Burford et al. (2002) traced <strong>the</strong><br />

fate <str<strong>on</strong>g>of</str<strong>on</strong>g> N enriched feed through <strong>the</strong> food web in shallow outdoor tank systems using δ 15 N ratios<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> revealed rapid microbial community remineralizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> δ 15 N enriched waste <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

suggested a large fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> waste probably remains in soluble organic form. Schroeder<br />

(1983) used δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N ratios to compare nutrient allocati<strong>on</strong> from natural food versus<br />

formulated feed between tilapia (Tilapia aurea) <str<strong>on</strong>g>and</str<strong>on</strong>g> paeneid shrimp, c<strong>on</strong>cluding that tilapia<br />

22


c<strong>on</strong>sume large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> natural food in additi<strong>on</strong> to <strong>the</strong> feed provided as opposed to <strong>the</strong><br />

shrimp that c<strong>on</strong>sumed mostly formulated feed.<br />

In additi<strong>on</strong> to differentiating aquaculture waste from foreign pollutants, farm raised fish have<br />

been differentiated from <strong>the</strong>ir wild counterparts based <strong>on</strong> differences in isotopic compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural versus formulated diets. Demps<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Power (2004) distinguish between farmed <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

wild Atlantic salm<strong>on</strong> (Salmo salar) by analysing <strong>the</strong> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue<br />

musculature showing significant enrichment in nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> depleti<strong>on</strong> in carb<strong>on</strong> for wild versus<br />

aquaculture specimens.<br />

In additi<strong>on</strong> to revealing current feeding habits <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture species, stable isotopes have been<br />

applied to sediment core samples around fish farms in Gokasho Bay, Japan, revealing historical<br />

changes in δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> different diets successively used at <strong>the</strong> farm<br />

sites over three decades (Yamada et al., 2003). Similarly, Salazar – Hermoso (2007), used δ 13 C<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures to assess <strong>the</strong> traceability <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow trout feces at an open water aquaculture<br />

site in Georgian Bay, Ontario, by measuring isotope signatures in formulated <str<strong>on</strong>g>and</str<strong>on</strong>g> commercial<br />

diets, fish musculature <str<strong>on</strong>g>and</str<strong>on</strong>g> in field sediment samples, c<strong>on</strong>cluding that in field observati<strong>on</strong>s were<br />

inc<strong>on</strong>clusive despite correlati<strong>on</strong>s between formulated <str<strong>on</strong>g>and</str<strong>on</strong>g> commercial diets <str<strong>on</strong>g>and</str<strong>on</strong>g> sampled<br />

musculature under c<strong>on</strong>trolled c<strong>on</strong>diti<strong>on</strong>s. These c<strong>on</strong>clusi<strong>on</strong>s are c<strong>on</strong>sistent with results obtained<br />

by Demps<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Power (2004) which showed c<strong>on</strong>siderable overlap in δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures<br />

between farmed waste <str<strong>on</strong>g>and</str<strong>on</strong>g> wild biota. However, isotope signatures did not differ significantly<br />

between cage <str<strong>on</strong>g>and</str<strong>on</strong>g> reference sites (Demps<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 2004).<br />

The fate <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture waste effluent in <strong>the</strong> receiving envir<strong>on</strong>ment is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> most important<br />

factors affecting aquaculture sustainability <str<strong>on</strong>g>and</str<strong>on</strong>g> stable isotopes have been applied successfully in<br />

23


determining waste dispersi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> allocati<strong>on</strong>. Franco-Nava et al. (2004) used δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N<br />

isotopes to determine <strong>the</strong> main c<strong>on</strong>tributors <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended particulate matter <str<strong>on</strong>g>and</str<strong>on</strong>g> found three main<br />

isotopically distinct sources to be: feed, faeces <str<strong>on</strong>g>and</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm within a sea bass recirculating<br />

aquaculture system.<br />

Mazzola <str<strong>on</strong>g>and</str<strong>on</strong>g> Sara (2001) analyzed stable isotope signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N <str<strong>on</strong>g>of</str<strong>on</strong>g> mussels<br />

(Mytilus galloproÍincialis) <str<strong>on</strong>g>and</str<strong>on</strong>g> clams (Tapes sp.) grown around an open water intensive fish<br />

farm to dem<strong>on</strong>strate that molluscs uptake a significant amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fish farm derived nutrients<br />

<strong>the</strong>reby reducing <strong>the</strong> envir<strong>on</strong>mental impact through waste assimilati<strong>on</strong>. In ano<strong>the</strong>r study aimed at<br />

tracking organic waste effluent from an aquaculture site in <strong>the</strong> Hu<strong>on</strong> Estuary, Tasmania, isotopes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N were analysed over a 12 m<strong>on</strong>th fallowing period in cultured fish faeces <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong>ir feed as well as sediment trap material collected up to 30m with results showing that<br />

aquaculture derived organic waste was persistent up to 20 m from <strong>the</strong> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> cages throughout<br />

<strong>the</strong> 12 m<strong>on</strong>th fallowing period (McGhie et al., 2000).<br />

In order to assess <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> stable isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N in tracking open water cultured fish<br />

faeces, this study’s primary aim was to measure <str<strong>on</strong>g>and</str<strong>on</strong>g> compare in field isotope values <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> feed samples, as well as c<strong>on</strong>duct a c<strong>on</strong>trolled experiment <str<strong>on</strong>g>of</str<strong>on</strong>g> fish faeces incubati<strong>on</strong> for <strong>the</strong><br />

purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> determining <strong>the</strong> potential effect <str<strong>on</strong>g>of</str<strong>on</strong>g> organic degradati<strong>on</strong> <strong>on</strong> <strong>the</strong> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

δ 15 N stable isotopes in <strong>the</strong> waste fracti<strong>on</strong>.<br />

In additi<strong>on</strong>, in c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variability <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s at open water<br />

aquaculture sites, <str<strong>on</strong>g>and</str<strong>on</strong>g> previous results obtained by Johnst<strong>on</strong> et al. (2010) which suggested that<br />

direct c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> farm waste by wild biota is limited despite c<strong>on</strong>siderable overlap in δ 13 C<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures, a sec<strong>on</strong>dary aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to measure whole water column<br />

24


temperatures from <strong>the</strong> lake surface to benthos across different aquaculture sites over a complete<br />

growth seas<strong>on</strong> in order to gain insight <str<strong>on</strong>g>and</str<strong>on</strong>g> a general baseline <str<strong>on</strong>g>of</str<strong>on</strong>g> site envir<strong>on</strong>mental variability<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ultimately to infer <strong>the</strong> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> site characteristics affecting benthic waste biodegradati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N stable isotopes.<br />

Chapter 2. Assessing <strong>the</strong> Use <str<strong>on</strong>g>of</str<strong>on</strong>g> Stable Isotopes as Tracers <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquaculture Waste Effluent<br />

in Sediments at Cage Aquaculture Sites<br />

2. 1. Introducti<strong>on</strong><br />

Commercial fish feeds used at open water salm<strong>on</strong>id aquaculture operati<strong>on</strong>s are formulated<br />

primarily from marine sourced ingredients that are δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N enriched. Digested <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

undigested feed settles <strong>on</strong> <strong>the</strong> sediment beneath culture sites creating an envir<strong>on</strong>mental footprint<br />

not readily identifiable with <strong>the</strong> source feed. Of <strong>the</strong> primary feed ingredients, fishmeal is<br />

exclusively derived from marine sources <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tributes <strong>the</strong> most δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> in particular δ 15 N.<br />

This is <str<strong>on</strong>g>of</str<strong>on</strong>g> significant interest in freshwater applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fishmeal based feed where <strong>the</strong><br />

enriched δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotope signature has potential to be a natural tracer <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture waste.<br />

Although digesti<strong>on</strong> fracti<strong>on</strong>ates <strong>the</strong> isotopic signature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> feed causing minor isotope<br />

depleti<strong>on</strong>, it is assumed <strong>the</strong> faeces isotope signature closely reflects <strong>the</strong> signature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> source<br />

feed <str<strong>on</strong>g>and</str<strong>on</strong>g> retains this signature <strong>on</strong>ce settling <strong>on</strong> <strong>the</strong> lake bottom.<br />

In order to test whe<strong>the</strong>r settled wastes at a freshwater aquaculture site can be identified with <strong>the</strong><br />

feed used, seven aquaculture sites around Georgian Bay were investigated. Sediment samples<br />

were collected at active <str<strong>on</strong>g>and</str<strong>on</strong>g> decommissi<strong>on</strong>ed aquaculture sites <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotope<br />

25


signatures measured. The results showed a high variability <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> in particular δ 15 N values<br />

within <str<strong>on</strong>g>and</str<strong>on</strong>g> between sampled sites. Decommissi<strong>on</strong>ed sites showed <strong>the</strong> highest level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

enrichment suggesting that <strong>the</strong> signature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isotopes changes with <strong>on</strong>going biodegradati<strong>on</strong>.<br />

2. 2. Methodology<br />

2.2.1 Inactive site sediment sampling<br />

Sediment samples from two inactive sites, La Cloche <str<strong>on</strong>g>and</str<strong>on</strong>g> Grassy Bay, were collected using an<br />

Ekman grab sampler from February 20 to February 26, 2007. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 7 samples were<br />

collected at Grassy Bay site <str<strong>on</strong>g>and</str<strong>on</strong>g> 36 samples at La Cloche site. Refer to figures 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 below for<br />

sampling patterns for each site relative to <strong>the</strong> shoreline.<br />

Figure 1. Grassy Bay (inactive) site sampling pattern relative to shoreline.<br />

26


Figure 2. La Cloche (inactive) site sampling patterns relative to shoreline<br />

27


2.2.2. Active site sediment sampling<br />

Sediment samples from six active sites were collected using an Ekman grab sampler during July<br />

22 to July 24, 2007. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 18 samples were collected, 3 samples per site, in a transect<br />

through <strong>the</strong> middle <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> site in <strong>the</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> prevailing current.<br />

Table1. Active site coordinates<br />

Site Latitude L<strong>on</strong>gitude<br />

1 45°19'11 -80° 6'39<br />

2 45 o 45’20 -81 o 47’30<br />

3 46° 1'44 -81°57'31<br />

4 46° 0'30 -81°44'3<br />

5 46° 4'49 -81°57'38<br />

6 45°59'27 -81°43'58<br />

28


Figure 3. Locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ekman grab sediment sampling sites around <strong>the</strong> Lake Hur<strong>on</strong> drainage<br />

basin, depth c<strong>on</strong>tour interval: 5m <str<strong>on</strong>g>and</str<strong>on</strong>g> 10m, maximum depth 230m.<br />

29


2.2.3. Feed sample <str<strong>on</strong>g>and</str<strong>on</strong>g> preparati<strong>on</strong><br />

Single samples <str<strong>on</strong>g>of</str<strong>on</strong>g> feed, approximately 1kg in weight, were collected from each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 6 active<br />

sites at <strong>the</strong> same time <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sediment sampling. All samples were stored <strong>on</strong> ice <str<strong>on</strong>g>and</str<strong>on</strong>g> taken to <strong>the</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph for preparati<strong>on</strong> for analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N. Samples were divided in half<br />

(500 grams each) <str<strong>on</strong>g>and</str<strong>on</strong>g> each half was acid washed in order to remove c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> bicarb<strong>on</strong>ate<br />

derived δ 13 C isotopes according to <strong>the</strong> method <str<strong>on</strong>g>of</str<strong>on</strong>g> Lajtha <str<strong>on</strong>g>and</str<strong>on</strong>g> Michener (1994). Samples were<br />

dried at 60 o C for 24 hours <str<strong>on</strong>g>and</str<strong>on</strong>g> ground to a fine powder using mortar <str<strong>on</strong>g>and</str<strong>on</strong>g> pestle. Samples were<br />

delivered to <strong>the</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Waterloo for mass spectrometry analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N.<br />

Samples were analyzed for δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N ratios <strong>on</strong> an Isochrom C<strong>on</strong>tinuous Flow Stable Isotope<br />

Mass Spectrometer (Micromass) coupled to a Carlo Erba Elemental Analyzer (CHNS-O<br />

EA1108). Stable isotope ratios are expressed as delta values (δ) <str<strong>on</strong>g>and</str<strong>on</strong>g> are measures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> per<br />

thous<str<strong>on</strong>g>and</str<strong>on</strong>g> (‰) differences between <strong>the</strong> isotope ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample <str<strong>on</strong>g>and</str<strong>on</strong>g> that <str<strong>on</strong>g>of</str<strong>on</strong>g> a known internati<strong>on</strong>al<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard material for that same isotope:<br />

δX = [(R sample - R st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard ) / R st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard ] × 1000<br />

where δX = δ 13 C or δ 15 N <str<strong>on</strong>g>and</str<strong>on</strong>g> R= 13 C/ 12 C or 15 N/ 14 N.<br />

All internati<strong>on</strong>al st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards are set at 0‰ by c<strong>on</strong>venti<strong>on</strong>. Carb<strong>on</strong>ate rock from <strong>the</strong> Pee Dee<br />

Belemnite formati<strong>on</strong> (Craig, 1957) <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen gas in <strong>the</strong> atmosphere (Mariotti, 1983) were<br />

used, respectively, as <strong>the</strong> carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard.<br />

2.2.4. Statistical Analysis<br />

For <strong>the</strong> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this study <strong>on</strong>ly results obtained from acid washed samples were analyzed in<br />

order to exclude skewed results due to c<strong>on</strong>taminati<strong>on</strong> from inorganic C sources such as<br />

bicarb<strong>on</strong>ates.<br />

30


Four different statistical analyses were performed using Statistical Analysis S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware (SAS)<br />

program versi<strong>on</strong> 9.1 (SAS Institute Inc., Cary, NC, USA) <strong>on</strong> samples collected from both active<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> inactive sites, as well as feeds used at <strong>the</strong> active sites.<br />

An analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance using a General Linear Model (GLM) was performed <strong>on</strong> samples<br />

collected from active sites with <strong>the</strong> site as a block effect.<br />

The sec<strong>on</strong>d analysis c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> correlating means <str<strong>on</strong>g>of</str<strong>on</strong>g> isotopic signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N at<br />

active sites versus δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> feed.<br />

A comparis<strong>on</strong> between sediment stable isotope data collected at active versus inactive sites was<br />

performed using <strong>the</strong> GLM procedure via mixed model analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance, assuming samples<br />

within sites were collected r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly.<br />

The fourth analysis compared <strong>the</strong> variances <str<strong>on</strong>g>of</str<strong>on</strong>g> isotopic signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N at active <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

inactive sites using <strong>the</strong> Brown <str<strong>on</strong>g>and</str<strong>on</strong>g> Forsy<strong>the</strong>’s test for homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> variance method, assuming<br />

samples within sites were collected r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly.<br />

2. 3. Results<br />

The values <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 15 N for samples taken from active sites were significantly different between<br />

sample locati<strong>on</strong>s within a site (F value =17. 60, Pr>F= 0.0015, DF = 5) as well as measurements<br />

taken between <strong>the</strong> sites (F value= 9.4, Pr> F= 0.001, DF = 5).<br />

No significant differences were found between δ 13 C values <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment samples taken within a<br />

particular site (F value = 0.08, Pr > F =0.788, DF = 5) as well as am<strong>on</strong>g sediment samples from<br />

different active sites (F value 0.43, Pr > F= 0.820, DF = 5).<br />

31


No significant correlati<strong>on</strong> was found between δ 13 C <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>of</str<strong>on</strong>g> any feed samples<br />

tested (Pears<strong>on</strong> Correlati<strong>on</strong> Coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.0086).<br />

A weak correlati<strong>on</strong> was found between δ 15 N <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> feed (Pears<strong>on</strong> Correlati<strong>on</strong><br />

Coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1611).<br />

The mean δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> feed samples were more enriched than mean δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

δ 15 N signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment samples.<br />

Isotope values <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C from active sites were significantly different from δ 13 C values <str<strong>on</strong>g>of</str<strong>on</strong>g> inactive<br />

sites F value = 18.7, Pr > F = 0.01).<br />

The variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> δ 13 C was similar between active <str<strong>on</strong>g>and</str<strong>on</strong>g> inactive sites (F value =0.39, Pr ><br />

F=0.5359).<br />

The δ 15 N values were not significantly different between active <str<strong>on</strong>g>and</str<strong>on</strong>g> inactive sediment samples (<br />

F value = 3.81, Pr .F = 0.1137 however, because <strong>the</strong> variance <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 15 N values were significantly<br />

different between <strong>the</strong> site types (F value = 10.14, Pr > F=0.0021) <strong>the</strong>refore <strong>the</strong> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

δ 15 N values between active <str<strong>on</strong>g>and</str<strong>on</strong>g> inactive sites is not valid.<br />

Table 2. Simple statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment samples from active sites,<br />

inactive sites <str<strong>on</strong>g>and</str<strong>on</strong>g> feed samples.<br />

Sample n Mean<br />

δ 13 C±(SD)<br />

Mean<br />

δ 15 N±(SD)<br />

Range δ 13 C<br />

min,max<br />

Range δ 15 N<br />

min,max<br />

Active site<br />

sediment<br />

Inactive site<br />

sediment<br />

18 -22.28(0.36) 4.66(0.61) -22.88,-20.99 3.27,5.87<br />

58 -24.23(1.25) 7.35(2.18) -26.34,-18.96 4.02,12.12<br />

Feed 6 -19.93(1.56) 6.17(1.94) -21.07, -17.32 4.89,9.66<br />

SD = st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong>; n = sample size; values with comm<strong>on</strong> superscript in each vertical<br />

column are not significantly different (P > 0.5)<br />

32


Table 3. Signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotopes from sediment samples <str<strong>on</strong>g>and</str<strong>on</strong>g> feed at active sites.<br />

Refer to figures 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4<br />

Sample<br />

δ 13 C<br />

δ 15 N<br />

(‰)<br />

(‰)<br />

Site 1 – West -21.28 5.87<br />

Site 1 – Centre -22.78 5.33<br />

Site 1 – East -22.82 5.17<br />

Site 2 – North -21.04 4.23<br />

Site 2 – Centre -22.44 4.99<br />

Site 2 – South -23.48 4.41<br />

Site 3 – North -22.36 4.05<br />

Site 3 – Centre -22.67 4.80<br />

Site 3 – South -22.33 4.16<br />

Site 4 – West -23.89 3.42<br />

Site 4 – Centre -20.99 5.55<br />

Site 4 – East -22.58 4.80<br />

Site 5 – North -22.88 3.27<br />

Site 5 – Centre -22.46 4.35<br />

Site 5 – South -22.31 3.72<br />

Site 6 – North -21.33 5.03<br />

Site 6 – Centre -22.35 5.74<br />

Site 6 – South -21.05 4.95<br />

Feed – Site 2 -20.24 7.23<br />

Feed – Site 1 -18.79 9.66<br />

Feed – Site 6 -17.32 5.43<br />

Feed –Sites 3,4,5 -21.07 4.89<br />

33


Figure 4. Signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N sediment samples <str<strong>on</strong>g>and</str<strong>on</strong>g> feed from active sites<br />

34


Table 4. Sediment δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures from inactive site LaCloche. Refer to figure 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.<br />

Sample<br />

δ 13 C δ 15 N<br />

(‰) (‰)<br />

x11 -24.87 5.08<br />

x8 -24.47 7.09<br />

x7 -24.36 9.68<br />

x5 -24.38 7.51<br />

x4 -23.75 11.63<br />

w3 -24.57 4.63<br />

w5 -22.53 11.34<br />

w6 -23.49 7.91<br />

w7 -24.23 7.97<br />

w8 -24.47 8.88<br />

w11 -25.29 5.23<br />

v11 -25.62 5.85<br />

v10 -24.83 5.86<br />

v9 -24.13 6.48<br />

v8 -24.93 10.58<br />

v5 -24.38 6.07<br />

v4 -23.88 6.56<br />

v3 -24.73 5.60<br />

u3 -24.45 6.64<br />

u4 -24.38 7.58<br />

u5 -24.39 8.20<br />

u7 -23.35 6.39<br />

u8 -24.63 6.11<br />

t11 -23.55 7.61<br />

t10 -24.46 7.67<br />

t9 -19.26 11.97<br />

t8 -23.49 7.03<br />

x3 -24.49 6.99<br />

t6 -25.99 5.73<br />

t5 -24.22 7.71<br />

t4 -23.42 11.98<br />

t3 -24.31 6.70<br />

u1 -24.27 4.81<br />

y7 -23.75 8.14<br />

z7 -24.91 4.33<br />

u12 -22.43 9.74<br />

35


Table 5. Sediment signatures δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N from inactive site Grassy Bay. Refer to figures 3 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

5.<br />

Sample<br />

δ 13 C δ 15 N<br />

(‰) (‰)<br />

h4 -25.89 4.74<br />

1c<strong>on</strong>trol -24.68 5.05<br />

f5 -24.08 4.71<br />

j9 -25.49 6.19<br />

g5 -26.01 4.98<br />

g6 -26.34 4.89<br />

g7 -25.21 7.79<br />

i8 -24.58 5.57<br />

2c<strong>on</strong>trol -25.23 5.20<br />

Figure 5. The δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures from inactive sites: Grassy Bay <str<strong>on</strong>g>and</str<strong>on</strong>g> LaCloche.<br />

36


2.4. Discussi<strong>on</strong><br />

2.4.1. Carb<strong>on</strong> Isotope (δ 13 C)<br />

For <strong>the</strong> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this study <strong>on</strong>ly results from acid washed samples were c<strong>on</strong>sidered for<br />

discussi<strong>on</strong> in order to exclude potentially skewed results due to c<strong>on</strong>taminati<strong>on</strong> from inorganic C<br />

sources, such as bicarb<strong>on</strong>ate. Sediment samples from active sites showed high variance <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures. The δ 13 C values were less variable than δ 15 N ranging from -22.88 to -<br />

20.99‰ (±SD 0.358) compared with δ 15 N values <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.27 up to 5.87‰ (SD± 0.61). The δ 13 C<br />

isotope values obtained in this study were enriched relative to <strong>the</strong> typical particulate organic<br />

matter values recorded for <strong>the</strong> Great Lakes in previous studies ranging from -25.55 to -29.90‰<br />

(SD±0.5 ‰ ) (Keough et al., 1996; Hodell <str<strong>on</strong>g>and</str<strong>on</strong>g> Schelske, 1998; Leggett et al., 1999; Sierszen et<br />

al., 2004) . This is also c<strong>on</strong>sistent with previous studies dem<strong>on</strong>strating that increased productivity<br />

is correlated with δ 13 C enrichment, suggesting that elevated δ 13 C values in sediments below cage<br />

sites are a direct result <str<strong>on</strong>g>of</str<strong>on</strong>g> organic input from <strong>the</strong> farm (Gu et al., 1996; Kidd et al., 2001) . It is<br />

important to note that δ 13 C values at active sites were depleted relative to values from feed<br />

samples obtained at those sites, where mean δ 13 C <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> feed was -19.93‰ ( SD ±1.56‰) in<br />

comparis<strong>on</strong> to δ 13 C values <str<strong>on</strong>g>of</str<strong>on</strong>g> -22.28‰ (SD ±0.36) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sediment samples. It has been shown<br />

in study by McGoldrick et al. (2008) that during glucose <str<strong>on</strong>g>and</str<strong>on</strong>g> amm<strong>on</strong>ia uptake, bacteria exhibit<br />

higher discriminati<strong>on</strong> against <strong>the</strong> heavier δ 13 C isotope <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore <strong>the</strong> bacterial biomass grows<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> accumulates depleted δ 13 C.<br />

Fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> δ 13 C during biodegradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic waste is currently not well<br />

understood. Although fish digesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sumed feed results in an enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hindgut<br />

c<strong>on</strong>tents <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> excreted wastes (Guelinckx, 2008), fur<strong>the</strong>r bacterial<br />

degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> settled organic carb<strong>on</strong> waste fracti<strong>on</strong>, resulting in methanogenesis, has in<br />

37


some cases been shown to deplete <strong>the</strong> δ 13 C isotope signature, where <strong>the</strong> lighter isotope δ 12 C is<br />

c<strong>on</strong>sumed faster in <strong>the</strong> reacti<strong>on</strong> releasing carb<strong>on</strong> depleted CO 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> CH 4 gases (Guelinckx, 2008).<br />

However o<strong>the</strong>r studies show that depending <strong>on</strong> <strong>the</strong> precursor <str<strong>on</strong>g>of</str<strong>on</strong>g> methane (methanol <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

methylamine or acetate <str<strong>on</strong>g>and</str<strong>on</strong>g> carb<strong>on</strong> dioxide hydrogen) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> bacteria strain involved in turning<br />

over <strong>the</strong> substrate, fracti<strong>on</strong>ati<strong>on</strong> effects vary significantly (Krzycki et al., 1987; Goevert <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

C<strong>on</strong>rad, 2009). In freshwater envir<strong>on</strong>ments methane is produced primarily from acetate as well<br />

as carb<strong>on</strong> dioxide <str<strong>on</strong>g>and</str<strong>on</strong>g> hydrogen, where as <strong>the</strong>se precursors in marine envir<strong>on</strong>ments are<br />

c<strong>on</strong>sumed by sulphate reducing bacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> methanogenesis occurs using methanol <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

methylamine as <strong>the</strong> main substrate (Krzycki et al., 1987; Goevert <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>rad, 2009). Whiticar<br />

et al. (1986) suggested that in envir<strong>on</strong>ments low in sulphate such as freshwater lakes where<br />

sulphate reducing bacteria does not out-compete methanogens, fracti<strong>on</strong>ati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> carb<strong>on</strong><br />

isotope is lower compared to methanogenesis from methanol. Fur<strong>the</strong>rmore, although studies<br />

show methanogenesis fracti<strong>on</strong>ates carb<strong>on</strong> leaving an enriched residual fracti<strong>on</strong>, it has been<br />

shown that fracti<strong>on</strong>ati<strong>on</strong> rates decrease with decreasing substrate c<strong>on</strong>centrati<strong>on</strong>. This implies<br />

that although <strong>the</strong> heavy isotope is discriminated against during methanogenesis it is eventually<br />

turned over by bacteria when <strong>the</strong> light isotope reaches low levels (Goevert <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>rad, 2009).<br />

Therefore it is probable that <strong>the</strong> sediment fracti<strong>on</strong>ati<strong>on</strong> effect enriched <strong>the</strong> waste fracti<strong>on</strong> at <strong>the</strong><br />

beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> depositi<strong>on</strong>. However, over time methanogenesis depleted <strong>the</strong> signature below<br />

levels found in <strong>the</strong> feed. This is supported by <strong>the</strong> results since all but <strong>on</strong>e sediment sample<br />

showed depleted δ 13 C compared with <strong>the</strong> feed used at <strong>the</strong> particular site.<br />

Also <str<strong>on</strong>g>of</str<strong>on</strong>g> interest is <strong>the</strong> difference in st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> feeds compared with that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

sediments. Feed values, despite using same br<str<strong>on</strong>g>and</str<strong>on</strong>g> type at more than <strong>on</strong>e farm, exhibited a large<br />

38


ange <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C ratios ranging from -17.32 to -21.07‰. Although commercial feeds guarantee<br />

specific levels <str<strong>on</strong>g>of</str<strong>on</strong>g> ingredients, in particular fishmeal levels (which affects <strong>the</strong> nitrogen isotope<br />

ratio), <strong>the</strong> actual δ 13 C signature can be expected to vary between feed samples since various<br />

producers can use different plant species resulting in different δ 13 C isotope values (Salazar-<br />

Hermoso, 2007). Also, same plant species used in different feeds, depending <strong>on</strong> <strong>the</strong>ir source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

origin may have different carb<strong>on</strong> isotope signatures.<br />

Although δ 13 C <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment samples did not correlate directly with values from feed, <strong>the</strong>y fell in<br />

between values typically found in particulate organic matter (POM) in freshwater temperate<br />

lakes <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> feeds used at <strong>the</strong> sites. This suggests that <strong>the</strong> isotope signature <str<strong>on</strong>g>of</str<strong>on</strong>g> settled wastes is<br />

partially depleted ei<strong>the</strong>r through biodegradati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>/or diluted through re suspensi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> local depleted C sources. In additi<strong>on</strong>, bacterial biomass likely c<strong>on</strong>tributed a depleted<br />

δ 13 C signature as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> discriminati<strong>on</strong> against <strong>the</strong> heavy δ 13 C isotope as has been found in<br />

previous studies <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial glucose <str<strong>on</strong>g>and</str<strong>on</strong>g> amm<strong>on</strong>ia uptake (McGoldrick et al., 2008).<br />

Inactive site samples were more depleted in δ 13 C <strong>the</strong>n feed <str<strong>on</strong>g>and</str<strong>on</strong>g> active site sediment samples.<br />

The mean value for δ 13 C, from -24.23‰ ( SD ±1.25‰) , was closer to background levels<br />

observed in <strong>the</strong> Great Lakes <str<strong>on</strong>g>and</str<strong>on</strong>g> results showed a wider range compared to active site samples,<br />

ranging from -18.96 to -26.34‰, suggesting locally variable biodegradati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>/or mixing with<br />

naturally occurring depleted organic matter. Interestingly despite being inactive for many years<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> showing an overall depleti<strong>on</strong> c<strong>on</strong>sistent with biodegradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic polymers through<br />

methanogenesis, <strong>the</strong> δ 13 C levels at inactive sites registered higher maximum enrichment than at<br />

active sites.<br />

39


In additi<strong>on</strong>, no data is available <strong>on</strong> <strong>the</strong> δ 13 C values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> feeds used at inactive sites, preventing<br />

a comparis<strong>on</strong> with sediment values <str<strong>on</strong>g>of</str<strong>on</strong>g> feeds used at active sites. It is likely that with advances in<br />

feed formulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> emerging new alternatives in ingredients, <strong>the</strong> feeds used at inactive sites<br />

c<strong>on</strong>tained different plant matter that was potentially more enriched with in δ 13 C. Fur<strong>the</strong>rmore<br />

<strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> freshly deposited fecal waste <str<strong>on</strong>g>and</str<strong>on</strong>g> prol<strong>on</strong>ged period <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradati<strong>on</strong> may have<br />

resulted in <strong>the</strong> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> different biodegradati<strong>on</strong> z<strong>on</strong>es within <strong>the</strong> same local site as result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> local sediment type, bathymetry, hydrological c<strong>on</strong>diti<strong>on</strong>s (in particular resuspensi<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

quantity <str<strong>on</strong>g>and</str<strong>on</strong>g> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> original waste depositi<strong>on</strong>. Anaerobic bacteria populati<strong>on</strong>s establish<br />

distinct populati<strong>on</strong> dynamics within <strong>the</strong> sediment depending <strong>on</strong> <strong>the</strong> prevailing envir<strong>on</strong>mental<br />

c<strong>on</strong>diti<strong>on</strong>s that are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten highly variable within a site. This results in different populati<strong>on</strong><br />

dynamics with different rates <str<strong>on</strong>g>of</str<strong>on</strong>g> digesti<strong>on</strong> within <strong>the</strong> sediment <str<strong>on</strong>g>of</str<strong>on</strong>g> a single site <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently<br />

over time can lead to significantly different isotope signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment samples within close<br />

proximity to each o<strong>the</strong>r.<br />

2.4.2. Nitrogen Isotopes<br />

The δ 15 N values at active sites were more variable within sites than across sites, which was<br />

unexpected as samples collected from single sites were expected to have similar δ 15 N signatures<br />

that would correlate with <strong>the</strong> particular feeds used. This suggests that nitrogen underwent more<br />

differential fracti<strong>on</strong>ati<strong>on</strong> within a site than across sites, unlike <strong>the</strong> δ 13 C which was not<br />

significantly different between or across sites. O<strong>the</strong>r possible explanati<strong>on</strong>s for <strong>the</strong> variability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> δ 15 N signature is a diluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sediment sample with foreign settled depleted nitrogen<br />

sources such as local fish faeces, invertebrates, terrestrial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f c<strong>on</strong>taining nitrates <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrites<br />

as well as <strong>the</strong> bacterial biomass degrading <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>suming <strong>the</strong> deposited waste. Although some<br />

40


local diluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nitrogen sample may have occurred, c<strong>on</strong>sidering <strong>the</strong> rarity <str<strong>on</strong>g>of</str<strong>on</strong>g> naturally<br />

occurring δ 15 N in freshwater <str<strong>on</strong>g>and</str<strong>on</strong>g> that majority <str<strong>on</strong>g>of</str<strong>on</strong>g> samples c<strong>on</strong>tained fish faeces <str<strong>on</strong>g>and</str<strong>on</strong>g> uneaten feed<br />

(odour <str<strong>on</strong>g>and</str<strong>on</strong>g> visual observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets in samples), it is more probable that <strong>the</strong> observed values<br />

are <strong>the</strong> result <str<strong>on</strong>g>of</str<strong>on</strong>g> differential nitrogen cycling, in particular coupled nitrificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

denitrificati<strong>on</strong> resulting in nitrogen isotope fracti<strong>on</strong> (Jenkins <str<strong>on</strong>g>and</str<strong>on</strong>g> Kemp, 1984; Robins<strong>on</strong>, 2001).<br />

It has been shown in studies <str<strong>on</strong>g>of</str<strong>on</strong>g> N cycling in forest, raw humus <str<strong>on</strong>g>and</str<strong>on</strong>g> catchments, marine <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

freshwater sediments, as well as trophic ecological studies (plant uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> N from bird guano)<br />

that nitrificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> de-nitrificati<strong>on</strong> play important roles in fracti<strong>on</strong>ating <strong>the</strong> rare nitrogen<br />

isotope. The fracti<strong>on</strong>ati<strong>on</strong> processes <str<strong>on</strong>g>and</str<strong>on</strong>g> resulting differences in nitrogen isotope pools form <strong>the</strong><br />

basis <str<strong>on</strong>g>of</str<strong>on</strong>g> natural δ 15 N tracer studies (Robins<strong>on</strong>, 2001). However when source nitrogen pools mix<br />

or <strong>the</strong>ir signature is altered by fracti<strong>on</strong>ati<strong>on</strong> <strong>the</strong>n successful tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> source nitrogen pools can<br />

become impossible due to differences between different sources being removed. Fur<strong>the</strong>rmore, it<br />

is not always feasible to predict when mixing <str<strong>on</strong>g>and</str<strong>on</strong>g> fracti<strong>on</strong>ati<strong>on</strong> will occur as well as obtaining<br />

<strong>the</strong> immediate resulting change in isotope signature which makes interpreting data values<br />

difficult (Robins<strong>on</strong>, 2001).<br />

Although <strong>the</strong> main c<strong>on</strong>diti<strong>on</strong> for a nitrogen tracer study was met, aquaculture feed used at <strong>the</strong><br />

rainbow trout farms provided a unique <str<strong>on</strong>g>and</str<strong>on</strong>g> distinct, naturally enriched source <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 15 N <strong>the</strong>re are<br />

still several c<strong>on</strong>cerns raised by <strong>the</strong> results. Feed values for δ 15 N, mean 6.17, were well above<br />

typical values found in oligotrophic temperate lakes, ~>3.00, however values obtained from<br />

active site sediment samples fell in between <strong>the</strong>se values with a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.66 (some values<br />

approached background levels, min <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.27). The literature suggests that biodegradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

41


nitrogenous organic waste compounds through denitrificati<strong>on</strong> leads to an enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate<br />

being decomposed (Blackmer <str<strong>on</strong>g>and</str<strong>on</strong>g> Bremner, 1977; Jenkins <str<strong>on</strong>g>and</str<strong>on</strong>g> Kemp, 1984). It is possible that<br />

due to fresh accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wastes at active sites <strong>the</strong> δ 15 N signature <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh sediment does not<br />

undergo extensive denitrificati<strong>on</strong>, which requires an established anaerobic envir<strong>on</strong>ment. Instead<br />

<strong>the</strong> surface sediment is depleted during settling <str<strong>on</strong>g>and</str<strong>on</strong>g> immediate aerobic degradati<strong>on</strong>, in particular<br />

nitrificati<strong>on</strong> which has been shown to deplete δ 15 N. It should be noted that feeds displayed a<br />

large range <str<strong>on</strong>g>of</str<strong>on</strong>g> values δ 15 N ranging from 4.89 to 9.66‰, similarly with δ 13 C suggesting different<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> fishmeal or perhaps different sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ingredient resulting in isotopically distinct<br />

feeds. In additi<strong>on</strong> no comparis<strong>on</strong> with feeds used in <strong>the</strong> past at decommissi<strong>on</strong>ed sites can be<br />

compared. However sediment samples from decommissi<strong>on</strong>ed sites interestingly show <strong>the</strong> largest<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 15 N values ranging from 4.02 to 12.12‰. This may be attributable to differences in<br />

feeds used at <strong>the</strong> decommissi<strong>on</strong>ed sites however it is likely that biodegradati<strong>on</strong> is resp<strong>on</strong>sible for<br />

such highly enriched values. Without <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh waste <str<strong>on</strong>g>and</str<strong>on</strong>g> a documented hypoxia in<br />

<strong>the</strong> hypolimni<strong>on</strong> it can be assumed that nitrificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> denitrificati<strong>on</strong>, hydrogen sulfide <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

methane producti<strong>on</strong> played a significant role in shaping <strong>the</strong> isotopic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile at <strong>the</strong>se sites. In<br />

additi<strong>on</strong>, l<strong>on</strong>g-term periodic resuspensi<strong>on</strong> at decommissi<strong>on</strong>ed sites may have c<strong>on</strong>tributed to <strong>the</strong><br />

aerati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> certain samples. The nitrogen δ 15 N values c<strong>on</strong>firm <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

enrichment while at <strong>the</strong> same time reveal <strong>the</strong> need to fur<strong>the</strong>r investigate causes <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>ati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> signature change.<br />

42


2.5. General C<strong>on</strong>clusi<strong>on</strong><br />

Overall δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures measured in commercial salm<strong>on</strong>id feeds were reflected in both<br />

active <str<strong>on</strong>g>and</str<strong>on</strong>g> inactive sediment samples. From <strong>the</strong> observati<strong>on</strong> that inactive sites had not received<br />

waste input in over 5 years since <strong>the</strong> sampling period <str<strong>on</strong>g>and</str<strong>on</strong>g> showed <strong>the</strong> highest enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

δ 15 N, it can be inferred that <strong>the</strong> δ 15 N signature is a potential l<strong>on</strong>g term tracer <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong>id<br />

aquaculture waste. In additi<strong>on</strong>, <strong>the</strong> δ 15 N signature is reflected at active sites as well, though to a<br />

lesser degree, this, coupled with findings from previous studies tracing commercial diets to<br />

dorsal musculature <str<strong>on</strong>g>of</str<strong>on</strong>g> reared rainbow trout (Salazar – Hermoso, 2007) suggests <strong>the</strong> fracti<strong>on</strong>ati<strong>on</strong><br />

pathway <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 15 N has <strong>the</strong> potential to be accurately assessed through all stages <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater<br />

salm<strong>on</strong>id cage aquaculture producti<strong>on</strong> including after producti<strong>on</strong> has ended in <strong>the</strong> l<strong>on</strong>g term.<br />

Although <strong>the</strong> δ 13 C signature <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial salm<strong>on</strong>id feed was also reflected in sediment samples<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> active <str<strong>on</strong>g>and</str<strong>on</strong>g> decommissi<strong>on</strong>ed sites, <strong>the</strong> values at inactive sites were significantly more depleted<br />

than δ 13 C <str<strong>on</strong>g>of</str<strong>on</strong>g> feeds sampled, suggesting than unlike <strong>the</strong> δ 15 N signature δ 13 C is fracti<strong>on</strong>ated <str<strong>on</strong>g>and</str<strong>on</strong>g> or<br />

degraded at a greater rate during biodegradati<strong>on</strong> which can fur<strong>the</strong>r be supported by <strong>the</strong> high<br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong>id feeds relative to rich in C ingredients. (Reid et al.,<br />

2009).<br />

However, δ 13 C signature <str<strong>on</strong>g>of</str<strong>on</strong>g> active site samples was c<strong>on</strong>sistent, had <strong>the</strong> lowest SD, <str<strong>on</strong>g>and</str<strong>on</strong>g> was more<br />

similar to <strong>the</strong> feed δ 13 C signature than δ 13 C <str<strong>on</strong>g>of</str<strong>on</strong>g> decommissi<strong>on</strong>ed site samples, suggesting that<br />

δ13C can be an effective tracer when combined with δ 15 N although <strong>the</strong> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C in<br />

lake sediment may be shorter than δ 15 N. The difference in <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradati<strong>on</strong> between<br />

carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen rich compounds, within settled aquaculture waste sediment, has a potential<br />

effect <strong>on</strong> <strong>the</strong> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir respective isotope signatures <str<strong>on</strong>g>and</str<strong>on</strong>g> sediment temperature is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

43


<strong>the</strong> most important factors affecting <strong>the</strong> establishment <str<strong>on</strong>g>and</str<strong>on</strong>g> dynamic compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> microbial<br />

community <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore rate <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate turn over. Therefore <strong>the</strong> current study included<br />

empirical data collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water column temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles at different open water<br />

aquaculture sites in order to gain insight into <strong>the</strong> variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cage <str<strong>on</strong>g>and</str<strong>on</strong>g> benthos envir<strong>on</strong>ment<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> to establish a baseline <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature data for use in designing <strong>the</strong> biodegradati<strong>on</strong><br />

experiment.<br />

Chapter 3. L<strong>on</strong>g Term M<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> Large –Lake, Vertical <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles:<br />

Implicati<strong>on</strong>s to Aquaculture Management<br />

3.1. Introducti<strong>on</strong><br />

The tremendous growth <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture in Ontario over <strong>the</strong> past two decades can attributed to <strong>the</strong><br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> open-water cage culture <str<strong>on</strong>g>of</str<strong>on</strong>g> trout (78%) <str<strong>on</strong>g>and</str<strong>on</strong>g> now c<strong>on</strong>tributes $55-60 milli<strong>on</strong> to<br />

<strong>the</strong> provincial ec<strong>on</strong>omy. Of all freshwater fish species produced in Canada in 2006 (trout,<br />

tilapia, Arctic char, brook trout, smallmouth <str<strong>on</strong>g>and</str<strong>on</strong>g> largemouth bass, cyprinid baitfish) 40% (3,800<br />

t<strong>on</strong>nes) was trout produced through cage culture in Lake Hur<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Georgian Bay, worth $15.7<br />

milli<strong>on</strong> (Statistics Canada, 2006). Recently, licensing <str<strong>on</strong>g>of</str<strong>on</strong>g> new open-water facilities has stopped<br />

as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> potential envir<strong>on</strong>mental impacts <str<strong>on</strong>g>and</str<strong>on</strong>g> a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ardized procedures for<br />

measuring <strong>the</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> impact <str<strong>on</strong>g>and</str<strong>on</strong>g> mitigati<strong>on</strong>. In order to allow <strong>the</strong> industry to c<strong>on</strong>tinue<br />

exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ing, a new ‘Decisi<strong>on</strong> Support Tool’ (DST), developed through federal <str<strong>on</strong>g>and</str<strong>on</strong>g> provincial<br />

agencies as well as <strong>the</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph, will aid in streamlining <strong>the</strong> license approval<br />

process by c<strong>on</strong>sidering criteria for envir<strong>on</strong>mental, social <str<strong>on</strong>g>and</str<strong>on</strong>g> ec<strong>on</strong>omic sustainability; water<br />

quality, operati<strong>on</strong>s, ecosystem impacts, user c<strong>on</strong>flict, physical site aspects, sediment impacts,<br />

am<strong>on</strong>g o<strong>the</strong>rs.<br />

44


This study looked at temperature as a physical site aspect, with <strong>the</strong> primary objective <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

recording at high frequency (15 minute interval between each data log point)<br />

water temperatures from surface to bottom depths at 8 rainbow trout cage culture sites around<br />

Manitoulin Isl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Georgian Bay during <strong>the</strong> summer producti<strong>on</strong> period. Two previous<br />

studies <strong>on</strong> temperature d<strong>on</strong>e in <strong>the</strong> same regi<strong>on</strong>, <strong>the</strong> Fathom Five Nati<strong>on</strong>al Marine Park by M.G.<br />

Wells <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Parker (2010) <str<strong>on</strong>g>and</str<strong>on</strong>g> Cape Croker by Rich Moccia (2002, unpublished data), showed<br />

large amplitude high-frequency temperature fluctuati<strong>on</strong>s throughout <strong>the</strong> water column. At Cape<br />

Croker <strong>the</strong> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile was so variable, 4 o C - 22 o C during <strong>the</strong> summer that a previously<br />

existing aquaculture site had lower than expected producti<strong>on</strong>, likely attributable to <strong>the</strong> high stress<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fish at <strong>the</strong> site. In additi<strong>on</strong>, studies d<strong>on</strong>e fur<strong>the</strong>r away in Lake Michigan by Hawley<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Muzzi (2003), <str<strong>on</strong>g>and</str<strong>on</strong>g> Lake Ontario by Rao <str<strong>on</strong>g>and</str<strong>on</strong>g> Murthy (2001) also reveal highly varying<br />

temperatures throughout <strong>the</strong> water column, showing that this hydrological feature is ubiquitous<br />

to <strong>the</strong> Great Lakes.<br />

The temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles at potential or existing aquaculture sites give an idea <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physiological stress fish at <strong>the</strong>se sites can be, or are exposed to, as well as <strong>the</strong> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

masses <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir stratificati<strong>on</strong> indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> Georgian Bay <str<strong>on</strong>g>and</str<strong>on</strong>g> North Channel limnology.<br />

Fur<strong>the</strong>rmore aqua-culturists with access to l<strong>on</strong>g term temperature m<strong>on</strong>itoring data can make site<br />

specific management decisi<strong>on</strong>s to improve <strong>the</strong> health <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir fish <str<strong>on</strong>g>and</str<strong>on</strong>g> mitigate potentially<br />

harmful changing envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s. The main goal is to make <strong>the</strong> aquaculture industry<br />

as envir<strong>on</strong>mentally dynamic as possible by incorporating all relevant m<strong>on</strong>itoring parameters into<br />

adaptive management strategies which may be useful in minimizing <strong>the</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> farms <strong>on</strong> <strong>the</strong><br />

45


envir<strong>on</strong>ment, <str<strong>on</strong>g>and</str<strong>on</strong>g> improving <strong>the</strong> health <str<strong>on</strong>g>and</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fish produced. The large temperature<br />

range, 4-26 o C, <str<strong>on</strong>g>and</str<strong>on</strong>g> frequent fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 10 o C within a few hours are c<strong>on</strong>sistent with<br />

o<strong>the</strong>r temperature m<strong>on</strong>itoring data from <strong>the</strong> Great Lakes (menti<strong>on</strong>ed above) <str<strong>on</strong>g>and</str<strong>on</strong>g> reveal <strong>the</strong><br />

suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> current sites for fish culture as well as more <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> challenges that <strong>the</strong> open-water<br />

aquaculture industry in Ontario faces from an envir<strong>on</strong>mental m<strong>on</strong>itoring <str<strong>on</strong>g>and</str<strong>on</strong>g> operati<strong>on</strong>al<br />

management perspective. In additi<strong>on</strong>, this study should bring to attenti<strong>on</strong> <strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

temperature in relati<strong>on</strong> to fish physiology, <strong>the</strong> significance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> differences in temperature<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles that exist between sites <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> need for fur<strong>the</strong>r water quality m<strong>on</strong>itoring in large<br />

stratified freshwater lakes <str<strong>on</strong>g>of</str<strong>on</strong>g> Ontario in order to make use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir great aquaculture potential.<br />

3.2. Methodology<br />

3.2.1. <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> Logging Equipment Set Up<br />

This study was d<strong>on</strong>e in Georgian Bay <str<strong>on</strong>g>and</str<strong>on</strong>g> North Channel <str<strong>on</strong>g>of</str<strong>on</strong>g> Manitoulin Isl<str<strong>on</strong>g>and</str<strong>on</strong>g> waters; refer to<br />

Fig. 6 <str<strong>on</strong>g>and</str<strong>on</strong>g> Table 6 for map <str<strong>on</strong>g>of</str<strong>on</strong>g> site distributi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> coordinates. <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> logging equipment<br />

c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> 41 Onset temperature loggers (0.2 o C accuracy); 14 Tidbit (0.4 o C accuracy) models<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 27 TempProV2 (0.2 o C accuracy) models. An additi<strong>on</strong>al 8 Tidbits were used by<br />

Envir<strong>on</strong>ment Canada for logging at site 8. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> eight aquaculture companies kindly gave<br />

access to <strong>the</strong>ir sites for water column temperature m<strong>on</strong>itoring within <strong>the</strong> vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir openwater<br />

cages. Envir<strong>on</strong>ment Canada launched <strong>the</strong> temperature string at site 8 <str<strong>on</strong>g>and</str<strong>on</strong>g> provided this<br />

data set.<br />

Depth measurements were taken at each site prior to equipment assembly using a metered<br />

polypropylene line with brick anchor. The depth <str<strong>on</strong>g>of</str<strong>on</strong>g> water being m<strong>on</strong>itored varied with site <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

46


as a rule each site’s water column was split up into two envir<strong>on</strong>mental regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> interest; cage<br />

envir<strong>on</strong>ment (CE) , depth from surface to bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> cage net, <str<strong>on</strong>g>and</str<strong>on</strong>g> below cage envir<strong>on</strong>ment<br />

(BCE), depth from bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> cage net to lake-bottom. Loggers were attached to ¼ inch steel<br />

cable using horseshoe brackets <str<strong>on</strong>g>and</str<strong>on</strong>g> key rings such that three logger depth intervals representing<br />

<strong>the</strong> cage envir<strong>on</strong>ment were always located at subsurface, mid-cage <str<strong>on</strong>g>and</str<strong>on</strong>g> bottom cage depths for<br />

each site (variati<strong>on</strong>s in cage depth varied depending <strong>on</strong> site, see Table 7 <str<strong>on</strong>g>and</str<strong>on</strong>g> figure 6 for site<br />

locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> logger distributi<strong>on</strong>s). The remaining depth intervals below <strong>the</strong> cage envir<strong>on</strong>ment<br />

were distributed evenly based <strong>on</strong> logger quantity <str<strong>on</strong>g>and</str<strong>on</strong>g> site depth with a logger 0.5m above<br />

maximum depth at each site. Collectively this assemblage is referred to as a ‘temperature<br />

string’. <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> strings were anchored to <strong>the</strong> lake bottom using cinder blocks <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

suspended with a buoy or attached directly to <strong>the</strong> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cage. One temperature string was<br />

assigned to a site at each aquaculture company except for <strong>on</strong>e company which had two strings<br />

assigned at two different sites for better temperature representati<strong>on</strong> because it was excepti<strong>on</strong>ally<br />

large <str<strong>on</strong>g>and</str<strong>on</strong>g> had a highly varying depth range <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 34 to 74 metres. Due to issues <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

privacy, names <str<strong>on</strong>g>of</str<strong>on</strong>g> sites have been issued numbers from 1 – 8, each representing <strong>on</strong>e temperature<br />

string.<br />

47


Figure 6. Great Lakes Regi<strong>on</strong> showing locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eight sites m<strong>on</strong>itored in <strong>the</strong> North<br />

Channel <str<strong>on</strong>g>and</str<strong>on</strong>g> Georgian Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Lake Hur<strong>on</strong>.<br />

48


Table 6. Site coordinates<br />

Site Latitude L<strong>on</strong>gitude<br />

1 45°19'11 -80° 6'39<br />

2 45°19'11 -80° 6'39<br />

3 45 o 45’20 -81 o 47’30<br />

4 46° 1'44 -81°57'31<br />

5 46° 0'30 -81°44'3<br />

6 46° 4'49 -81°57'38<br />

7 45°59'27 -81°43'58<br />

8 45°48'5 -82°32'50<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> strings at all sites, except site 8, were deployed May 22 nd - 25 th , 2007 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

recovered December 4 th - 12 th, 2007 at all <strong>the</strong> aquaculture companies. The site 8 temperature<br />

string was deployed by Envir<strong>on</strong>ment Canada May 1 st , 2007 <str<strong>on</strong>g>and</str<strong>on</strong>g> recovered November 29 th ,<br />

2007. All loggers were set to record temperature every 15 minutes (some excepti<strong>on</strong>s, see table<br />

2). Offloading <str<strong>on</strong>g>of</str<strong>on</strong>g> data was d<strong>on</strong>e <strong>on</strong> site using a water pro<str<strong>on</strong>g>of</str<strong>on</strong>g> shuttle for TempPro V2 loggers<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> optic base stati<strong>on</strong> with laptop for Tidbit loggers during <strong>the</strong> logging period to ensure proper<br />

functi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature strings, refer to Table 8 for specific dates.<br />

49


Table 7. Site locati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> logger deployment details.<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g><br />

Site Depth<br />

# Loggers<br />

Logger Depths (m)<br />

Logging<br />

String Sites<br />

(m)<br />

per String<br />

Interval<br />

(minutes)<br />

Site 1 34 7 0.5,10,15,20,25,30,33.5 15<br />

Site 2 74 11 0.5,10,20,26.5,33,39.5, 47,<br />

53.5, 60, 66.5, 73.5<br />

Site 3 16.5 4 0.5, 4.5,9,16 15<br />

Site 4 27.5 5 0.5,7,14,21,27 15<br />

Site 5 16.5 4 0.5,6,12,16<br />

Site 6 18.5 5 0.5, 4.5,9,15,18<br />

15<br />

Site 7 22 5 0.5,6,12,17.5,21.5<br />

Site 8 15.5 8 1,5,7,9,11,13,15 10<br />

3 12/10<br />

50


Metres Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

Cage<br />

Logger<br />

80<br />

Figure 7. Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> cages <str<strong>on</strong>g>and</str<strong>on</strong>g> depths <str<strong>on</strong>g>of</str<strong>on</strong>g> individual loggers at each m<strong>on</strong>itoring site<br />

51


Table 8. Initial data logging start, <str<strong>on</strong>g>of</str<strong>on</strong>g>floading, <str<strong>on</strong>g>and</str<strong>on</strong>g> final logging dates at 8 aquaculture sites.<br />

Site Launch date Offloading/relaunch dates (2007) End <str<strong>on</strong>g>of</str<strong>on</strong>g> logging period<br />

1 May 24, 2007 June 15, August 2 December 4, 2007<br />

2 May 24, 2007 TempProV2 all loggers*: July 24<br />

December 4, 2007<br />

*Surface logger: June 15, July 24<br />

Tidbits**: July 24, relaunched<br />

August 2<br />

**No logging July 24 – August 2<br />

3 May 24, 2007 June 15, July 22, October 4 December 12, 2007<br />

4 May 22, 2007 June 14, July 23, October 4 December 10, 2007<br />

5 May 23, 2007 June 14, July 23, October 5 December 11, 2007<br />

6 May 23, 2007 June 14, July 24, October 5 December 11, 2007<br />

7 May 23, 2007 June 14, July 23, October 5 April 28,2008<br />

8 May 1, 2007 August 22 November 29, 2007<br />

52


3.2.2 <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> Data Statistical Analysis<br />

Simple statistics for temperature data recorded during period <str<strong>on</strong>g>of</str<strong>on</strong>g> May 22 nd to Nov 28 th , 2007,<br />

were performed using Micros<str<strong>on</strong>g>of</str<strong>on</strong>g>t Excel 2010 s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware.<br />

A Fourier analysis <strong>on</strong> all temperature series was d<strong>on</strong>e using <strong>the</strong> R program in order to determine<br />

if temperature changes occur in well-defined periodicities potentially related to internal waves.<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> values were averaged every 4 time interval points. The trend <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al rise <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fall <str<strong>on</strong>g>of</str<strong>on</strong>g> water temperatures was removed. Periodogram <str<strong>on</strong>g>and</str<strong>on</strong>g> spectral density values were<br />

calculated <str<strong>on</strong>g>and</str<strong>on</strong>g> plotted for each temperature series using <strong>the</strong> functi<strong>on</strong>al analyses below.<br />

Fourier series<br />

x t = µ + Acosωt + Bsinωt + ԑ t<br />

resulting in,<br />

Where<br />

t is <strong>the</strong> same subscript t = 1, 2, ….n<br />

x t are equally spaced time data series<br />

n is <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s<br />

m is <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> Fourier decompositi<strong>on</strong> m = n/2 if n I even ; m = n-1/2 if n is<br />

odd<br />

a o is <strong>the</strong> mean term: a o = 2x -<br />

a k, b k are cosine <str<strong>on</strong>g>and</str<strong>on</strong>g> sine coefficients, respectively<br />

w k represents <strong>the</strong> Fourier frequencies:<br />

53


Functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Fourier coefficients <str<strong>on</strong>g>and</str<strong>on</strong>g> can be plotted against frequency or against wave<br />

length to form periodograms. The amplitude periodogram is defined as follows:<br />

3. 3. Results<br />

The temperature loggers were successfully deployed <str<strong>on</strong>g>and</str<strong>on</strong>g> recovered <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

were determined for all eight sites from May through December as can be observed in Figures 7<br />

through 12 below. During this period, <strong>the</strong> cage envir<strong>on</strong>ment varied from 4.0 to 25.9 o C with an<br />

overall average temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 14.7 o C. A similar range was observed for <strong>the</strong> whole water column<br />

(WWC) from 3.9 o C to 25.9 o C, reflecting complete mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> water column towards <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

recording period. Refer to summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature data recorded from May 25 –<br />

November 28 at <strong>the</strong> 8 aquaculture sites, with 3 depth z<strong>on</strong>es; whole water column (WWC), cage<br />

envir<strong>on</strong>ment (CE), below cage envir<strong>on</strong>ment (BCE) in Table 10<br />

54


30<br />

0.5m 20m 33.5m<br />

25<br />

20<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> (ºC) <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> (ºC)<br />

15<br />

10<br />

5<br />

0<br />

21-May 21-May<br />

4-Jun 4-Jun<br />

18-Jun 18-Jun<br />

2-Jul 2-Jul<br />

16-Jul 16-Jul<br />

30-Jul 30-Jul<br />

13-Aug 13-Aug<br />

Figure 8. Site 1 temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> cage envir<strong>on</strong>ment (0.5 & 20m) <str<strong>on</strong>g>and</str<strong>on</strong>g> maximum depth<br />

(33.5m) from May through December 2007.<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

27-Aug 27-Aug<br />

10-Sep 10-Sep<br />

24-Sep 24-Sep<br />

8-Oct 8-Oct<br />

22-Oct 22-Oct<br />

5-Nov 5-Nov<br />

19-Nov 19-Nov<br />

0.5m 26.5m 73.5m<br />

3-Dec 3-Dec<br />

Figure 9. Site 2 temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> cage envir<strong>on</strong>ment (0.5 & 26.5m) <str<strong>on</strong>g>and</str<strong>on</strong>g> maximum depth<br />

(73.5m) from May through December 2007.<br />

55


<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> (ºC)<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> (ºC)<br />

22-May<br />

21-May<br />

05-Jun<br />

04-Jun<br />

19-Jun<br />

18-Jun<br />

03-Jul<br />

02-Jul<br />

17-Jul<br />

16-Jul<br />

05-Nov<br />

06-Nov<br />

19-Nov<br />

20-Nov<br />

03-Dec<br />

04-Dec<br />

30<br />

0.5m 9m 16m<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

30-Jul 31-Jul<br />

13-Aug 14-Aug<br />

Figure 10. Site 3 temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> cage envir<strong>on</strong>ment (0.5 & 9m) <str<strong>on</strong>g>and</str<strong>on</strong>g> maximum depth<br />

(16m) from May through December 2007<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

27-Aug 28-Aug<br />

10-Sep 11-Sep<br />

24-Sep 25-Sep<br />

08-Oct 09-Oct<br />

22-Oct 23-Oct<br />

0.5m 14m 27m<br />

Figure 11. Site 4 temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> cage envir<strong>on</strong>ment (0.5 & 14m) <str<strong>on</strong>g>and</str<strong>on</strong>g> maximum depth<br />

(27m) from May through December 2007.<br />

56


<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> (ºC)<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> ºC<br />

22-May<br />

22-May<br />

05-Jun<br />

05-Jun<br />

19-Jun<br />

19-Jun<br />

03-Jul<br />

03-Jul<br />

17-Jul<br />

17-Jul<br />

31-Jul<br />

31-Jul<br />

14-Aug<br />

14-Aug<br />

28-Aug<br />

28-Aug<br />

11-Sep<br />

11-Sep<br />

25-Sep<br />

25-Sep<br />

09-Oct<br />

09-Oct<br />

23-Oct<br />

23-Oct<br />

06-Nov<br />

06-Nov<br />

20-Nov<br />

20-Nov<br />

04-Dec<br />

04-Dec<br />

30<br />

0.5m 12m 16m<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Figure 12. Site 5 temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> cage envir<strong>on</strong>ment (0.5 & 12m) <str<strong>on</strong>g>and</str<strong>on</strong>g> maximum depth<br />

(16m) from May through December 2007.<br />

30<br />

25<br />

0.5m 9m 18.5m<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Figure 13. Site 6 temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> cage envir<strong>on</strong>ment (0.5 & 9m) <str<strong>on</strong>g>and</str<strong>on</strong>g> maximum depth (18m)<br />

from May through December 2007.<br />

57


<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> (C o )<br />

The total range <str<strong>on</strong>g>of</str<strong>on</strong>g> temperatures recorded during this period was 22.24 o C <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir summary<br />

statistics are shown graphically in Fig. 7, Fig. 8 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fig. 9 for whole water column (WWC), cage<br />

envir<strong>on</strong>ment (CE) <str<strong>on</strong>g>and</str<strong>on</strong>g> below cage envir<strong>on</strong>ment (BC) respectively.<br />

30<br />

25<br />

20<br />

15 Mean<br />

10<br />

5<br />

0<br />

1 2 3 4 5 6 7 8<br />

Site<br />

Figure 14. Whisker box-plot <str<strong>on</strong>g>of</str<strong>on</strong>g> whole water column (WWC) temperature range at <strong>the</strong> 8<br />

m<strong>on</strong>itored sites from May 25 – November 28, 2007, yellow box represents 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data<br />

points between <strong>the</strong> 1 st <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 rd quartiles, whiskers mark <strong>the</strong> total range <str<strong>on</strong>g>of</str<strong>on</strong>g> temperatures.<br />

58


<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> (C o )<br />

30<br />

25<br />

20<br />

15<br />

Mean<br />

10<br />

5<br />

0<br />

1 2 3 4 5 6 7 8<br />

Site<br />

Figure 15. Whisker box-plot <str<strong>on</strong>g>of</str<strong>on</strong>g> cage envir<strong>on</strong>ment (CE) temperature range at <strong>the</strong> 8 m<strong>on</strong>itored<br />

sites from May 25 – November 28, 2007, yellow box represents 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data points<br />

between <strong>the</strong> 1 st <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 rd quartiles, whiskers mark <strong>the</strong> total range <str<strong>on</strong>g>of</str<strong>on</strong>g> temperatures.<br />

59


<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> (C o )<br />

30<br />

25<br />

20<br />

15 Mean<br />

10<br />

5<br />

0<br />

1 2 3 4 5 6 7 8<br />

Figure 16. Whisker box-plot <str<strong>on</strong>g>of</str<strong>on</strong>g> below cage (BC) envir<strong>on</strong>ment temperature range at <strong>the</strong> 8<br />

m<strong>on</strong>itored sites from May 25 – November 28, 2007, yellow box represents 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

data points between <strong>the</strong> 1 st <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 rd quartiles; whiskers mark <strong>the</strong> total range <str<strong>on</strong>g>of</str<strong>on</strong>g> temperatures.<br />

Site<br />

60


At <strong>the</strong> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> logging period in May <strong>the</strong> water column was already stratifying <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

temperatures though highly fluctuating were steadily increasing. By <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> August, beginning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> September <strong>the</strong> temperatures began declining as <strong>the</strong> water column destratified. The lowest<br />

temperature recorded was 3.66 o C at site 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> highest was at site 4, 25.9 o C. Whole water<br />

column mean temperatures ranged from 7.47 o C at site 2 to 15.8 o C at site 8. Cage envir<strong>on</strong>ment<br />

mean temperatures ranged from 11.8 o C at site 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 16.39 o C at site 8. Below cage<br />

envir<strong>on</strong>ments had <strong>the</strong> largest range <str<strong>on</strong>g>of</str<strong>on</strong>g> mean temperatures from 4.97 o C to 15.09 o C. Site 3, site 5<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> site 7 had similar cage envir<strong>on</strong>ment mean temperatures with 50 % <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir temperatures<br />

falling with <strong>the</strong> ranges 12.39-17.82 o C, 12.12-17.49 o C <str<strong>on</strong>g>and</str<strong>on</strong>g> 11.88-17.87 o C, respectively, refer to<br />

box plots above (Figure 13 <str<strong>on</strong>g>and</str<strong>on</strong>g> Figure 15) for first <str<strong>on</strong>g>and</str<strong>on</strong>g> third quartiles showing temperature<br />

distributi<strong>on</strong>s. Site 4, 6 <str<strong>on</strong>g>and</str<strong>on</strong>g> 8 had higher cage envir<strong>on</strong>ment mean temperatures ranging between<br />

12.97-19.63 o C, 12.97-19.7 o C <str<strong>on</strong>g>and</str<strong>on</strong>g> 12.36-20.33 o C respectively. Sites 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 had <strong>the</strong> lowest<br />

cage envir<strong>on</strong>ment mean temperatures ranging from 8.33-17.08 o C <str<strong>on</strong>g>and</str<strong>on</strong>g> 7.09-17.23 o C,<br />

respectively, 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> time. The end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> logging period was marked by a cooling <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

whole water column leading to destratificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> bottom <str<strong>on</strong>g>and</str<strong>on</strong>g> surface waters, termed<br />

fall turnover as seen in Table 9.<br />

Referring to Table 9 below <strong>the</strong> earliest <str<strong>on</strong>g>and</str<strong>on</strong>g> latest fall turnover, based <strong>on</strong> temperatures at all<br />

depths becoming equal or within ~0.1 o C prior to gradual decline, occurred at site 8 <strong>on</strong> August<br />

19, 2007 <str<strong>on</strong>g>and</str<strong>on</strong>g> site 2 <strong>on</strong> November 28, 2007 respectively. No turnover was observed during <strong>the</strong><br />

entire logging period at Site 6. During summer peak producti<strong>on</strong>, within cage envir<strong>on</strong>ment<br />

temperature fluctuati<strong>on</strong>s every 15 minutes were predominantly between 0.1 o C <str<strong>on</strong>g>and</str<strong>on</strong>g> 1 o C, however<br />

61


fluctuati<strong>on</strong>s between 2 o C <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 o C were not uncomm<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> in rare instances a fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10<br />

o C within 15min was observed. Fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 10 o C within 5 hours were not uncomm<strong>on</strong>.<br />

Table 9. Estimated fall turnover dates at each aquaculture site<br />

Site Fall turnover date (2007)<br />

1 November 20<br />

2 November 28<br />

3 October 9<br />

4 October 15<br />

5 September 17<br />

6 No turnover<br />

7 October 15<br />

8 August 19<br />

Refer to Appendix I for bi weekly temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles at each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eight sites during <strong>the</strong><br />

m<strong>on</strong>th <str<strong>on</strong>g>of</str<strong>on</strong>g> August, 2007, when <strong>the</strong> surface water is generally above 20 o C with str<strong>on</strong>g<br />

temperature stratificati<strong>on</strong> existing at most sites.<br />

62


Table 10. Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature data recorded from May 25 – November 28 at <strong>the</strong> 8<br />

aquaculture sites, with 3 depth z<strong>on</strong>es; whole water column (WWC), cage envir<strong>on</strong>ment (CE),<br />

below cage envir<strong>on</strong>ment (BCE).<br />

Site<br />

Depth<br />

z<strong>on</strong>e<br />

Mean<br />

o C<br />

Median<br />

o C<br />

Mode<br />

o C<br />

Range<br />

o C<br />

Max.<br />

o C<br />

Min.<br />

o C<br />

1 st<br />

Quartile<br />

o C<br />

3 rd<br />

Quartile<br />

o C<br />

1 WWC 9.87 7.88 5.80 21.56 25.58 4.02 6.17 12.37<br />

CE 12.55 11.30 8.81 21.11 25.58 4.47 8.33 17.08<br />

BCE 6.32 6.11 5.8 9.25 13.27 4.02 5.49 6.91<br />

2 WWC 7.47 5.41 4.57 22.18 25.84 3.66 4.59 7.65<br />

CE 11.80 9.44 8.10 21.67 25.84 4.17 7.09 17.23<br />

BCE 4.97 4.78 4.57 7.7 11.36 3.66 4.43 5.35<br />

3 WWC 14.25 14.19 15.92 18.92 23.35 4.43 11.69 16.70<br />

CE 14.87 15.37 15.92 18.59 23.35 4.77 12.39 17.82<br />

BCE 12.39 12.17 11.69 15.84 20.27 4.43 10.49 14.36<br />

4 WWC 14.75 14.24 16.63 20.09 25.91 5.82 11.47 18.31<br />

CE 16.30 16.87 16.63 19.41 25.91 6.51 12.97 19.63<br />

BCE 12.42 12.46 12.56 17.08 22.90 5.82 10.17 14.30<br />

5 WWC 14.15 13.83 16.77 18.03 23.93 5.90 11.25 16.89<br />

CE 14.85 15.29 16.77 17.98 23.93 5.95 12.12 17.49<br />

BCE 12.06 11.81 16.53 12.90 18.79 5.90 10.05 13.69<br />

6 WWC 15.36 15.70 16.96 20.82 25.04 4.22 11.76 19.06<br />

CE 16.39 17.15 16.92 19.37 25.04 5.67 12.97 19.70<br />

BCE 13.81 14.22 15.37 18.58 22.80 4.22 10.66 16.92<br />

7 WWC 13.41 12.97 16.82 18.34 23.95 5.62 10.17 16.77<br />

CE 14.89 15.20 16.82 18.18 23.95 5.77 11.88 17.87<br />

BCE 11.19 10.66 13.76 13.08 18.70 5.62 9.34 12.94<br />

8 WWC 15.80 17.54 20.33 21.02 24.95 3.93 11.92 19.97<br />

CE 16.13 17.75 20.33 20.98 24.95 3.97 12.36 20.33<br />

BCE 15.09 15.97 18.03 18.94 22.87 3.93 11.6 18.83<br />

63


3.4. Discussi<strong>on</strong><br />

The large amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> high frequency temperature fluctuati<strong>on</strong>s, several degrees Celsius<br />

within 15 minutes <str<strong>on</strong>g>and</str<strong>on</strong>g> up to 10 o C within a few hours, during <strong>the</strong> summer producti<strong>on</strong> period<br />

recorded at <strong>the</strong> different aquaculture sites have important implicati<strong>on</strong>s to <strong>the</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aquaculture in Georgian Bay <str<strong>on</strong>g>and</str<strong>on</strong>g> North Channel waters. Though <strong>the</strong>se temperature<br />

fluctuati<strong>on</strong>s are counter-intuitively large in amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> high in frequency, <strong>the</strong>y are<br />

c<strong>on</strong>sistent with <strong>the</strong> circulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>rmal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Channel <str<strong>on</strong>g>and</str<strong>on</strong>g> Georgian Bay.<br />

In order to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles recorded at <strong>the</strong> 8 aquaculture sites <strong>on</strong>e must<br />

also underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> driving forces resp<strong>on</strong>sible for establishing <strong>the</strong>se temperature regimens.<br />

The Georgian Bay <str<strong>on</strong>g>and</str<strong>on</strong>g> North Channel are 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 interc<strong>on</strong>nected water bodies (Main Lake <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Saginaw Bay <strong>the</strong> o<strong>the</strong>r two) that make up Lake Hur<strong>on</strong> (Sheng <str<strong>on</strong>g>and</str<strong>on</strong>g> Rao, 2006). The main<br />

inflows <str<strong>on</strong>g>of</str<strong>on</strong>g> water enter Lake Hur<strong>on</strong> from Lake Superior via St. Mary’s River into <strong>the</strong> North<br />

Channel <str<strong>on</strong>g>and</str<strong>on</strong>g> from Lake Michigan at <strong>the</strong> Straits <str<strong>on</strong>g>of</str<strong>on</strong>g> Mackinac (Sheng <str<strong>on</strong>g>and</str<strong>on</strong>g> Rao, 2006). Water<br />

leaves <strong>the</strong> system through <strong>the</strong> south end via <strong>the</strong> St. Clair River (Sheng <str<strong>on</strong>g>and</str<strong>on</strong>g> Rao, 2006). The<br />

North Channel <str<strong>on</strong>g>and</str<strong>on</strong>g> Georgian Bay, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> high inflow from St. Mary’s River, with<br />

corresp<strong>on</strong>ding outflow in <strong>the</strong> south <str<strong>on</strong>g>of</str<strong>on</strong>g> Lake Hur<strong>on</strong> have flushing times that are very short, 2<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 8.5 years, respectively (Weiler, 1988). The North Channel can <strong>the</strong>refore be seen as a<br />

flow through system with a complete water exchange in just 2 years (Weiler, 1988). The<br />

Georgian Bay water body being much larger never<strong>the</strong>less also has a short flushing time with a<br />

major water exchange with <strong>the</strong> Main Lake occurring at <strong>the</strong> Main Channel. The exchange that<br />

occurs at <strong>the</strong> Main Channel is resp<strong>on</strong>sible for <strong>the</strong> oligotrophic status <str<strong>on</strong>g>of</str<strong>on</strong>g> Georgian Bay by<br />

64


providing cooler surface waters to <str<strong>on</strong>g>of</str<strong>on</strong>g>fset summer solar heating while allowing nutrient rich<br />

bottom waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bay to flow into <strong>the</strong> Main Lake (Bennett, 1988).<br />

The main driving force <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> temperature distributi<strong>on</strong>s observed is <strong>the</strong> climate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> regi<strong>on</strong><br />

(Wetzel 1975), with four distinct seas<strong>on</strong>s, a l<strong>on</strong>g cold winter <str<strong>on</strong>g>and</str<strong>on</strong>g> str<strong>on</strong>g winds throughout <strong>the</strong><br />

year with frequent storms al<strong>on</strong>g with a hot humid summer (Weiler, 1988). In additi<strong>on</strong> <strong>the</strong><br />

irregular shoreline <str<strong>on</strong>g>and</str<strong>on</strong>g> highly varying basin morphology c<strong>on</strong>tribute to changes in current flow<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> wave acti<strong>on</strong> (Sheng <str<strong>on</strong>g>and</str<strong>on</strong>g> Rao, 2006).<br />

As seen from <strong>the</strong> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles at all <strong>the</strong> sites except Site 6, this wea<strong>the</strong>r pattern leads<br />

to a very important hydrodynamic feature <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al changes in <strong>the</strong> <strong>the</strong>rmal structure in<br />

Georgian Bay <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> North Channel, from completely vertically mixed in early spring <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

late fall to stratified during <strong>the</strong> summer. As surface waters cool during late fall, due to str<strong>on</strong>g<br />

vertical c<strong>on</strong>vecti<strong>on</strong> from wind cooling, <strong>the</strong> summer stratificati<strong>on</strong> weakens (Sheng <str<strong>on</strong>g>and</str<strong>on</strong>g> Rao<br />

2006). Warm summer surface waters cooling faster than deep waters approach <strong>the</strong> maximum<br />

water density near 4 o C <str<strong>on</strong>g>and</str<strong>on</strong>g> begins mixing with deeper waters, forming a vertically<br />

homogenous water column (Sheng <str<strong>on</strong>g>and</str<strong>on</strong>g> Rao, 2006). As winter cooling progresses, surface<br />

waters pass <strong>the</strong> 4 o C mark <str<strong>on</strong>g>and</str<strong>on</strong>g> become less dense at 0-3 o C, thus forming a weak inverse<br />

stratificati<strong>on</strong> near <strong>the</strong> surface during <strong>the</strong> winter with densest ~4 o C water below (Wetzel,<br />

1975).<br />

The process <strong>the</strong>n occurs in reverse during late winter <str<strong>on</strong>g>and</str<strong>on</strong>g> early spring, as temperatures near<br />

<strong>the</strong> surface warm up to 4 o C, again forming a vertically homogenous water column before <strong>the</strong><br />

<strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> summer stratificati<strong>on</strong> due to c<strong>on</strong>tinuous solar heating (Sheng <str<strong>on</strong>g>and</str<strong>on</strong>g> Rao, 2006). The<br />

65


etenti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface absorbed solar energy depends <strong>on</strong> <strong>the</strong> physical work<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wind energy, currents <str<strong>on</strong>g>and</str<strong>on</strong>g> swells, morphometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> basin <str<strong>on</strong>g>and</str<strong>on</strong>g> water losses (Wetzel,<br />

1975). Depending <strong>on</strong> <strong>the</strong>se factors at a particular site <strong>the</strong> resulting patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>rmal<br />

stratificati<strong>on</strong> will drive <strong>the</strong> physical <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> water body, thus determining<br />

its producti<strong>on</strong>, utilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> decompositi<strong>on</strong> (Wetzel, 1975).<br />

During <strong>the</strong> summer stratificati<strong>on</strong> period, <strong>the</strong> water column can be divided into three main<br />

bodies <str<strong>on</strong>g>of</str<strong>on</strong>g> decreasing temperature from surface to bottom; <strong>the</strong> epilimni<strong>on</strong>, metalimni<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

hypolimni<strong>on</strong> (Wetzel, 1975). The final temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spring turnover determine <strong>the</strong><br />

initial summer stratificati<strong>on</strong> temperatures (Wetzel, 1975). The epilimni<strong>on</strong> is <strong>the</strong> most<br />

turbulent <str<strong>on</strong>g>and</str<strong>on</strong>g> heated layer, <strong>the</strong> bottom hypolimni<strong>on</strong> layer is <strong>the</strong> densest <str<strong>on</strong>g>and</str<strong>on</strong>g> coldest layer<br />

making it <strong>the</strong> most stable <str<strong>on</strong>g>and</str<strong>on</strong>g> isolated (Wetzel, 1975). The metalimni<strong>on</strong> is <strong>the</strong> layer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong>rmal disc<strong>on</strong>tinuity between <strong>the</strong>se two layers, characterized by a steep <strong>the</strong>rmal gradient,<br />

where largest decrease in temperature with regard to depth is referred to as <strong>the</strong> <strong>the</strong>rmocline<br />

(Wetzel, 1975).<br />

An important characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se water layers with regard to aquaculture site suitability <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>sequently <strong>the</strong> assimilative capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> a site is <strong>the</strong> accompanying dissolved oxygen pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile.<br />

Specifically, dissolved oxygen c<strong>on</strong>centrati<strong>on</strong> drops in <strong>the</strong> hypolimni<strong>on</strong> during summer<br />

stratificati<strong>on</strong> while surface layers remain aerated through wind <str<strong>on</strong>g>and</str<strong>on</strong>g> wave acti<strong>on</strong> turbulence<br />

(Wetzel, 1975). Oxygen is resp<strong>on</strong>sible for driving <strong>the</strong> chemical <str<strong>on</strong>g>and</str<strong>on</strong>g> biological degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

deposited organic material <strong>on</strong> <strong>the</strong> lake bottom by affecting <strong>the</strong> biological diversity <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

abundance resp<strong>on</strong>sible for it (Wetzel, 1975). Water at <strong>the</strong> sediment-water interface, where<br />

66


oxygen dem<str<strong>on</strong>g>and</str<strong>on</strong>g> is highest due to bacterial breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> organic compounds will<br />

c<strong>on</strong>sequently lose oxygen quickest (Wetzel, 1975). Since <strong>the</strong> temperature differences<br />

between <strong>the</strong> hypolimni<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> overlying waters prevent mixing, <strong>the</strong> oxygen in <strong>the</strong><br />

hypolimni<strong>on</strong> can be completed used up by organic degradati<strong>on</strong> (Wetzel, 1975). Complete<br />

anoxia in <strong>the</strong> hypolimni<strong>on</strong> leads to producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic sulphur gas, hydrogen sulphide <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

methane gas (Wetzel, 1975). Fur<strong>the</strong>rmore a change from hypoxic to anoxic c<strong>on</strong>diti<strong>on</strong>s brings<br />

<strong>the</strong> redox potential to 0mv <str<strong>on</strong>g>and</str<strong>on</strong>g> creates a reducing envir<strong>on</strong>ment in <strong>the</strong> sediment (Wetzel,<br />

1975).<br />

This c<strong>on</strong>diti<strong>on</strong> al<strong>on</strong>g with <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> deposited aquaculture waste with fur<strong>the</strong>r reducing<br />

properties, can lead to metal enrichment by complexing <str<strong>on</strong>g>and</str<strong>on</strong>g> adsorpti<strong>on</strong> to <strong>the</strong> acid molecules<br />

within <strong>the</strong> waste (Wetzel, 1975). Since aquaculture feed c<strong>on</strong>tains trace metals copper, zinc,<br />

ir<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> manganese as dietary requirements for salm<strong>on</strong>ids (Chou, 2002), <strong>the</strong>ir accumulati<strong>on</strong><br />

in l<strong>on</strong>g term deposited sediments may have significant effects under anoxic c<strong>on</strong>diti<strong>on</strong>s. Chou<br />

et al. (2004) found high c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <str<strong>on</strong>g>and</str<strong>on</strong>g> saturati<strong>on</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc in marine<br />

sediments related to <strong>the</strong> inputs <str<strong>on</strong>g>of</str<strong>on</strong>g> fecal <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolic waste metals <str<strong>on</strong>g>and</str<strong>on</strong>g> organic carb<strong>on</strong><br />

originating from salm<strong>on</strong> aquaculture feed. In such cases <str<strong>on</strong>g>of</str<strong>on</strong>g> hypolimnetic anoxia <str<strong>on</strong>g>and</str<strong>on</strong>g> organic<br />

waste loading, spring <str<strong>on</strong>g>and</str<strong>on</strong>g> fall turnovers become important mechanisms in restoring oxygen<br />

levels in <strong>the</strong> hypolimni<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> bringing nutrients/waste to <strong>the</strong> surface to be utilized or<br />

assimilated by primary producers.<br />

Observing <strong>the</strong> lower depth temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles it is evident that a pr<strong>on</strong>ounced stable<br />

hypolimni<strong>on</strong> is found <strong>on</strong>ly at <strong>the</strong> deeper sites 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> more wind sheltered site 6 site<br />

67


located between two isl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. However site 6 is <strong>the</strong> <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> three sites with a<br />

pr<strong>on</strong>ounced hypolimni<strong>on</strong> that does not show a full turnover in <strong>the</strong> fall suggesting an anoxic<br />

hypolimni<strong>on</strong> with high anaerobic hydrogen sulphide <str<strong>on</strong>g>and</str<strong>on</strong>g> methane gas by-products <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

aquaculture waste degradati<strong>on</strong>.<br />

Sites 3, 4, 5, 7, <str<strong>on</strong>g>and</str<strong>on</strong>g> 8 show weak hypolimnetic stratificati<strong>on</strong> with temperatures in <strong>the</strong><br />

hypolimni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten fluctuating in <strong>the</strong> metalimnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> even epilimnetic temperature ranges<br />

suggesting adequate mixing with overlying water. This may be attributable to <strong>the</strong> higher<br />

wind exposure <str<strong>on</strong>g>and</str<strong>on</strong>g> relatively shallow depths <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se sites where as a result, solar heating <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> hypolimni<strong>on</strong> occurs <str<strong>on</strong>g>and</str<strong>on</strong>g> sufficient winds cause turbulent vertical c<strong>on</strong>vecti<strong>on</strong> mixing<br />

during <strong>the</strong> stratificati<strong>on</strong> period. This can be clearly seen at site 8’s pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile with no evidence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a hypolimni<strong>on</strong>, weak stratificati<strong>on</strong>, no natural wind barriers <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently <strong>the</strong> earliest fall<br />

turnover, September 17, 2007. Corresp<strong>on</strong>dingly <strong>the</strong> latest turnover date occurs at <strong>the</strong> deepest<br />

site, 2, over 2 m<strong>on</strong>ths later <strong>on</strong> November 27, 2007. With regard to assimilative capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

site, summer stratificati<strong>on</strong> al<strong>on</strong>g with spring <str<strong>on</strong>g>and</str<strong>on</strong>g> fall turnovers are some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fundamental<br />

determinants <str<strong>on</strong>g>and</str<strong>on</strong>g> complete seas<strong>on</strong>al temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles are necessary for <strong>the</strong>ir identificati<strong>on</strong>.<br />

Rainbow trout (Oncorhynchus mykiss) reared at <strong>the</strong> aquaculture sites are poikilo<strong>the</strong>rmic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>sequently have <strong>the</strong>ir metabolic rate, growth, energy expenditure <str<strong>on</strong>g>and</str<strong>on</strong>g> requirements <str<strong>on</strong>g>and</str<strong>on</strong>g> feed<br />

intake highly influenced by water temperature (Azevedo et al., 1998). Knowing <strong>the</strong> average<br />

envir<strong>on</strong>mental rearing temperature, growth period (days) initial weight <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>rmal growth<br />

coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fish species an aquaculture manager can accurately predict final product<br />

weight (Azevedo et al., 1998). Such informati<strong>on</strong> is useful in determining stocking density<br />

68


ased <strong>on</strong> desired final product weight, initial fingerling weight, known temperature regime<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> cycle. The maximum <str<strong>on</strong>g>and</str<strong>on</strong>g> minimum temperatures recorded during<br />

<strong>the</strong> producti<strong>on</strong> cycle in this study approach <strong>the</strong> lower <str<strong>on</strong>g>and</str<strong>on</strong>g> upper incipient lethal temperatures<br />

for rainbow trout. Rainbow trout prefer a temperature range between 10-15 o C (Lund <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Tufts, 2003) however can acclimate to higher temperatures where <strong>the</strong> growth rate is optimal<br />

around 18-19 o C (Werner et al., 2005). The upper <str<strong>on</strong>g>and</str<strong>on</strong>g> lower incipient lethal temperatures for<br />

rainbow trout depending <strong>on</strong> acclimati<strong>on</strong> temperature is approximately 26-28.9 o C <str<strong>on</strong>g>and</str<strong>on</strong>g> 0-1 o C,<br />

respectively (Mol<strong>on</strong>ey, 2001). The lowest maximum temperature that occurred within <strong>the</strong><br />

cage envir<strong>on</strong>ment during <strong>the</strong> summer producti<strong>on</strong> cycle was 23.35 o C at <strong>the</strong> site 3. Site 4 had<br />

<strong>the</strong> highest maximum temperature at 25.91 o C <str<strong>on</strong>g>and</str<strong>on</strong>g> sites 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> site 6 all exceeded <strong>the</strong> 25<br />

o C mark as well. In <strong>the</strong> winter m<strong>on</strong>ths <strong>on</strong> <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> temperatures approach <strong>the</strong><br />

freezing point <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 o C, <strong>the</strong> lower lethal limit. This is highly significant c<strong>on</strong>sidering rainbow<br />

trout exposed to temperatures within <strong>the</strong>ir tolerance z<strong>on</strong>e, between <strong>the</strong> preferred range (above)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> lethal limits, experience adverse effects, discussed later (Viant et al., 2003).<br />

More surprising than <strong>the</strong> temperature extremes observed at <strong>the</strong> sites, are <strong>the</strong> high frequency<br />

large amplitude fluctuati<strong>on</strong>s in temperature <strong>on</strong> <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 o C within an hour. This spatial<br />

heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing is usually attributed to turbulent mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> water layers however,<br />

recent studies suggest that oscillating baroclinic currents al<strong>on</strong>g <strong>the</strong> lake bottom causing sheardriven<br />

turbulence al<strong>on</strong>g with high-frequency internal waves breaking up <strong>on</strong> sloping<br />

boundaries at <strong>the</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> metalimni<strong>on</strong>, are also resp<strong>on</strong>sible for interior mixing (Boegman<br />

et al., 2003). It has been shown that high-frequency internal waves exist in narrow discrete<br />

frequency b<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> some comm<strong>on</strong> mechanisms for <strong>the</strong>ir formati<strong>on</strong> have been proposed;<br />

shear instability, n<strong>on</strong>linear steepening <str<strong>on</strong>g>of</str<strong>on</strong>g> basin-scale internal waves, internal hydraulic jumps,<br />

69


excitati<strong>on</strong> by intrusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> gravity currents, <str<strong>on</strong>g>and</str<strong>on</strong>g> flow interacti<strong>on</strong> with boundaries (Boegman<br />

et al., 2003). Ano<strong>the</strong>r type <str<strong>on</strong>g>of</str<strong>on</strong>g> internal wave that could likely cause <strong>the</strong> observed temperature<br />

fluctuati<strong>on</strong>s is <strong>the</strong> Poincare wave REF or inertia-gravity wave that is <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>ger durati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

more likely identifiable by <strong>the</strong> 15 minute sampling interval resoluti<strong>on</strong> applied in this study .<br />

These waves, sometimes kilometers l<strong>on</strong>g, have periods l<strong>on</strong>g enough to be affected by <strong>the</strong><br />

rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> earth <str<strong>on</strong>g>and</str<strong>on</strong>g> are comm<strong>on</strong> throughout large lakes (Gill, 1982; Antenucci et at.,<br />

2000; Bouffard et al., 2012).<br />

Internal waves are <str<strong>on</strong>g>of</str<strong>on</strong>g> great significance to both aquaculture managers <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>itoring agencies<br />

due to <strong>the</strong>ir role in sediment resuspensi<strong>on</strong> (Sakai et al., 2002). Sakai et al. (2002) found<br />

internal waves to increase total dissolved <str<strong>on</strong>g>and</str<strong>on</strong>g> particulate phosphorous, <str<strong>on</strong>g>and</str<strong>on</strong>g> cause <strong>the</strong> release <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

methane from <strong>the</strong> bottom sediment at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stratificati<strong>on</strong> period. Fur<strong>the</strong>rmore winter<br />

winds cause frequent internal waves <str<strong>on</strong>g>and</str<strong>on</strong>g> complete vertical mixing due to a <strong>the</strong>rmally<br />

homogenous water column suggesting this plays a role in previously observed surface<br />

maximums <str<strong>on</strong>g>of</str<strong>on</strong>g> methane (Sakai et al., 2002). A possible scenario <str<strong>on</strong>g>of</str<strong>on</strong>g> such an effect is seen in <strong>the</strong><br />

popular aerial photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> LaCloche Channel decommissi<strong>on</strong>ed aquaculture site,<br />

displaying melted ice c<strong>on</strong>tours <str<strong>on</strong>g>of</str<strong>on</strong>g> cages due to methane accumulati<strong>on</strong> at <strong>the</strong> surface. Hawley<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Muzzi (2003) c<strong>on</strong>cluded that suspended particulate material present in <strong>the</strong> hypolimni<strong>on</strong><br />

during stratificati<strong>on</strong> can mix with suspended particulate material at mid-depths do to upwelling<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> downwelling caused by internal waves, characterized by a changing <strong>the</strong>rmocline depth. In<br />

additi<strong>on</strong> <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended material between mid-depths <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> bottom can vary up to<br />

50% as a direct result <str<strong>on</strong>g>of</str<strong>on</strong>g> resuspensi<strong>on</strong>, suggesting that short-term mixing events caused by<br />

internal waves are resp<strong>on</strong>sible for significant exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> materials between <strong>the</strong> epilimni<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> hypolimni<strong>on</strong> (Hawley <str<strong>on</strong>g>and</str<strong>on</strong>g> Muzzi, 2003). With particular regard to phosphorous <strong>the</strong>se<br />

70


findings are significant due to <strong>the</strong> fact that regulatory agencies m<strong>on</strong>itor total phosphorous<br />

loading at <strong>the</strong>se aquaculture sites within <strong>the</strong> water column at spring <str<strong>on</strong>g>and</str<strong>on</strong>g> fall turnover as well as<br />

during <strong>the</strong> stratificati<strong>on</strong> period (Reid et al., 2006). It would be expected <strong>the</strong>refore that higher<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> total phosphorous would be found during <strong>the</strong> mixing periods, c<strong>on</strong>trolled by <strong>the</strong><br />

temperature regime, <str<strong>on</strong>g>and</str<strong>on</strong>g> during increased temperatures which promote bacterial activity which<br />

in turn also promotes phosphorous leaching (Hua et al., 2008) to explain. Therefore<br />

m<strong>on</strong>itoring practices should take <strong>the</strong>se effects into c<strong>on</strong>siderati<strong>on</strong> when estimati<strong>on</strong> overall total<br />

phosphorous loading at <strong>the</strong>se particular sites. A more accurate method <str<strong>on</strong>g>of</str<strong>on</strong>g> estimating total<br />

phosphorous at an aquaculture site could be using a bioenergetics model such as Fish-PrFEQ,<br />

currently being researched (Hua et al., 2008).<br />

Since temperature as a physical parameter has such a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound effect <strong>on</strong> <strong>the</strong> physical,<br />

chemical <str<strong>on</strong>g>and</str<strong>on</strong>g> biological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> lake water columns, as well as sediments <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

organisms, it is c<strong>on</strong>sidered <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> most important envir<strong>on</strong>mental parameters influencing<br />

not <strong>on</strong>ly <strong>the</strong> suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> an aquaculture site but <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g> all wild<br />

populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong>ids (Ma<strong>the</strong>ws <str<strong>on</strong>g>and</str<strong>on</strong>g> Berg, 1997). Rainbow trout resp<strong>on</strong>d to adverse<br />

temperature c<strong>on</strong>diti<strong>on</strong>s with <strong>the</strong> ‘heat shock protein resp<strong>on</strong>se’, an important mechanism used<br />

to repair denatured cellular proteins <str<strong>on</strong>g>and</str<strong>on</strong>g> prevent fur<strong>the</strong>r damage from <strong>the</strong>rmal cellular stress<br />

(Werner et al., 2005). Up<strong>on</strong> exposure to <strong>the</strong>rmal stress <strong>the</strong>re is a rapid inducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat shock proteins whose roles are to correct folding, repair, translocate<br />

intracellular proteins, suppress protein aggregati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reactivate denatured proteins (Werner<br />

et al., 2005). Heat shock protein expressi<strong>on</strong> has also been linked to cellular signalling<br />

molecules <str<strong>on</strong>g>and</str<strong>on</strong>g> receptors c<strong>on</strong>trolling development <str<strong>on</strong>g>and</str<strong>on</strong>g> growth (Werner et al., 2005). Werner<br />

71


et al. (2005) found that Onchorynchus mykiss (steelhead) acclimated to 15 o C chr<strong>on</strong>ically<br />

exposed to 20 o C was associated with a decrease in high-energy compounds in liver <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

muscle tissue. Corresp<strong>on</strong>dingly, Viant et al. (2003) found that based <strong>the</strong> <strong>on</strong> heat shock<br />

protein expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, fish can acclimate to a c<strong>on</strong>stant 5 o C elevati<strong>on</strong> in temperature from<br />

15 to 20 o C, within 3 weeks. Thermal stress is thus c<strong>on</strong>sidered to cause energy diversi<strong>on</strong> from<br />

growth to maintenance, minimizing <strong>the</strong>rmal damage using heat shock proteins to reorganize<br />

plasma membranes, particularly in fish with chr<strong>on</strong>ic exposure at 20 o C (Viant et al., 2003).<br />

Reid et al. (1995) also suggested <str<strong>on</strong>g>of</str<strong>on</strong>g> such energy repartiti<strong>on</strong>ing due to heat shock protein<br />

inducti<strong>on</strong> within tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> juvenile rainbow trout when he observed a 20% decrease in<br />

growth, appetite, food c<strong>on</strong>versi<strong>on</strong> efficiency, protein turnover <str<strong>on</strong>g>and</str<strong>on</strong>g> accreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fish<br />

exposed to 24-26 o C for 30 days. In additi<strong>on</strong> to causing a heat shock resp<strong>on</strong>se, higher<br />

temperatures also reduce haemoglobin oxygen affinity thus fur<strong>the</strong>r raising <strong>the</strong> basic metabolic<br />

cost for <strong>the</strong> fish (Lund <str<strong>on</strong>g>and</str<strong>on</strong>g> Tufts, 2003). C<strong>on</strong>sidering <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>rmal stress <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

cage envir<strong>on</strong>ment temperature distributi<strong>on</strong>s at Site 4, Site 6 <str<strong>on</strong>g>and</str<strong>on</strong>g> site 8 which have <strong>the</strong> highest<br />

medians, all above <strong>the</strong> upper optimal range <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 o C at approximately 16 o C, frequently<br />

fluctuating <str<strong>on</strong>g>and</str<strong>on</strong>g> exceeding 20 o C, it can be inferred that <strong>the</strong> fish are experiencing c<strong>on</strong>siderable<br />

<strong>the</strong>rmal stress. The 1 st <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 rd quartile temperature marks for <strong>the</strong>se sites are above <strong>the</strong> lower<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> upper optimal range values at approximately 12.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 o C respectively, meaning that 50<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> time <strong>the</strong> temperatures are found within this range <str<strong>on</strong>g>and</str<strong>on</strong>g> bey<strong>on</strong>d it reach<br />

maximums <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 25 o C. Site 3, Site 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> Site 7 have a similar 1 st quartile mark <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

around 12 o C however <strong>the</strong> 3 rd quartile mark is 2 o C cooler <str<strong>on</strong>g>and</str<strong>on</strong>g> so are <strong>the</strong> maxima at just below<br />

72


24 o C. This cooler upper temperature regime probably coincides with markedly reduced heat<br />

shock resp<strong>on</strong>se thus drawing less energy away from growth.<br />

The most optimal temperatures were observed at <strong>the</strong> sites with <strong>the</strong> deepest nets (~25m vs.<br />

≤14m at remaining sites), Site 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Site 2, where <strong>the</strong> 1 st quartile marks were below <strong>the</strong><br />

optimal range <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 o C at approximately 8 o C <str<strong>on</strong>g>and</str<strong>on</strong>g> 7 o C respectively <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> 3 rd quartiles both<br />

at ~17 o C. Despite maximum temperatures at <strong>the</strong>se sites exceeding 25 o C, <strong>the</strong> lower range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

temperatures, specifically in <strong>the</strong> lower area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cages by comparis<strong>on</strong> with <strong>the</strong> remaining<br />

sites provides <strong>the</strong> fish with more <strong>the</strong>rmoregulatory opportunities. Fish given <strong>the</strong> opportunity<br />

to move between water bodies with temperatures ranging from optimal to near lethal limits,<br />

will seek refuge in <strong>the</strong>rmally optimal waters (Ma<strong>the</strong>ws <str<strong>on</strong>g>and</str<strong>on</strong>g> Berg, 1997). This is <str<strong>on</strong>g>of</str<strong>on</strong>g> significant<br />

importance to aquaculture managers <str<strong>on</strong>g>of</str<strong>on</strong>g> sites providing optimal temperatures below <strong>the</strong>ir cages<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> near lethal temperatures within <strong>the</strong>ir cages such as can be seen at all 8 sites in this study.<br />

Submersible cage systems as well as pumping deeper cold water up through <strong>the</strong> cages in such<br />

situati<strong>on</strong>s are opti<strong>on</strong>s that can significantly improve producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> well-being <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fish<br />

while staying within <strong>the</strong> operating budget. Fur<strong>the</strong>rmore optimal stocking density may need to<br />

be rec<strong>on</strong>sidered if upper cage envir<strong>on</strong>ment temperatures frequently cause fish to seek refuge in<br />

lower parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cage causing overcrowding. Winfree et al. (1998) found increased<br />

temperature, density <str<strong>on</strong>g>and</str<strong>on</strong>g> food deprivati<strong>on</strong> to be interactive <str<strong>on</strong>g>and</str<strong>on</strong>g> additive with regard to fin<br />

erosi<strong>on</strong> in juvenile steelhead, <str<strong>on</strong>g>and</str<strong>on</strong>g> suggested that a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treatments would improve<br />

fish c<strong>on</strong>diti<strong>on</strong>. <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> stress can also increase <strong>the</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> disease in fish exposed to<br />

bacterial pathogens. Schisler et. al (2000) found that elevated temperature from 12.5 o C to 17<br />

o C c<strong>on</strong>tributed significantly to mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> fingerling rainbow trout when exposed to<br />

73


Myxobolus cerebralis (cause <str<strong>on</strong>g>of</str<strong>on</strong>g> fish whirling disease) <str<strong>on</strong>g>and</str<strong>on</strong>g> Flavobacterium psychrophilum<br />

(cause <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial coldwater disease <str<strong>on</strong>g>and</str<strong>on</strong>g> rainbow trout fry syndrome). The increase in<br />

mortality at 17 o C vs. 12.5 o C <str<strong>on</strong>g>of</str<strong>on</strong>g> fish exposed to F. psychrophilum was unexpected, as <strong>the</strong><br />

bacterium is generally found to be more virulent at temperatures below 15 o C. Schisler et al.<br />

(2000) hypo<strong>the</strong>sized that <strong>the</strong> increased metabolic rate <str<strong>on</strong>g>of</str<strong>on</strong>g> both <strong>the</strong> fish <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> pathogen<br />

c<strong>on</strong>tributed to this effect at high temperatures. C<strong>on</strong>sidering Snieszko’s model from (1974) for<br />

fish disease which states that in order for disease to occur, a fish must not <strong>on</strong>ly be exposed to a<br />

pathogen but also a physiological stressor. This may not hold true for all pathogens but may<br />

explain why majority <str<strong>on</strong>g>of</str<strong>on</strong>g> fish populati<strong>on</strong>s exposed to M. cerebralis show no signs <str<strong>on</strong>g>of</str<strong>on</strong>g> disease<br />

(Schisler et al., 2000). Taking this into account it is clear that fish exposed to an envir<strong>on</strong>mental<br />

stressor, such as temperature, as is <strong>the</strong> case at all <strong>the</strong> aquaculture sites in this study, are more<br />

pr<strong>on</strong>e to disease if exposed to a pathogen.<br />

Based <strong>on</strong> <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <strong>on</strong> lake physical, chemical <str<strong>on</strong>g>and</str<strong>on</strong>g> biological characteristics as<br />

well as <strong>on</strong> fish physiology it is evident that not all <strong>the</strong> sites are equally suitable for <strong>the</strong><br />

aquaculture operati<strong>on</strong>s <strong>the</strong>y currently have in place. The two deepest sites, Site 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Site 2<br />

provide deep enough cages to allow <strong>the</strong>ir fish to <strong>the</strong>rmo regulate between <strong>the</strong> below optimal<br />

temperatures at <strong>the</strong> bottom cage <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> hot surface throughout <strong>the</strong> producti<strong>on</strong> cycle. In<br />

additi<strong>on</strong> <strong>the</strong>se sites experience a complete fall turnover suggesting that an anoxic hypolimni<strong>on</strong><br />

is unlike to form at <strong>the</strong>se deep highly exposed sites. Site 3, Site 5, <str<strong>on</strong>g>and</str<strong>on</strong>g> Site 7 have cage<br />

envir<strong>on</strong>ments that are several degrees warmer <strong>on</strong> average than <strong>the</strong> latter sites however <strong>the</strong>y also<br />

have a narrower over all temperature range with lower maximums thus making <strong>the</strong>m suitable<br />

sites regarding temperature. High temperature issues may play a role at Site 4, Site 6 <str<strong>on</strong>g>and</str<strong>on</strong>g> site 8<br />

where majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile within <strong>the</strong> cages lies above <strong>the</strong> optimal range, is<br />

74


narrow as in <strong>the</strong> latter sites <str<strong>on</strong>g>and</str<strong>on</strong>g> reaches maximums close to <str<strong>on</strong>g>and</str<strong>on</strong>g> above 25 o C. The reas<strong>on</strong>s for<br />

<strong>the</strong>se sites having <strong>the</strong> warmest pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles are most likely a smaller influx <str<strong>on</strong>g>of</str<strong>on</strong>g> cool waters due ei<strong>the</strong>r<br />

to wind sheltering, low current flow or water exchange with warmer water masses than at <strong>the</strong><br />

o<strong>the</strong>r sites. Of particular c<strong>on</strong>cern is <strong>the</strong> Site 6 site with no evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> a fall turnover <str<strong>on</strong>g>and</str<strong>on</strong>g> a<br />

well-defined hypolimni<strong>on</strong>. The potential for negative envir<strong>on</strong>mental impacts at this site is<br />

<strong>the</strong>refore higher than at o<strong>the</strong>r sites <str<strong>on</strong>g>and</str<strong>on</strong>g> should be investigated.<br />

3.5. C<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Future Research Ideas<br />

Future research involving o<strong>the</strong>r parameter measurements coupled with high frequency time<br />

series temperature logging such as dissolved oxygen, phosphorous levels, current meters, air<br />

temperature, resuspensi<strong>on</strong> m<strong>on</strong>itoring, sediment compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> redox potential, wind speed<br />

as well as precise producti<strong>on</strong> parameters at <strong>the</strong> sites would reveal significantly more cause <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

effect relati<strong>on</strong>ships between <strong>the</strong> observed temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>and</str<strong>on</strong>g> site suitability. With <strong>the</strong><br />

current rises in climate temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> changing envir<strong>on</strong>ment, year to year m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

water quality with this regard can provide invaluable informati<strong>on</strong> <strong>on</strong> possible future trends at<br />

current sites <str<strong>on</strong>g>and</str<strong>on</strong>g> can be used to assess <strong>the</strong> future suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> new sites. The more parameters<br />

included in <strong>the</strong> m<strong>on</strong>itoring process <strong>the</strong> better <strong>the</strong> resoluti<strong>on</strong> <strong>on</strong> <strong>the</strong> physical, chemical <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

biological processes involved allowing for <strong>the</strong> best mitigati<strong>on</strong> strategies. The sustainability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> Ontario freshwater open net cage aquaculture industry depends solely <strong>on</strong> <strong>the</strong> underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all envir<strong>on</strong>mental effects at a particular site both from <strong>the</strong> envir<strong>on</strong>ment <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> operati<strong>on</strong><br />

itself.<br />

75


Chapter 4. <str<strong>on</strong>g>Role</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Organic</str<strong>on</strong>g> <str<strong>on</strong>g>Degradati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Persistence</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Stable<br />

Isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> Carb<strong>on</strong> (δ 13 C) <str<strong>on</strong>g>and</str<strong>on</strong>g> Nitrogen (δ 15 N) in Aquaculture Waste<br />

4.1 Introducti<strong>on</strong><br />

The receiving envir<strong>on</strong>ment at open-water cage culture sites can be divided into two main<br />

parts: <strong>the</strong> water column that receives <strong>the</strong> dissolved wastes <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> sediment where <strong>the</strong> solid<br />

wastes settle. This study focuses <strong>on</strong> <strong>the</strong> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> isotopes in <strong>the</strong> solid waste fracti<strong>on</strong>.<br />

The settled waste at aquaculture sites is immediately subject to bacterial degradati<strong>on</strong> that<br />

causes <strong>the</strong> fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isotope ratios leading to a shift in <strong>the</strong> signature. The rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> waste through bacterial aerobic <str<strong>on</strong>g>and</str<strong>on</strong>g> anaerobic processes is<br />

determined by <strong>the</strong> sediment envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s, sediment chemistry, bacterial<br />

dynamics as well as overlying water column biochemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> hydrodynamics. The scope <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this study was to assess <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotope ratios in identifying <strong>the</strong> sediment<br />

fracti<strong>on</strong> by determining <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> organic degradati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature <strong>on</strong> <strong>the</strong> isotope<br />

signature in a laboratory setting.<br />

In previous field studies <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N at Ontario cage aquaculture sites<br />

(Salazar-Hermoso, 2007), sediment samples showed a high variability <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N<br />

signatures ranging from depleted to enriched isotope ratios. Salazar-Hermoso (2007) showed<br />

diets formulated with different ingredients have isotope signatures that reflect <strong>the</strong> proporti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ingredients used, in particular <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> enriched fishmeal comp<strong>on</strong>ent. However, <strong>the</strong><br />

isotope values <str<strong>on</strong>g>of</str<strong>on</strong>g> feeds used at open water aquaculture sites did not reflect <strong>the</strong> signature in<br />

sediment samples (Salazar - Hermoso, 2007). It is speculated that <strong>the</strong> breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

organic waste by <strong>the</strong> surrounding envir<strong>on</strong>ment, specifically <strong>the</strong> bacterial degradati<strong>on</strong>, causes<br />

76


differential shifts in <strong>the</strong> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures. McGoldrick et al. (2008) measured bacterial<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> substrate during glucose <str<strong>on</strong>g>and</str<strong>on</strong>g> amm<strong>on</strong>ia uptake by three bacterial strains <str<strong>on</strong>g>and</str<strong>on</strong>g> results<br />

showed higher discriminati<strong>on</strong> against heavier isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N. The depleted<br />

bacterial biomass that forms as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> enters <strong>the</strong> food web may help<br />

explain why field observati<strong>on</strong>s show depleted isotopic signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N<br />

(McGoldrick et al., 2008).<br />

In order to measure <strong>the</strong> potential effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> organic degradati<strong>on</strong> <strong>on</strong> <strong>the</strong><br />

persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotopes in aquaculture waste, an incubati<strong>on</strong> trial <str<strong>on</strong>g>of</str<strong>on</strong>g> fish faeces<br />

collected from a flow through facility was setup with different temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> incubati<strong>on</strong><br />

times. Fish faeces incubated at different times <str<strong>on</strong>g>and</str<strong>on</strong>g> temperatures had significantly different<br />

δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N ratios. Increased incubati<strong>on</strong> time <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature significantly depleted <strong>the</strong><br />

δ 13 C signature <str<strong>on</strong>g>and</str<strong>on</strong>g> significantly enriched <strong>the</strong> δ 15 N signature <str<strong>on</strong>g>of</str<strong>on</strong>g> faeces samples. The results<br />

show <strong>the</strong> need for fur<strong>the</strong>r c<strong>on</strong>trolled laboratory studies with varying parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

degradati<strong>on</strong> to determine fur<strong>the</strong>r fracti<strong>on</strong>ati<strong>on</strong> effects that may help explain <strong>the</strong> observed<br />

variati<strong>on</strong> in <strong>the</strong> field.<br />

4.2. Hypo<strong>the</strong>sis <str<strong>on</strong>g>and</str<strong>on</strong>g> Objectives<br />

The hypo<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter is defined as follows:<br />

Carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen isotope signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> faeces samples will be affected when incubated under<br />

different temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> time intervals, with <strong>the</strong> changes in isotopic signatures correlating with<br />

increased incubati<strong>on</strong> time <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature, respectively.<br />

77


The following methods were used to test this hypo<strong>the</strong>sis:<br />

1. Measure <strong>the</strong> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotope signature <str<strong>on</strong>g>of</str<strong>on</strong>g> faeces collected at <strong>the</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> excreti<strong>on</strong> (<br />

time = 0) from farm raised rainbow trout (Oncorhyncus mykiss).<br />

2. Measure <strong>the</strong> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotope signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same faeces after incubati<strong>on</strong> at<br />

different temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> time intervals.<br />

3. Determine <strong>the</strong> linear, quadratic <str<strong>on</strong>g>and</str<strong>on</strong>g> cubic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> time <strong>on</strong><br />

<strong>the</strong> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> incubated faeces using mixed model statistical analysis.<br />

4.3 Methodology<br />

4.3.1. Set Up <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish Faeces Collecting Tanks, Fish Distributi<strong>on</strong> within Tanks <str<strong>on</strong>g>and</str<strong>on</strong>g> Feeding<br />

Schedule<br />

All fish used for fresh faeces collecti<strong>on</strong> came from a single populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> animas stocked in an<br />

outdoor circular c<strong>on</strong>crete tank at <strong>the</strong> Alma Research Stati<strong>on</strong>, Alma, Ontario. Total <str<strong>on</strong>g>of</str<strong>on</strong>g> six 0.33 m 3<br />

fiberglass tanks were set up indoors, side by side in a single row, <str<strong>on</strong>g>and</str<strong>on</strong>g> equipped with a removable<br />

overflow settling column attached to <strong>the</strong> drain pipe at <strong>the</strong> base <str<strong>on</strong>g>of</str<strong>on</strong>g> each tank. Tanks were<br />

supplied with <strong>the</strong> same single source 8.3 o C water well with a flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 12lpm, an oxygen<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 8ppm <str<strong>on</strong>g>and</str<strong>on</strong>g> a 12hour light: 12h dark cycle. The six tanks were<br />

stocked with approximately 15kg <str<strong>on</strong>g>of</str<strong>on</strong>g> 200-250g <str<strong>on</strong>g>of</str<strong>on</strong>g> fish. Individual tanks received 150g daily<br />

rati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Martin Mills Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ishent commercial feed using an automatic belt feeder from 9am to<br />

5pm. Fish were acclimated <str<strong>on</strong>g>and</str<strong>on</strong>g> average daily dry weight faeces producti<strong>on</strong> from each tank was<br />

calculated over a period <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 weeks from November 19, 2008 – February 21, 2009.<br />

78


Three days prior to <strong>the</strong> collecti<strong>on</strong> day <strong>on</strong> February 22, <strong>the</strong> feed rati<strong>on</strong>s were increased to 200g in<br />

order to achieve maximum satiety <str<strong>on</strong>g>and</str<strong>on</strong>g> maximize fecal matter producti<strong>on</strong>. After feeding, <strong>on</strong> <strong>the</strong><br />

last day, <strong>the</strong> tanks were cleaned out <str<strong>on</strong>g>of</str<strong>on</strong>g> any leftover feed <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> collecting cylinder was attached<br />

to <strong>the</strong> overflow column 3 hours from <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> feeding, 8:00pm, Feb 21. Faeces settled in <strong>the</strong><br />

collecting cylinder from 8:00pm, Feb 21, until 8:00pm, Feb 22, 2009.<br />

4.3.2. Faeces Incubati<strong>on</strong> Preparati<strong>on</strong><br />

At 8:00pm, Feb 22, collecting cylinders with faeces from each <str<strong>on</strong>g>of</str<strong>on</strong>g> 6 tanks were assigned a<br />

r<str<strong>on</strong>g>and</str<strong>on</strong>g>om order <str<strong>on</strong>g>of</str<strong>on</strong>g> preparati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequently removed in that order from <strong>the</strong> tank settling<br />

columns for faeces preparati<strong>on</strong>. All equipment used to h<str<strong>on</strong>g>and</str<strong>on</strong>g>le <strong>the</strong> faeces was sterilized with<br />

ethyl alcohol <str<strong>on</strong>g>and</str<strong>on</strong>g> rinsed with dei<strong>on</strong>ised water. The following methodology is described for <strong>on</strong>e<br />

block <str<strong>on</strong>g>of</str<strong>on</strong>g> faeces <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> remaining blocks were prepared using <strong>the</strong> same method.<br />

Each block <str<strong>on</strong>g>of</str<strong>on</strong>g> faeces had <strong>the</strong> supernatant removed using a siph<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> remaining 240ml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

settled wet faeces was transferred into a 500ml graduated beaker. The 240ml <str<strong>on</strong>g>of</str<strong>on</strong>g> settled wet<br />

samples was inoculated with 0.025ml <str<strong>on</strong>g>of</str<strong>on</strong>g> N3000 Bactapur commercial bacteria culture <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

homogenized using a magnetic stirrer for 5 minutes. After inoculati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> homogenizati<strong>on</strong>, <strong>the</strong><br />

block sample was split into 4 subsamples <str<strong>on</strong>g>of</str<strong>on</strong>g> 60ml each. The 4 subsamples were r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly<br />

assigned to each <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 temperature treatments.<br />

79


Each r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly assigned 60ml subsample was fur<strong>the</strong>r split into six 10ml samples using 20ml test<br />

tubes. The samples were <strong>the</strong>n topped <str<strong>on</strong>g>of</str<strong>on</strong>g>f with 8ml <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh well water, identical to <strong>on</strong>e used <strong>the</strong><br />

in <strong>the</strong> tanks, <str<strong>on</strong>g>and</str<strong>on</strong>g> sealed with para-film. A pinhole was made in <strong>the</strong> para-film <str<strong>on</strong>g>of</str<strong>on</strong>g> each test tube to<br />

allow minimum gas exchange. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 6 samples was <strong>the</strong>n r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly assigned to 6<br />

incubati<strong>on</strong> time intervals: 0hrs, 48hrs, 7days, 14days, 21days, <str<strong>on</strong>g>and</str<strong>on</strong>g> 35days at each temperature.<br />

The above preparati<strong>on</strong> was repeated for <strong>the</strong> remaining 5 block samples <str<strong>on</strong>g>of</str<strong>on</strong>g> faeces in <strong>the</strong> r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly<br />

assigned order. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 144 samples <str<strong>on</strong>g>of</str<strong>on</strong>g> faeces were prepared. Refer to Figure 17 below for<br />

experimental design.<br />

Figure 17. Incubati<strong>on</strong> experimental design setup, showing faecal sample separati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

treatment allocati<strong>on</strong>.<br />

80


4.3.3. <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> Incubati<strong>on</strong> Set Up<br />

Four treatment temperatures were chosen as follows: 4 o C, 8.5 o C, 16 o C, 25 o C. <str<strong>on</strong>g>Temperature</str<strong>on</strong>g>s<br />

were maintained using two incubators <str<strong>on</strong>g>and</str<strong>on</strong>g> two water baths set up, in a <strong>the</strong>rmostat regulated<br />

recirculati<strong>on</strong> room at <strong>the</strong> Alma Research Stati<strong>on</strong>. <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 o C was maintained using a<br />

chilling incubator. <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 o C was maintained in a water bath using a flow through <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

well water through a trough at a c<strong>on</strong>stant 8 o C. 16 o C was maintained in a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ing water bath at<br />

room temperature set to 16 o C. 25 o C was maintained using an incubator set to 25 o C.<br />

Test tubes <str<strong>on</strong>g>of</str<strong>on</strong>g> samples were placed in four test tube racks, each designated for <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> four<br />

temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> each rack was placed in a closed plastic bin with vents to prevent light entry.<br />

The four bins c<strong>on</strong>taining 36 test tubes each, 6 blocks <str<strong>on</strong>g>and</str<strong>on</strong>g> 6 incubati<strong>on</strong> times were <strong>the</strong>n assigned<br />

to <strong>the</strong>ir respective temperature treatment in r<str<strong>on</strong>g>and</str<strong>on</strong>g>om order at 10pm, February 22, 2009.<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> for each treatment was m<strong>on</strong>itored using HOBO ware temperature loggers placed<br />

within <strong>the</strong> incubati<strong>on</strong> envir<strong>on</strong>ment which recorded real time incubati<strong>on</strong> temperature every 10<br />

minutes.<br />

4.3.4. Sample Collecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Preparati<strong>on</strong> for Stable Isotope Analysis<br />

Samples at time <str<strong>on</strong>g>of</str<strong>on</strong>g> excreti<strong>on</strong> (0 hours) were taken <strong>on</strong> ice to <strong>the</strong> Aquaculture lab at <strong>the</strong> University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph for stable isotope analysis preparati<strong>on</strong>. The samples were dried at 60 o C for 24 hours,<br />

grounded to a fine powder <str<strong>on</strong>g>and</str<strong>on</strong>g> stored for analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N at <strong>the</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Waterloo.<br />

81


The remaining samples were collected <str<strong>on</strong>g>and</str<strong>on</strong>g> prepared using <strong>the</strong> same method at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir<br />

respective incubati<strong>on</strong> intervals.<br />

4.3.5. Feed samples preparati<strong>on</strong><br />

Feed samples <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 grams were collected from each automatic belt feeder at 9am February 21,<br />

dried at 60 o C for 24hrs <str<strong>on</strong>g>and</str<strong>on</strong>g> ground to a fine powder.<br />

4.3.6. Statistical Analysis<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen isotope values was d<strong>on</strong>e using <strong>the</strong> GLM <str<strong>on</strong>g>and</str<strong>on</strong>g> Mixed Model<br />

procedures Statistical Analysis S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware (SAS) versi<strong>on</strong> 9.1 (SAS Institute Inc., Cary, NC, USA).<br />

A mixed model analysis using orthog<strong>on</strong>al c<strong>on</strong>trasts was performed to determine linear, quadratic<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> cubic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> time.<br />

4.4 Results<br />

4.4.1. Carb<strong>on</strong> Isotope (δ 13 C) Results<br />

Isotope values for δ 13 C varied from -20.68 to -22.80‰ as shown in figures 17, 18 <str<strong>on</strong>g>and</str<strong>on</strong>g> 19. There<br />

was no significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tanks (block effect) <strong>on</strong> <strong>the</strong> δ 13 C as seen in table 11 below. There<br />

was no interacti<strong>on</strong> between incubati<strong>on</strong> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> time as shown in table 11. Incubati<strong>on</strong><br />

time <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature had a str<strong>on</strong>gly significant linear effect (LE) <str<strong>on</strong>g>of</str<strong>on</strong>g> depleti<strong>on</strong> <strong>on</strong> <strong>the</strong> δ 13 C<br />

isotope signature. Refer to table 11 <str<strong>on</strong>g>and</str<strong>on</strong>g> 12 <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed effects <str<strong>on</strong>g>and</str<strong>on</strong>g> orthog<strong>on</strong>al c<strong>on</strong>trasts <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C.<br />

82


At 25 o C, time has a quadratic effect (QE) <str<strong>on</strong>g>of</str<strong>on</strong>g> depleti<strong>on</strong> <strong>on</strong> <strong>the</strong> δ 13 C signature shown in table 12.<br />

There were no significant effects <str<strong>on</strong>g>of</str<strong>on</strong>g> time or temperature at 4° C or at 48 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong><br />

time.<br />

Overall <strong>the</strong> δ 13 C depleted slightly with time <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature. Refer to table 13 <str<strong>on</strong>g>of</str<strong>on</strong>g> least square<br />

means (LSM) <str<strong>on</strong>g>and</str<strong>on</strong>g> figures 17, 18 <str<strong>on</strong>g>and</str<strong>on</strong>g> 19 showing wireframe plots <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C over time <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

temperature.<br />

83


Figure18. Wireframe plot <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C signature change over time (h) <str<strong>on</strong>g>and</str<strong>on</strong>g> incubati<strong>on</strong> temperature<br />

( o C).<br />

84


Figure 19. Plot <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> change in LSM <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C over temperatures ( o C).<br />

85


Figure 20. Plot <str<strong>on</strong>g>of</str<strong>on</strong>g> change in <strong>the</strong> LSM <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C signature over time (hours).<br />

86


Table 11. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed effects <strong>on</strong> <strong>the</strong> δ 13 C isotope signatures<br />

Effect F value Pr > F<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> 10.67 0.0005 *<br />

Tank 0.34 0.8806<br />

Time 10.26


Table 12. Orthog<strong>on</strong>al c<strong>on</strong>trasts <str<strong>on</strong>g>of</str<strong>on</strong>g> mean C δ 13 isotope values between incubati<strong>on</strong> temperatures<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> time intervals, showing significance <str<strong>on</strong>g>of</str<strong>on</strong>g> linear (L), quadratic (Q) <str<strong>on</strong>g>and</str<strong>on</strong>g> cubic (C) effects <str<strong>on</strong>g>of</str<strong>on</strong>g> time<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> temperature<br />

Effect F-value Pr>F<br />

L. time 32.69


Table 13. The estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> LSM <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C values corresp<strong>on</strong>ding to individual <str<strong>on</strong>g>and</str<strong>on</strong>g> combined effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> time<br />

Effect <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> (C) Time (hrs) LSM estimate<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> 4 -21.3193<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> 8 -21.4515<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> 16 -21.6526<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> 25 -21.7736<br />

Time 48 -21.2849<br />

Time 168 -21.4136<br />

Time 336 -21.5663<br />

Time 504 -21.7506<br />

Time 840 -21.7309<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 4 48 -21.1915<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 4 168 -21.0626<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 4 336 -21.3350<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 4 504 -21.5524<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 4 840 -21.4550<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 8 48 -21.2267<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 8 168 -21.3914<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 8 336 -21.2601<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 8 504 -21.7050<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 8 840 -21.6743<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 16 48 -21.3745<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 16 168 -21.5333<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 16 336 -21.6869<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 16 504 -21.8282<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 16 840 -21.8400<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 25 48 -21.3467<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 25 168 -21.6669<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 25 336 -21.9833<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 25 504 -21.9169<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 25 840 -21.9544<br />

89


4.4.2 Nitrogen Isotope Results<br />

The δ 15 N values varied from 3.69 to 9.71‰. There was a significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> time,<br />

temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> tank (block) <strong>on</strong> <strong>the</strong> δ 15 N signature as shown in Table 14 <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed effects <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

figures 20, 21, <str<strong>on</strong>g>and</str<strong>on</strong>g> 22 below. In additi<strong>on</strong> <strong>the</strong>re was a significant interacti<strong>on</strong> between <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> time <strong>on</strong> δ 15 N as shown in table 15 <str<strong>on</strong>g>and</str<strong>on</strong>g> 16 <str<strong>on</strong>g>of</str<strong>on</strong>g> orthog<strong>on</strong>al LSM means below.<br />

The linear effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature is significant at all times except 48 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> time is str<strong>on</strong>gly significant at 25 o C. Refer to table 15 <str<strong>on</strong>g>of</str<strong>on</strong>g> orthog<strong>on</strong>al c<strong>on</strong>trasts below. At<br />

25 o C, time has a cubic effect <strong>on</strong> <strong>the</strong> δ 15 N signature as shown in table 15.<br />

90


Figure 21. Wireframe plot <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> δ 15 N signature change over time (hours) <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature<br />

( o C).<br />

91


Figure 22. Plot <str<strong>on</strong>g>of</str<strong>on</strong>g> change in LSM <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 15 N signature over temperature ( o C).<br />

92


Figure 23. Plot <str<strong>on</strong>g>of</str<strong>on</strong>g> change in LSM <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 15 N signature over time (hours).<br />

93


Table 14. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed effects <strong>on</strong> <strong>the</strong> δ 15 N isotope signature<br />

Effect F value Pr > F<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> 32.36 > 0.0001*<br />

Tank 6.89 0.0016 *<br />

Time 15.63 < 0.0001 *<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> x Time 4.94


Table 15. Orthog<strong>on</strong>al c<strong>on</strong>trasts <str<strong>on</strong>g>of</str<strong>on</strong>g> mean δ 15 N isotope values between incubati<strong>on</strong> temperatures<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> time intervals, showing significance <str<strong>on</strong>g>of</str<strong>on</strong>g> linear (L), quadratic (Q) <str<strong>on</strong>g>and</str<strong>on</strong>g> cubic (CE) effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

time <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature <strong>on</strong> <strong>the</strong> δ 15 N signature<br />

Effect F-value Pr>F<br />

L. time 60.09 < 0.0001 *<br />

Q. time 0.03 0.8671<br />

C. time 2.75 0.1008<br />

L. temperature 96.63 < 0.0001 *<br />

Q. temperature 0.32 0.5818<br />

C. temperature 0.05 0.8304<br />

L. time at 4C 0.24 0.6220<br />

L. time at 8C 0.24 0.6282<br />

L. time at 16C 1.12 0.2935<br />

L. time at 25C 19.91 < 0.0001 *<br />

Q. time at 4C 0.78 0.3802<br />

Q. time at 8C 0.21 0.6501<br />

Q. time at 16C 1.89 0.1728<br />

Q. time at 25C 2.12 0.1484<br />

C. time at 4C 0.24 0.6220<br />

C. time at 8C 0.24 0.6282<br />

C. time at 16C 1.12 0.2935<br />

C. time at 25C 19.91 < 0.0001 *<br />

L. temperature at 48 hours 0.51 0.4769<br />

L. temperature at 168 hours 20.31 < 0.0001 *<br />

L. temperature at 336 hours 17.17 < 0.0001 *<br />

L. temperature at 504 hours 14.18 0.0003 *<br />

L. temperature at 840 hours 99.37 < 0.0001 *<br />

Q. temperature at 48 hours 0.16 0.6917<br />

Q. temperature at 168 hours 4.02 0.0480 *<br />

Q. temperature at 336 hours 0.57 0.4508<br />

Q. temperature at 504 hours 4.85 0.0301 *<br />

Q. temperature at 840 hours 1.06 0.3056<br />

C. temperature at 48 hours 0.39 0.5364<br />

C. temperature at 168 hours 0.20 0.6551<br />

C. temperature at 336 hours 0.35 0.5546<br />

C. temperature at 504 hours 0.84 0.3629<br />

C. temperature at 840 hours 0.90 0.3457<br />

*significant at 95% c<strong>on</strong>fidence level (p


Table 16. Estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> LSM <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 15 N isotope values corresp<strong>on</strong>ding to individual <str<strong>on</strong>g>and</str<strong>on</strong>g> combined<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> time<br />

Effect <str<strong>on</strong>g>Temperature</str<strong>on</strong>g> (C) Time (hrs) LSM estimate<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> 4 5.5002<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> 8 5.7226<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> 16 6.1477<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> 25 6.7602<br />

Time 48 5.5171<br />

Time 168 5.8664<br />

Time 336 6.0270<br />

Time 504 6.1070<br />

Time 840 6.6459<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 4 48 5.3342<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 4 168 5.5115<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 4 336 5.6417<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 4 504 5.5354<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 4 840 5.4783<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 8 48 5.5883<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 8 168 5.5335<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 8 336 5.6022<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 8 504 5.8250<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 8 840 5.0639<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 16 48 5.5374<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 16 168 5.6833<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 16 336 6.1276<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 16 504 6.6386<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 16 840 6.7517<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 25 48 5.6083<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 25 168 6.7372<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 25 336 6.7367<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 25 504 6.4291<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> * Time 25 840 8.2897<br />

96


4.5 Discussi<strong>on</strong><br />

Results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> incubati<strong>on</strong> trials revealed significant effects <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> degradati<strong>on</strong> time<br />

<strong>on</strong> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures c<strong>on</strong>sistent with results in <strong>the</strong> literature (Kelly <str<strong>on</strong>g>and</str<strong>on</strong>g> Chynoweth,<br />

1981; Cole et al., 2002; Ostrom et al., 1997; Benner et al., 1987). It should be noted that LSM <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N at time zero (0h) were slightly depleted compared to values <str<strong>on</strong>g>of</str<strong>on</strong>g> feeds used at active<br />

sites <str<strong>on</strong>g>and</str<strong>on</strong>g> slightly more enriched than active site sediments. This can be explained by comparing<br />

<strong>the</strong> sample sources. Settled faeces for incubati<strong>on</strong> were collected within 24 hours using a settling<br />

column (minimum depleti<strong>on</strong> from fish digesti<strong>on</strong>) whereas samples from active sites collected<br />

using an Ekman grab, were more exposed to post excreti<strong>on</strong>, aerobic degradati<strong>on</strong>, break up <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

leaching accelerated by water currents leading to a depleted signature (Benner et al., 1987;<br />

Mancinelli <str<strong>on</strong>g>and</str<strong>on</strong>g> White, 2000). The δ 13 C isotopes showed less variati<strong>on</strong> than δ 15 N suggesting<br />

greater isotope discriminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen during <strong>the</strong> degradati<strong>on</strong> process or a higher rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

substrate turnover, as c<strong>on</strong>firmed by previous studies using δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N as integrators <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir<br />

respective cycles (Koike <str<strong>on</strong>g>and</str<strong>on</strong>g> Hattori, 1978; McGoldrick et al., 2008; Meyers <str<strong>on</strong>g>and</str<strong>on</strong>g> Ishiwatari,<br />

1993; Ostrom et al., 1997; Seitzinger, 2009).<br />

The δ 13 C signature <str<strong>on</strong>g>of</str<strong>on</strong>g> samples prior to incubati<strong>on</strong> (time = 0h) varied from -20.78 to -22.50‰<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> were mostly within <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> values found in sediment samples found at active sites<br />

from -22.55 to -20.94‰ as shown in Table 2 in Chapter 2. Compared to δ 13 C signatures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

feeds used at active sites (range <str<strong>on</strong>g>of</str<strong>on</strong>g> -21.07 to -17.32‰.), samples at time 0hrs were generally<br />

slightly depleted with some overlap in values around -21.00‰. However, after 840h <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

incubati<strong>on</strong>, δ 13 C values became depleted relative to feed values, <str<strong>on</strong>g>and</str<strong>on</strong>g> were in <strong>the</strong> minimum value<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> active sediment samples at around -22.00‰, with individual values being more depleted<br />

97


than <strong>the</strong> minimum for active sites. All δ 13 C values prior to <str<strong>on</strong>g>and</str<strong>on</strong>g> after incubati<strong>on</strong>, were within <strong>the</strong><br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> inactive site sediment samples (-26.34 up to -18.96‰).<br />

Salazar - Hermoso (2007) reported isotope values <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C in 3 experimentally formulated diets<br />

made with varying proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> plant <str<strong>on</strong>g>and</str<strong>on</strong>g> animal ingredients as well as a commercial diet.<br />

According to Salazar 2007, <strong>the</strong> experimental δ 13 C diet signatures (-20.78‰, -19.55‰, -19.86‰)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> commercial δ 13 C signatures (21.08‰) were very similar <str<strong>on</strong>g>and</str<strong>on</strong>g> within <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> δ 13 C<br />

values measured in present incubati<strong>on</strong> study (commercial feed values: -18.77‰,-22.19‰; feeds<br />

from active sites: -21.07‰,-17.32‰). In additi<strong>on</strong>, Salazar – Hermoso (2007) , collected faeces<br />

produced from each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> four diets above, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C for <strong>the</strong> experimental diets<br />

ranged from -20.80 to -21.76‰ which is very similar to <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> values obtained in incubated<br />

samples <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly slightly depleted compared to average feed values found in this study.<br />

By c<strong>on</strong>trast <strong>the</strong> commercial diet used by Salazar-Hermoso (2007), produced unexpectedly<br />

depleted values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> δ 13 C for <strong>the</strong> faeces samples, with an average value <str<strong>on</strong>g>of</str<strong>on</strong>g> -23.22‰ being more<br />

depleted in comparis<strong>on</strong> to <strong>the</strong> incubated feed samples used for this experiment. However, feed<br />

sampled from an active site by Salazar –Hermoso (2007) produced a δ 13 C value <str<strong>on</strong>g>of</str<strong>on</strong>g> -20.12‰<br />

which is more c<strong>on</strong>sistent with <strong>the</strong> feed tested in this study (-18.77‰,-22.19‰) <str<strong>on</strong>g>and</str<strong>on</strong>g> slightly<br />

depleted compared to <strong>the</strong> faeces prior to <strong>the</strong> incubati<strong>on</strong> (-20.53‰, -22.5‰). Compared to δ 13 C<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment samples collected by Salazar- Hermoso (2007) an active site, δ 13 C values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

faeces incubated in this study were enriched. Kullman et al. (2009), recorded similar feed <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

faeces δ 13 C values with ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> -21.25‰,-19.31‰ <str<strong>on</strong>g>and</str<strong>on</strong>g> a single value <str<strong>on</strong>g>of</str<strong>on</strong>g> 21.47‰, respectively.<br />

98


The δ 15 N value <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> samples showed a greater fracti<strong>on</strong>ati<strong>on</strong> shift toward enrichment<br />

than carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> at time zero (0h) had a range <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.69 to 5.42‰ <str<strong>on</strong>g>and</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.92 ‰ which<br />

closely reflects <strong>the</strong> range <str<strong>on</strong>g>and</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 15 N values <str<strong>on</strong>g>of</str<strong>on</strong>g> feed used, 4.93‰ to 8.3‰ <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.61‰<br />

respectively. The mean δ 15 N value at time zero (0h) <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.92‰, falls within <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> active<br />

(3.27 - 5.87‰) <str<strong>on</strong>g>and</str<strong>on</strong>g> inactive (4.02 - 12.12‰) aquaculture site sediment samples, described in<br />

Chapter 2, as well as <strong>the</strong> active sites commercial feed range <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.89 up to 9.66‰.<br />

In general, δ 15 N values prior to incubati<strong>on</strong> were most similar <str<strong>on</strong>g>and</str<strong>on</strong>g> slightly enriched relative to<br />

active site sediment samples (mean 4.66‰) <str<strong>on</strong>g>and</str<strong>on</strong>g> depleted compared to inactive site sediment<br />

samples (mean 7.35‰) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> feed from active sites (mean 6.17‰). The δ 15 N values recorded<br />

by Salazar 2007 (unpublished data) for formulated diets (9.35‰, 7.09‰, 5.27‰) <str<strong>on</strong>g>and</str<strong>on</strong>g> a<br />

commercial diet (6.12‰) were more enriched than δ 15 N values prior to incubati<strong>on</strong>.<br />

In additi<strong>on</strong> δ 15 N values <str<strong>on</strong>g>of</str<strong>on</strong>g> faeces generated from <strong>the</strong> formulated diet (9.28‰, 8.08‰, 6.37‰)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> commercial diets (8.74‰) Salazar – Hermoso (2007) were more enriched than incubati<strong>on</strong><br />

samples at time zero (4.92‰) obtained in current study. Incubated samples were more similar<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> slightly enriched compared to δ 15 N values <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment samples collected by Salazar –<br />

Hermoso 2007 at an active site, range <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.63-4.26 ‰ <str<strong>on</strong>g>and</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.06‰.<br />

However, after 840hrs <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> <strong>the</strong> δ 15 N values had a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 6.71‰ <str<strong>on</strong>g>and</str<strong>on</strong>g> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.33 to<br />

9.71‰. The δ 15 N values after incubati<strong>on</strong> are even more enriched compared to mean active site<br />

sediment sample values <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.66‰ <str<strong>on</strong>g>and</str<strong>on</strong>g> closer to inactive site sample δ 15 N values than before<br />

incubati<strong>on</strong>, although still slightly depleted. Also, <strong>the</strong> mean δ 15 N value at 840h was more<br />

99


enriched than mean <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> feed δ 15 N values used in <strong>the</strong> incubati<strong>on</strong> experiment (5.61‰) <str<strong>on</strong>g>and</str<strong>on</strong>g> at<br />

active sites (6.17‰) as discussed in chapter 2. Compared to δ 15 N values <str<strong>on</strong>g>of</str<strong>on</strong>g> formulated diets<br />

(9.28‰, 8.08‰, 6.37‰) <str<strong>on</strong>g>and</str<strong>on</strong>g> commercial feed (8.74‰) used by Salazar – Hermoso 2007 , with<br />

<strong>the</strong> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e diet formulated with low fishmeal c<strong>on</strong>tent (15%), mean δ 15 N values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

incubati<strong>on</strong> samples were depleted, however samples at 840h <str<strong>on</strong>g>and</str<strong>on</strong>g> 25 o C were very similar ranging<br />

from 7.31 to 9.71‰.<br />

All incubati<strong>on</strong> samples were enriched in δ 15 N compared to mean δ 15 N values <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment<br />

samples collected at an active site (4.06‰) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol sites in Lake Wolsey (3.93‰). Compared<br />

to δ 15 N values <str<strong>on</strong>g>of</str<strong>on</strong>g> feed (6.34‰, 6.84‰, 7.35‰) <str<strong>on</strong>g>and</str<strong>on</strong>g> faeces (7.18‰) measured by Kullman et al.<br />

(2009), incubati<strong>on</strong> samples at time zero (mean 4.92‰) were depleted <str<strong>on</strong>g>and</str<strong>on</strong>g> over <strong>the</strong> course <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

incubati<strong>on</strong> became very similar (mean 6.71‰), with values at 840h <str<strong>on</strong>g>and</str<strong>on</strong>g> 25 o C becoming more<br />

enriched (mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 8.38‰).<br />

The observed enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> δ 15 N during biodegradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish faeces was likely primarily<br />

caused by <strong>the</strong> rate <str<strong>on</strong>g>and</str<strong>on</strong>g> fracti<strong>on</strong>ati<strong>on</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nitrificati<strong>on</strong> reacti<strong>on</strong> (as it requires oxygen, it is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten <strong>the</strong> rate limiting step in c<strong>on</strong>verting amm<strong>on</strong>ia to nitrogen gas) <str<strong>on</strong>g>and</str<strong>on</strong>g> to a lesser extent<br />

denitrificati<strong>on</strong>. Erler <str<strong>on</strong>g>and</str<strong>on</strong>g> Eyre (2010) quantified nitrogen process rates using δ 15 N in a<br />

c<strong>on</strong>structed wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> treating domestic effluent <str<strong>on</strong>g>and</str<strong>on</strong>g> results showed an enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> all nutrient<br />

compartments which was postulated to be have been driven by high rates <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrificati<strong>on</strong><br />

enriching <strong>the</strong> residual pool <str<strong>on</strong>g>of</str<strong>on</strong>g> NH + which is <strong>the</strong>n mineralized <str<strong>on</strong>g>and</str<strong>on</strong>g> incorporated into <strong>the</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

4<br />

sediment, plants <str<strong>on</strong>g>and</str<strong>on</strong>g> fauna. Similarly in an experimental finfish aquaculture farm at <strong>the</strong><br />

Experimental Lakes Area in north-western Ontario, Kullman et al. (2009) found that introduced<br />

100


aquaculture waste caused a shift in δ 15 N <str<strong>on</strong>g>of</str<strong>on</strong>g> littoral, pelagic, <str<strong>on</strong>g>and</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>undal invertebrates <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

minnows towards <strong>the</strong> signature <str<strong>on</strong>g>of</str<strong>on</strong>g> fish feed, where minnows sampled had δ 15 N values closest to<br />

<strong>the</strong> feed.<br />

Nitrificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> denitrificati<strong>on</strong> reacti<strong>on</strong> rates <strong>the</strong>mselves depend <strong>on</strong> envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s<br />

such as organic substrate type <str<strong>on</strong>g>and</str<strong>on</strong>g> fluxes <str<strong>on</strong>g>and</str<strong>on</strong>g> loading <str<strong>on</strong>g>of</str<strong>on</strong>g> new substrate, lighting, temperature, pH,<br />

redox potential, available oxygen, relative abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r microbes such as sulfur reducing<br />

bacteria, methanogens <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r chemotrophs. Populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegrading microbial<br />

communities are not well understood however it is known for example that some microbes such<br />

as sulfur reducing bacteria can change <strong>the</strong> biodegradati<strong>on</strong> envir<strong>on</strong>ment through <strong>the</strong> release <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

toxic hydrogen sulfide which inhibits nitrifying bacteria (Joye <str<strong>on</strong>g>and</str<strong>on</strong>g> Hollibaugh, 1995). Joye <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Hollibaugh (1995) found that prior hydrogen sulfide exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> estuarine sediment bacteria<br />

reduced nitrificati<strong>on</strong> for minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 h <str<strong>on</strong>g>and</str<strong>on</strong>g> that nitrificati<strong>on</strong> rates resume slowly. In <strong>the</strong><br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiting factors, coupled nitrificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> denitrificati<strong>on</strong> are major degradati<strong>on</strong><br />

pathways in which <strong>the</strong> microbes create a chain reacti<strong>on</strong> where <strong>the</strong> bacteria Nitrosom<strong>on</strong>as<br />

+ -<br />

oxidizes NH 4 (aq) to NO 2 (aq) , <strong>the</strong> substrate for <strong>the</strong> next bacteria, Nitrobacter, thus providing<br />

energy for cell growth through carb<strong>on</strong> fixati<strong>on</strong>, which is exactly what occurs at <strong>the</strong> sediment<br />

water interface <str<strong>on</strong>g>of</str<strong>on</strong>g> settled aquaculture waste (Lehmann et al., 2003; Reinhardt et al., 2006;<br />

- -<br />

Lehmann et al., 2004). Nitrobacter subsequently oxidizes NO 2 (aq) to <strong>the</strong> less toxic NO 3 (aq) which<br />

is in turn reduced to N 2(g) by <strong>the</strong> microbe Pseudom<strong>on</strong>as.<br />

Overlying water supplies <strong>the</strong> top sediment layer with oxygen <str<strong>on</strong>g>and</str<strong>on</strong>g> sediment oxygen penetrating<br />

depth varies depending <strong>on</strong> sediment porosity, type <str<strong>on</strong>g>and</str<strong>on</strong>g> grain, oxygen saturati<strong>on</strong>, temperature <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

101


water flow. It has been shown that nitrifying <str<strong>on</strong>g>and</str<strong>on</strong>g> to a lesser extent denitrifying bacteria<br />

discriminate between <strong>the</strong> heavy δ 15 N <str<strong>on</strong>g>and</str<strong>on</strong>g> light δ 14 N nitrogen isotope (Lehmann et al., 2003;<br />

Lehmann et al., 2004; Delwiche <str<strong>on</strong>g>and</str<strong>on</strong>g> Steyn, 1970; Franco-Nava et al., 2004; MacGregor et al.,<br />

2001; Macko et al., 1984; Mariotti et al., 1981; Peters et al., 1978). Results from previous<br />

studies showed that an enriched residual fracti<strong>on</strong> is formed following nitrificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

denitrificati<strong>on</strong> reacti<strong>on</strong>s (H<str<strong>on</strong>g>and</str<strong>on</strong>g>ley <str<strong>on</strong>g>and</str<strong>on</strong>g> Raven, 1992; Barford et al., 1999; Casciotti et al., 2003;<br />

Lehmann et al., 2004). The results show that although <strong>the</strong> bacterial biomass becomes depleted as<br />

a result <str<strong>on</strong>g>of</str<strong>on</strong>g> assimilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lighter isotope into bacterial biomass at a faster rate, <strong>the</strong> released<br />

nitrogen gas <str<strong>on</strong>g>and</str<strong>on</strong>g> left over amm<strong>on</strong>ia at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> denitrificati<strong>on</strong> is also depleted (Peters et al.<br />

1978), resulting in overall enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> residual fracti<strong>on</strong>. These dynamic relati<strong>on</strong>ships<br />

between microbes that are affected by a multitude <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental factors <str<strong>on</strong>g>and</str<strong>on</strong>g> heavy δ 15 N<br />

isotope discriminati<strong>on</strong> are most probably resp<strong>on</strong>sible for <strong>the</strong> large variati<strong>on</strong> in nitrogen isotope<br />

signatures observed in <strong>the</strong> field as opposed to <strong>the</strong> uniform results obtained from <strong>the</strong> c<strong>on</strong>trolled<br />

degradati<strong>on</strong> experiment.<br />

Fur<strong>the</strong>rmore, comparing <strong>the</strong> more sheltered <str<strong>on</strong>g>and</str<strong>on</strong>g> hypolimnetically isolated decommissi<strong>on</strong>ed sites<br />

δ 15 N signature to those <str<strong>on</strong>g>of</str<strong>on</strong>g> active sites, it can be argued that <strong>the</strong> highly enriched δ 15 N values at <strong>the</strong><br />

decommissi<strong>on</strong>ed sites could be <strong>the</strong> result <str<strong>on</strong>g>of</str<strong>on</strong>g> a well-established, prol<strong>on</strong>ged, relatively undisturbed<br />

biodegradati<strong>on</strong> (via nitrificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> denitrificati<strong>on</strong>) that resulted in highly localized enriched<br />

residual sediment fracti<strong>on</strong>s. Depending <strong>on</strong> <strong>the</strong> bathymetry <str<strong>on</strong>g>and</str<strong>on</strong>g> benthic community, sediments<br />

directly next to <strong>the</strong>se highly enriched fracti<strong>on</strong>s may well have been disturbed through<br />

resuspensi<strong>on</strong> or benthic fauna activity resulting in a disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> established microbial<br />

102


community <str<strong>on</strong>g>and</str<strong>on</strong>g> mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sediment, preventing fur<strong>the</strong>r enrichment <str<strong>on</strong>g>and</str<strong>on</strong>g> leading to leaching<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> possible depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> δ 15 N signature.<br />

On <strong>the</strong> c<strong>on</strong>trary, at <strong>the</strong> more exposed active sites, fresh sediment layers <str<strong>on</strong>g>of</str<strong>on</strong>g> faeces are<br />

c<strong>on</strong>tinuously added, resuspensi<strong>on</strong> is more frequent <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> bottom is more likely to be disturbed<br />

during farm operati<strong>on</strong>s, resulting in higher rates <str<strong>on</strong>g>of</str<strong>on</strong>g> leaching, lower rates <str<strong>on</strong>g>of</str<strong>on</strong>g> denitrificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong>refore a more depleted <str<strong>on</strong>g>and</str<strong>on</strong>g> less variable δ 15 N signature compared to <strong>the</strong> decommissi<strong>on</strong>ed<br />

sites. It should also be c<strong>on</strong>sidered that more eutrophic envir<strong>on</strong>ments <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>ments with<br />

well-established nitrifying <str<strong>on</strong>g>and</str<strong>on</strong>g> denitrifying microbial communities (optimal temperatures closer<br />

to 25-30 o C) will resp<strong>on</strong>d quicker <str<strong>on</strong>g>and</str<strong>on</strong>g> assimilate amm<strong>on</strong>ia faster than oligotrophic envir<strong>on</strong>ments<br />

(especially colder <strong>on</strong>es) <strong>the</strong>refore suggesting <strong>the</strong> argument that although well flushed sites will<br />

have lower sedimentati<strong>on</strong> rates directly beneath <strong>the</strong>ir cages, <strong>the</strong> waste that does settle will<br />

degrade slower than at a eutrophic site with higher sedimentati<strong>on</strong> rates. This may partially<br />

explain <strong>the</strong> reas<strong>on</strong> why some sites that are eutrophic do not accumulate waste beneath <strong>the</strong>ir<br />

cages.<br />

<str<strong>on</strong>g>Temperature</str<strong>on</strong>g> is a major factor in <strong>the</strong> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegrading microbial communities <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

despite <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrifying <str<strong>on</strong>g>and</str<strong>on</strong>g> denitrifying bacteria, <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> relative<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> different microbial species will directly correlate with changing temperature <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s (Cap<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> Kiene, 1988). The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature, regarding <strong>the</strong><br />

δ 15 N was c<strong>on</strong>sistent with <strong>the</strong> literature, showing an overall significant linear effect <str<strong>on</strong>g>of</str<strong>on</strong>g> enrichment<br />

at 25 o C, <strong>the</strong> closest to optimal temperature treatment (25-30 o C produces highest substrate<br />

103


turnover rate for nitrosomas) for nitrifying <str<strong>on</strong>g>and</str<strong>on</strong>g> denitryfing bacteria (Bhaskar <str<strong>on</strong>g>and</str<strong>on</strong>g> Charyulu,<br />

2005).<br />

In additi<strong>on</strong> <strong>the</strong>re were two relatively weakly significant quadratic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature for <strong>the</strong><br />

168hr <str<strong>on</strong>g>and</str<strong>on</strong>g> 504hr incubati<strong>on</strong> times. The quadratic effect at 168hrs maintains an increasing δ 15 N<br />

signature <str<strong>on</strong>g>and</str<strong>on</strong>g> may likely reflect <strong>the</strong> exp<strong>on</strong>ential bacterial populati<strong>on</strong> growth, however <strong>the</strong><br />

quadratic effect at 504hrs does not follow <strong>the</strong> same trend <str<strong>on</strong>g>and</str<strong>on</strong>g> unexpectedly decreases δ 15 N<br />

signature during <strong>the</strong> 25 o C treatment after linearly increasing from treatments <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 o C up to 16 o C.<br />

The unexpectedly low δ 15 N signature during <strong>the</strong> 504h treatment at 25 o C may have been caused<br />

by a disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g> those samples causing a slowing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> degradati<strong>on</strong> process (i.e.<br />

fracti<strong>on</strong>ati<strong>on</strong>) or by an inaccurate isotope measurement stemming from error in sample<br />

preparati<strong>on</strong> or mass spectrometry analysis.<br />

It should be noted that <strong>the</strong> samples used for incubati<strong>on</strong> were relatively small <str<strong>on</strong>g>and</str<strong>on</strong>g> subject to<br />

variati<strong>on</strong> in initial bacteria substrate dynamics. The linear effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature was significant<br />

at all times after 48 hrs, which is supported by previous findings that suggested nitrifying<br />

bacteria require several days to fully establish <strong>the</strong>mselves. The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature is<br />

fur<strong>the</strong>r shown by <strong>the</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradati<strong>on</strong>, which were linearly significant <strong>on</strong>ly<br />

at <strong>the</strong> 25 o C treatment, fur<strong>the</strong>r supporting previous observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum nitrifying activity<br />

between 25 o C-30 o C. Although <strong>the</strong>re was a cubic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradati<strong>on</strong> time at 25 o C, it is<br />

possible this occurred due to experimental error such as accidental disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

thus a breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> microbial community dynamic <str<strong>on</strong>g>and</str<strong>on</strong>g> slowing <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>ati<strong>on</strong>, accidental<br />

104


exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample to light inhibiting nitrificati<strong>on</strong>, or an error occurred during <strong>the</strong> sample<br />

preparati<strong>on</strong> for mass spectrometry.<br />

The δ 13 C signature was much less variable than δ 15 N <str<strong>on</strong>g>and</str<strong>on</strong>g> was depleted during biodegradati<strong>on</strong>,<br />

suggesting that microbial enzyme discriminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> heavier carb<strong>on</strong> isotope is less than that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> carb<strong>on</strong> isotope. Also, carb<strong>on</strong> is used by microbes for cellular growth more than nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

is <strong>the</strong>refore more assimilated into bacterial biomass (Ostrom et al., 1997). This assimilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carb<strong>on</strong> for cell growth causes a large depleted bacterial biomass to form (McGloldrick et al.,<br />

2008) while <strong>the</strong> carb<strong>on</strong> c<strong>on</strong>taining by-products, carb<strong>on</strong> dioxide <str<strong>on</strong>g>and</str<strong>on</strong>g> methane gas are released<br />

c<strong>on</strong>taining more <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> heavy isotope (Gal<str<strong>on</strong>g>and</str<strong>on</strong>g> et al., 2010). In additi<strong>on</strong>, carb<strong>on</strong> fixati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2<br />

present is used by amm<strong>on</strong>ia oxidizing bacteria as a carb<strong>on</strong> source for bacterial growth <str<strong>on</strong>g>and</str<strong>on</strong>g> since<br />

<strong>the</strong> lighter carb<strong>on</strong> isotope is assimilated faster it creates a depleted nitrifying <str<strong>on</strong>g>and</str<strong>on</strong>g> denitrifying<br />

bacterial biomass.<br />

In additi<strong>on</strong>, <strong>the</strong> CO 2 that escapes as a gas depletes <strong>the</strong> residual fracti<strong>on</strong> as well. Methanogens<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> methanotrophs have been shown to significantly fracti<strong>on</strong>ate <strong>the</strong> δ 13 C during methanogenesis<br />

as well as carb<strong>on</strong> assimilati<strong>on</strong> for cell growth (Goevert <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>rad, 2009). Overall <strong>the</strong> δ 13 C<br />

results supported <strong>the</strong> results for nitrogen by reflecting <strong>the</strong> same pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>ati<strong>on</strong> although<br />

in <strong>the</strong> opposite directi<strong>on</strong>, depleti<strong>on</strong>. There was a significant linear effect <str<strong>on</strong>g>of</str<strong>on</strong>g> time <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature<br />

(depleting effect) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> linear effects, similarly to <strong>the</strong> δ 15 N results, were significant <strong>on</strong>ly after<br />

<strong>the</strong> 48hr incubati<strong>on</strong> time, which fur<strong>the</strong>r supports <strong>the</strong> argument that microbial communities take<br />

several days to establish <strong>the</strong>mselves <str<strong>on</strong>g>and</str<strong>on</strong>g> begin significant biodegradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> substrate.<br />

105


In additi<strong>on</strong> <strong>the</strong> quadratic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> time was significant <strong>on</strong>ly at <strong>the</strong> 25 o C treatment supporting <strong>the</strong><br />

argument that optimum microbial degradati<strong>on</strong> rates occur at temperatures range from 25 o C to<br />

30 o C <str<strong>on</strong>g>and</str<strong>on</strong>g> are exp<strong>on</strong>ential. Since no cubic effects were observed for carb<strong>on</strong> at <strong>the</strong> same treatment<br />

levels where cubic effects were significant for δ 15 N, it can be presumed that <strong>the</strong> likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experimental error during sample incubati<strong>on</strong> or sample preparati<strong>on</strong> for isotope measurement is<br />

low <str<strong>on</strong>g>and</str<strong>on</strong>g> may suggest <strong>the</strong> cause to be <strong>the</strong> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrifying <str<strong>on</strong>g>and</str<strong>on</strong>g> denitrifying bacteria<br />

differentially than at o<strong>the</strong>r treatment levels due to minute differences in sample compositi<strong>on</strong><br />

which may have facilitated <strong>the</strong> accelerated growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e microbe species over ano<strong>the</strong>r.<br />

The current incubati<strong>on</strong> study was not set up as a complete anaerobic system however <strong>the</strong> large<br />

BOD <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> minimal oxygen access (paraffin cap with pinhole) resulted in a<br />

dynamic degradati<strong>on</strong> through aerobic <str<strong>on</strong>g>and</str<strong>on</strong>g> anaerobic processes similar to those that occur in<br />

sediments at <strong>the</strong> sampling sites, coupling nitrificati<strong>on</strong> at <strong>the</strong> sediment water interface with<br />

denitrificati<strong>on</strong> in buried sediment, also referred to as “benthic-pelagic” coupling (Cap<strong>on</strong>e, 1988).<br />

106


Figure 24. Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> benthic nitrogen cycle showing major degradati<strong>on</strong> pathways<br />

associated with organic degradati<strong>on</strong>.<br />

4.6 General C<strong>on</strong>clusi<strong>on</strong>s<br />

Overall <strong>the</strong> incubati<strong>on</strong> study results prove that significant changes in δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

salm<strong>on</strong>id faeces exposed to biodegradati<strong>on</strong> are c<strong>on</strong>sistent <str<strong>on</strong>g>and</str<strong>on</strong>g> can be accurately measured over<br />

different time intervals under laboratory c<strong>on</strong>diti<strong>on</strong>s. In additi<strong>on</strong> <strong>the</strong> change in <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fracti<strong>on</strong>ati<strong>on</strong> over a broad temperature range <str<strong>on</strong>g>of</str<strong>on</strong>g> treatments is significant <str<strong>on</strong>g>and</str<strong>on</strong>g> was c<strong>on</strong>sistently<br />

reflected in δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures suggesting str<strong>on</strong>g potential for use as an envir<strong>on</strong>mental<br />

parameter in m<strong>on</strong>itoring <strong>the</strong> fate <str<strong>on</strong>g>of</str<strong>on</strong>g> waste in open water aquaculture. For example δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

δ 15 N signatures could be used in c<strong>on</strong>juncti<strong>on</strong> with aquaculture waste dispersal model physical<br />

parameters such as <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> waste, settling velocity, solid waste compositi<strong>on</strong>, faecal density<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> stability to dem<strong>on</strong>strate sustainable thresholds <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient assimilative capacity, where <strong>the</strong><br />

107


isotopes could potentially c<strong>on</strong>clusively identify <str<strong>on</strong>g>and</str<strong>on</strong>g> trace depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organics to <strong>the</strong> benthos as<br />

well as pelagic ecosystem transfer (Reid et al., 2009).<br />

108


Chapter 5. Overall C<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Recommendati<strong>on</strong>s<br />

Field sampling failed to significantly correlate feed signatures used at farms with sediment<br />

samples collected below cages. The higher variance <str<strong>on</strong>g>and</str<strong>on</strong>g> similarly enriched values <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 15 N<br />

signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> samples at decommissi<strong>on</strong>ed sites relative to δ 15 N enrichment during <strong>the</strong> incubati<strong>on</strong><br />

experiment, as well as <strong>the</strong> higher variance <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> similarly depleted values at<br />

decommissi<strong>on</strong>ed sites <str<strong>on</strong>g>and</str<strong>on</strong>g> in feeds (from active sites) relative to δ 13 C signatures in active site<br />

sediments suggests δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N have potential to identify aquaculture waste below active <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

inactive sites. However, <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures <str<strong>on</strong>g>and</str<strong>on</strong>g> patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> enrichment<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> depleti<strong>on</strong> both in <strong>the</strong> field <str<strong>on</strong>g>and</str<strong>on</strong>g> laboratory setting, suggest fur<strong>the</strong>r research is required to<br />

quantify fracti<strong>on</strong>ati<strong>on</strong> effects due to biodegradati<strong>on</strong> in order for <strong>the</strong> isotopes to be used as tracers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture waste in <strong>the</strong> field.<br />

In additi<strong>on</strong> <strong>the</strong> quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>ati<strong>on</strong> effects due to biodegradati<strong>on</strong> can lead to <strong>the</strong><br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N as tools in determining a site’s assimilative capacity <str<strong>on</strong>g>and</str<strong>on</strong>g> benthic<br />

pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> waste degradati<strong>on</strong>. In general, field results dem<strong>on</strong>strated <strong>the</strong> potential for naturally<br />

occurring δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N in aquaculture feed to be significantly fracti<strong>on</strong>ated causing isotope<br />

signatures to be highly variable even at heavy point source loading <str<strong>on</strong>g>of</str<strong>on</strong>g> an enriched waste fracti<strong>on</strong>.<br />

Despite signature shifts being detrimental for isotope use as a tracer <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture waste, <strong>the</strong><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> enriched δ 15 N <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 13 C at aquaculture sites that have been inactive for several years<br />

suggests potential in identifying aged deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture waste undergoing biodegradati<strong>on</strong>.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> isotope shifts reflect specific degradati<strong>on</strong> pathways such as nitrificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

denitrificati<strong>on</strong> as well as methanogenesis which can be used in c<strong>on</strong>tinuous m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> active<br />

109


<str<strong>on</strong>g>and</str<strong>on</strong>g> inactive sites assimilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> settled wastes by identifying rates <str<strong>on</strong>g>of</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> spatial<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial activity in <strong>the</strong> footprint z<strong>on</strong>e. This informati<strong>on</strong> could be used in<br />

assessing a sites potential for expansi<strong>on</strong> or down scaling due to differences in waste assimilati<strong>on</strong>.<br />

Also, sites being c<strong>on</strong>sidered for aquaculture can be examined using stable δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N to<br />

determine biochemical activity in <strong>the</strong> sediment prior to <str<strong>on</strong>g>and</str<strong>on</strong>g> after loading which would help<br />

predict <strong>the</strong> fate <str<strong>on</strong>g>of</str<strong>on</strong>g> waste from a l<strong>on</strong>g term operati<strong>on</strong>. Even more informati<strong>on</strong> could be obtained<br />

from stable isotope samples <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments by using different sampling methods to an Eckman<br />

grab, such as a core sample. Ekman grabs <str<strong>on</strong>g>of</str<strong>on</strong>g>ten disturb <strong>the</strong> sediment water interface layer<br />

where denitrifricati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrificati<strong>on</strong> are coupled within <strong>on</strong>ly a few millimetres or a maximum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> several centimeters where <strong>the</strong> anoxic sediment meets <strong>the</strong> oxygen supplied surface layer at <strong>the</strong><br />

interface. This disturbance removes <strong>the</strong> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring <strong>the</strong> isotope signature in a<br />

sediment sample subjected to aerobic <str<strong>on</strong>g>and</str<strong>on</strong>g> anaerobic degradati<strong>on</strong> separately <str<strong>on</strong>g>and</str<strong>on</strong>g> instead mixes <strong>the</strong><br />

two layers. In additi<strong>on</strong>, Ekman grab has a limited sampling depth such that <strong>the</strong> well-established<br />

anaerobic denitrificati<strong>on</strong> layer, resp<strong>on</strong>sible for much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fracti<strong>on</strong>ati<strong>on</strong> effect, is ultimately not<br />

sampled. Core samples would allow researchers to correlate isotope changes with changing<br />

sediment depth which could reveal a more precise fracti<strong>on</strong>ati<strong>on</strong> path <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N as well as<br />

a potential pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> isotope signature distributi<strong>on</strong> unique to deep organically rich sediments<br />

created from aquaculture waste depositi<strong>on</strong>. Core sampling would also allow o<strong>the</strong>r sediment<br />

parameters such as temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> redox potential to be correlated with changing sediment<br />

depth <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotopic signatures.<br />

110


Although δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N measurements were not correlated with sediment parameters o<strong>the</strong>r than<br />

temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> biodegradati<strong>on</strong>, it would be <str<strong>on</strong>g>of</str<strong>on</strong>g> interest to include parameters such as redox<br />

potential, hydrogen sulfide <str<strong>on</strong>g>and</str<strong>on</strong>g> methane c<strong>on</strong>centrati<strong>on</strong>s, as well as <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> metal compounds<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten associated with sediments with a high negative redox potential. Metals <str<strong>on</strong>g>of</str<strong>on</strong>g> particular<br />

interest would be manganese, zinc, copper <str<strong>on</strong>g>and</str<strong>on</strong>g> ir<strong>on</strong> due to <strong>the</strong>ir natural occurrence in feed, low<br />

abundance in freshwater systems <str<strong>on</strong>g>and</str<strong>on</strong>g> high affinity for ani<strong>on</strong>s present in aquaculture waste. Their<br />

elevated c<strong>on</strong>centrati<strong>on</strong>s would likely correlate with levels <str<strong>on</strong>g>of</str<strong>on</strong>g> waste, degree <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>sequently rate <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> isotope signature shifts. The correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al<br />

parameters would allow <strong>on</strong>e to identify <strong>the</strong> presence or past presence <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material <str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> degradati<strong>on</strong> despite a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> isotope signature. Although δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N measurements<br />

are required for positive identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture waste, <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r parameters can<br />

give insight into <strong>the</strong> fate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> signature.<br />

In order to more precisely determine <strong>the</strong> suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N as tracers <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture<br />

waste future studies should also collect data before, during <str<strong>on</strong>g>and</str<strong>on</strong>g> post aquaculture activities.<br />

Collecting data <strong>on</strong> changes in site benthic compositi<strong>on</strong>, oxygen pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>and</str<strong>on</strong>g> sediment redox<br />

potential, hydrodynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> surrounding water column, metal compound c<strong>on</strong>centrati<strong>on</strong>s al<strong>on</strong>g<br />

with sediment temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> isotope signatures will give greater insight into how a site<br />

progresses biologically, chemically <str<strong>on</strong>g>and</str<strong>on</strong>g> physically during <strong>the</strong> establishment <str<strong>on</strong>g>and</str<strong>on</strong>g> cessati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

open water cage aquaculture site. This informati<strong>on</strong> can <strong>the</strong>n be streamlined to include <strong>the</strong> most<br />

indicative parameters that al<strong>on</strong>g with δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N can be used in not just tracer studies but also<br />

in determining <strong>the</strong> waste assimilati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a site.<br />

111


Open water sites show specific waste depositi<strong>on</strong> patterns unique to each site where <strong>on</strong>e site may<br />

accumulate large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> waste directly beneath a cage <str<strong>on</strong>g>and</str<strong>on</strong>g> ano<strong>the</strong>r site does not accumulate<br />

any waste sediment due to higher flushing rates <str<strong>on</strong>g>and</str<strong>on</strong>g> resuspensi<strong>on</strong>. Future studies could also<br />

include tests <strong>on</strong> <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment disturbance or resuspensi<strong>on</strong> <strong>on</strong> <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradati<strong>on</strong>,<br />

comparing aerobic <str<strong>on</strong>g>and</str<strong>on</strong>g> anaerobic degradati<strong>on</strong>, specifically <strong>the</strong> difference in rates <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>ati<strong>on</strong><br />

between nitrificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> denitrificati<strong>on</strong>.<br />

Using naturally occurring δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N in commercial feeds for <strong>the</strong> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> tracking faecal<br />

waste at open water sites could be improved by measuring variati<strong>on</strong> in δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> feed batches over time(due to changes in ingredient sourcing as well as proporti<strong>on</strong>s), in<br />

additi<strong>on</strong> to l<strong>on</strong>g term sampling <str<strong>on</strong>g>of</str<strong>on</strong>g> background levels <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N near <str<strong>on</strong>g>and</str<strong>on</strong>g> distant from<br />

proposed cage sites <str<strong>on</strong>g>of</str<strong>on</strong>g> which natural variati<strong>on</strong> can be used to more accurately measure <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

attribute differences in receiving envir<strong>on</strong>ment δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N levels to site operati<strong>on</strong>. Future<br />

studies <strong>on</strong> <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N from isolated feed ingredients (in particular<br />

commercial br<str<strong>on</strong>g>and</str<strong>on</strong>g>s) to <strong>the</strong> overall signature <str<strong>on</strong>g>of</str<strong>on</strong>g> formulated feed could make it possible to study<br />

biodegradati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> its effect <strong>on</strong> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N shifts <str<strong>on</strong>g>of</str<strong>on</strong>g> individual <str<strong>on</strong>g>and</str<strong>on</strong>g> or combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ingredients. Data from such studies could <strong>the</strong>n be used in c<strong>on</strong>juncti<strong>on</strong> with studies <strong>on</strong><br />

biophysical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong>id faeces to more accurately design aquaculture waste dispersal<br />

models, where δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> specific feed ingredients could trace <str<strong>on</strong>g>and</str<strong>on</strong>g> identify<br />

specific faecal waste fracti<strong>on</strong>s throughout <strong>the</strong> receiving envir<strong>on</strong>ment.<br />

Ano<strong>the</strong>r recommendati<strong>on</strong> for future research in δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N organic waste tracking is<br />

identifying naturally occurring bacterial populati<strong>on</strong>s within <strong>the</strong> benthic receiving envir<strong>on</strong>ment<br />

prior to <str<strong>on</strong>g>and</str<strong>on</strong>g> during aquaculture activities, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n incorporating <strong>the</strong>se strains <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria in<br />

112


fur<strong>the</strong>r studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir effect <strong>on</strong> <strong>the</strong> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N in faecal waste during<br />

biodegradati<strong>on</strong>. By identifying <strong>the</strong> major bacteria strains within <strong>the</strong> sediment below a cage site,<br />

laboratory experiments can be designed to reflect more precisely <strong>the</strong> natural biodegradati<strong>on</strong><br />

pathways <str<strong>on</strong>g>of</str<strong>on</strong>g> faecal waste at a given site <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir fracti<strong>on</strong>ati<strong>on</strong> effects which can be used to<br />

better predict <str<strong>on</strong>g>and</str<strong>on</strong>g> interpret δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N results from <strong>the</strong> field.<br />

In additi<strong>on</strong>, sediment <strong>the</strong>rmistors can be applied at aquaculture sites to establish sediment<br />

temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles used in c<strong>on</strong>trolled faecal incubati<strong>on</strong> experiments to predict expected<br />

changes in δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N <str<strong>on</strong>g>of</str<strong>on</strong>g> organic waste at different temperatures. Additi<strong>on</strong>al research in<br />

freshwater sediments using deep cores, with larger sample sizes <str<strong>on</strong>g>and</str<strong>on</strong>g> more parameters covering a<br />

larger area than <strong>the</strong> footprint z<strong>on</strong>e would give a better idea <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> C <str<strong>on</strong>g>and</str<strong>on</strong>g> N cycling<br />

around cage aquaculture sites.<br />

This study has revealed fur<strong>the</strong>r potential uses <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotopes in <strong>the</strong> aquaculture<br />

industry in additi<strong>on</strong> to traceability <str<strong>on</strong>g>of</str<strong>on</strong>g> waste effluent, although <strong>the</strong> potential for δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N<br />

isotope use solely as tracers is limited <str<strong>on</strong>g>and</str<strong>on</strong>g> warrants fur<strong>the</strong>r research into fracti<strong>on</strong>ati<strong>on</strong> effects due<br />

to biological degradati<strong>on</strong>. Bacteria substrate dynamics are complex <str<strong>on</strong>g>and</str<strong>on</strong>g> require laboratory<br />

c<strong>on</strong>trolled incubati<strong>on</strong> experiments to determine specific fracti<strong>on</strong>ati<strong>on</strong> pathways in order to<br />

explain results obtained in <strong>the</strong> field. Fur<strong>the</strong>rmore, alternatives to tracking waste from aquaculture<br />

sites using δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N isotopes should be explored, such as research into incorporating<br />

genetic markers into commercial feed <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequent identificati<strong>on</strong> in <strong>the</strong> field, <strong>the</strong> labelling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

feed with specific isotope signatures <str<strong>on</strong>g>and</str<strong>on</strong>g> applying more advanced sediment sampling techniques.<br />

113


References<br />

Altabet, M.A. 1988. Variati<strong>on</strong>s in nitrogen isotopic compositi<strong>on</strong> between sinking <str<strong>on</strong>g>and</str<strong>on</strong>g> suspended<br />

particles: Implicati<strong>on</strong>s for nitrogen cycling <str<strong>on</strong>g>and</str<strong>on</strong>g> particle transformati<strong>on</strong> in <strong>the</strong> open ocean. Deep<br />

Sea Research 35:535-554.<br />

Altabet, M.A., Deuser, W. G., H<strong>on</strong>jo, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Stienen, C. 1991. Seas<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> depth-related<br />

changes in <strong>the</strong> source <str<strong>on</strong>g>of</str<strong>on</strong>g> sinking particles in <strong>the</strong> North Atlantic. Nature 354:136-139.<br />

Altabet, M.A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., Francois, R.<br />

1999. The nitrogen isotope biogeochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> sinking particles from <strong>the</strong> margin <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eastern<br />

north pacific. Deep Sea Research Part I: Oceanographic Research Papers 46: 655-679.<br />

Andrews, J.E., Greenaway, A.M., Dennis, P.F. 1998. Combined carb<strong>on</strong> isotope <str<strong>on</strong>g>and</str<strong>on</strong>g> C/N ratios as<br />

indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> source <str<strong>on</strong>g>and</str<strong>on</strong>g> fate <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter in a poorly flushed, tropical estuary: Hunts bay,<br />

Kingst<strong>on</strong> harbour, Jamaica. Estuarine, Coastal <str<strong>on</strong>g>and</str<strong>on</strong>g> Shelf Science 46: 743-756.<br />

Antenucci, J.P., Imberger, J., Saggio, A. 2000. Seas<strong>on</strong>al evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> basin-scale internal<br />

wave in a large stratified lake. Limnology <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceanography 45 (7): 1621: 1638.<br />

Azevedo, P.A., Cho, C.Y., Lees<strong>on</strong>, S., Bureau, D.P. 1998. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> feeding level <str<strong>on</strong>g>and</str<strong>on</strong>g> water<br />

temperature <strong>on</strong> growth, nutrient <str<strong>on</strong>g>and</str<strong>on</strong>g> energy utilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> waste outputs <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow trout<br />

(Oncorhynchus mykiss). Aquatic Living Resources 11: 227-238.<br />

Barford,C.C., M<strong>on</strong>toya, J.P., Altabet, M.A., Mitchell, R.1999. Steady-State Nitrogen Isotope<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> N 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> N 2 O Producti<strong>on</strong> in Paracoccus denitrificans. Applied <str<strong>on</strong>g>and</str<strong>on</strong>g> Envir<strong>on</strong>mental<br />

Microbiology 65: 989-994.<br />

Bennett, E. 1988. On <strong>the</strong> physical limnology <str<strong>on</strong>g>of</str<strong>on</strong>g> Georgian Bay. Hydrobiologia 163:21-34.<br />

Bhaskar, K.V.<str<strong>on</strong>g>and</str<strong>on</strong>g> Churylulu, P.B.B.N. 2005. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental factors <strong>on</strong> nitrifying<br />

bacteria isolated from <strong>the</strong> rhizosphere <str<strong>on</strong>g>of</str<strong>on</strong>g> Setaria italica (L.) Beauv. African Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Biotechnology 4:1145-1146.<br />

Benner R., Fogel M.L., Sprague E.K., Hods<strong>on</strong> R.E. 1987. Depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 C in lignin <str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

implicati<strong>on</strong>s for stable carb<strong>on</strong> isotope studies. Nature 329:708-710.<br />

Beveridge, T.J., Ferris F.G., Fyfe W.F. 1987. Bacteria as nucleati<strong>on</strong> sites for authigenic minerals<br />

in metal-c<strong>on</strong>taminated lake sediment. Chemical Geology 63: 225-232.<br />

Blackmer, A.M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bremner, J.M. 1977. Nitrogen isotope discriminati<strong>on</strong> in denitrificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrate in soils. Soil Biology & Biochemistry 9: 73-77.<br />

114


Blanchfield, P. J., Tate, L. S., Podemski, C. L. 2009. Survival <str<strong>on</strong>g>and</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow trout<br />

(Oncorhynchus mykiss) released from an experimental aquaculture operati<strong>on</strong>. Canadian Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Aquatic Sciences 66: 1976–1988.<br />

Blumerg A. F. <str<strong>on</strong>g>and</str<strong>on</strong>g> Mellor G. L. 1987. A Descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Three Dimensi<strong>on</strong>al Coastal Ocean<br />

Circulati<strong>on</strong> Model. Reprinted from: Three Dimensi<strong>on</strong>al Ocean Models by Norman S. Heaps<br />

(Editor) 1-16, American Geophysical Uni<strong>on</strong>, Washingt<strong>on</strong>, DCOniline<br />

http://www.stevens.edu/ses/ceoe/fileadmin/ceoe/pdf/alan_publicati<strong>on</strong>s/AFB032.pdf<br />

Boegman L., Imberger L., Ivey G.N., <str<strong>on</strong>g>and</str<strong>on</strong>g> J. P. Antenucci 2003. High-Frequency Internal Waves<br />

in Large Stratified Lakes. Limnology <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceanography 48: 859-919.<br />

Borja, Á., Rodríguez, J.G., Black, K., Bodoy, A., Emblow, C., Fern<str<strong>on</strong>g>and</str<strong>on</strong>g>es, T.F., Forte, J.,<br />

Karakassis, I., Muxika, I., Nickell, T.D., Papageorgiou, N., Pranovi, F., Sevastou, K., Tomassetti,<br />

P., Angel, D.2009. Assessing <strong>the</strong> suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic indices in <strong>the</strong> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

envir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g> fin <str<strong>on</strong>g>and</str<strong>on</strong>g> shellfish aquaculture located in sites across Europe. Aquaculture<br />

293: 231-240.<br />

Boschker, H. T. S., De Brouwer, J.F.C., Cappenberg, T. E. 1999. The c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

macrophyte-derived organic matter in microbial biomass in salt marsh sediments: stable carb<strong>on</strong><br />

isotope analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial biomarkers. Limnology <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceanography 44:309–319.<br />

Bouffard, D., Boegman, L., & Rao, Y. R. 2012. Poincaré wave-induced mixing in a large lake.<br />

Limnology <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceanography 57(4): 1201-1216.<br />

Branstrator D.K., Cabana G., Mazumder A., Rasmussen J.B. 2000. Measuring life history <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

omnivory in opossum shrimp, Mysis relicta, with stable nitrogen isotopes. Limnology <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Oceanography 45:463-467<br />

Brooks, K.M., Stierns, A.R., Backman, C. 2004. Seven year remediati<strong>on</strong> study at <strong>the</strong> 432 Carrie<br />

Bay Atlantic salm<strong>on</strong> (Salmo salar) farm in <strong>the</strong> Brought<strong>on</strong> Archipelago. Aquaculture 239:81-123<br />

Burt<strong>on</strong>, R. K., P. L. Koch 1999. Isotopic tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> foraging <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>g distance migrati<strong>on</strong> in<br />

nor<strong>the</strong>astern Pacific pinnipeds. Oecologia 119: 578-585<br />

Bureau, D.P., Gun<strong>the</strong>r, S. J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Cho, C. Y. 2003. Chemical compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> preliminary<br />

<strong>the</strong>oretical estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> waste outputs <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow trout reared in commercial cage culture<br />

operati<strong>on</strong>s in Ontario. North American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquaculture 65:33-38.<br />

Burford, M.A., Prest<strong>on</strong>, N.P., Glibert, P.M., Dennis<strong>on</strong>, W.C. 2002. Tracing <strong>the</strong> fate <str<strong>on</strong>g>of</str<strong>on</strong>g> 15Nenriched<br />

feed in an intensive shrimp system. Aquaculture 206:199-216.<br />

115


Cap<strong>on</strong>e, D.G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Keine, R.P.1988. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial dynamics in marine <str<strong>on</strong>g>and</str<strong>on</strong>g> freshwater<br />

sediments: C<strong>on</strong>trasts in anaerobic carb<strong>on</strong> catabolism. Limnology <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceanography 33:725-749.<br />

Carlier A, Riera P, Amouroux JM, Bodiou JY <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>rs 2007a. A seas<strong>on</strong>al survey <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> food<br />

web in <strong>the</strong> Lapalme Lago<strong>on</strong> (northwestern Mediterranean) assessed by carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen<br />

stable isotope analysis. Estuarine, Coastal <str<strong>on</strong>g>and</str<strong>on</strong>g> Shelf Science 73:299–315.<br />

Casciotti, K.L., Sigman, D. M., Ward, B.B. 2003. Linking Diversity <str<strong>on</strong>g>and</str<strong>on</strong>g> Stable Isotope<br />

Fracti<strong>on</strong>ati<strong>on</strong> in Amm<strong>on</strong>ia-Oxidizing Bacteria. Geomicrobiology Journal 20:335–353.<br />

Carr O.J., Goulder R. 1990. Fish-farm effluents in rivers—II. Effects <strong>on</strong> inorganic nutrients,<br />

algae <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> macrophyte (Ranunculus penicillatus). Water Research 24 (5): 639-647.<br />

Chou C.L., Pa<strong>on</strong> L.A., M<str<strong>on</strong>g>of</str<strong>on</strong>g>fatt J. D.2002. Metal c<strong>on</strong>taminants for modelling lobster (Homarus<br />

americanus) migrati<strong>on</strong> patterns in <strong>the</strong> Inner Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundy, Atlantic Canada Marine Polluti<strong>on</strong><br />

Bulletin 44 (2):134-141.<br />

Chou C.L., Pa<strong>on</strong> LA., M<str<strong>on</strong>g>of</str<strong>on</strong>g>fatt J.D., Buzeta M.I., Fent<strong>on</strong> D., Ru<strong>the</strong>rford R.J. 2004. Distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminants in biota <str<strong>on</strong>g>and</str<strong>on</strong>g> sediments in <strong>the</strong> Musquash Estuary, Atlantic Canada, marine<br />

protected area site initiative <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>taminant exclusi<strong>on</strong> z<strong>on</strong>e. Marine Polluti<strong>on</strong> Bulletin 48(9-<br />

10):884-893.<br />

Cole, R. 2002. Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> marine farming <strong>on</strong> wild fish populati<strong>on</strong>s. ENV2000/08, 1-51. Nati<strong>on</strong>al<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Water <str<strong>on</strong>g>and</str<strong>on</strong>g> Atmospheric Research. New Zeal<str<strong>on</strong>g>and</str<strong>on</strong>g>.<br />

Cromey, C.J., Nickell, T.D., Black, K.D. 2002. DEPOMOD—modelling <strong>the</strong> depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

biological effects <str<strong>on</strong>g>of</str<strong>on</strong>g> waste solids from marine cage farms. Aquaculture 214: 211-239.<br />

Cromey, C.J., Nickell, T.D., Black, K.D., Provost, P.G., Griffiths, C.R. 2002. Validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fish<br />

farm waste resuspensi<strong>on</strong> model by use <str<strong>on</strong>g>of</str<strong>on</strong>g> a particulate tracer discharged from a point source in a<br />

coastal envir<strong>on</strong>ment. Estuaries 25: 916-929.<br />

Carroll, M.L., Cochrane, S., Fieler, R., Velvin, R., White, P. 2003. <str<strong>on</strong>g>Organic</str<strong>on</strong>g> enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sediments from salm<strong>on</strong> farming in Norway: Envir<strong>on</strong>mental factors, management practices, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

m<strong>on</strong>itoring techniques. Aquaculture 226: 165-180.<br />

Cho, C.Y. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bureau, D.P. 2001. A review <str<strong>on</strong>g>of</str<strong>on</strong>g> diet formulati<strong>on</strong> strategies <str<strong>on</strong>g>and</str<strong>on</strong>g> feeding systems to<br />

reduce excretory <str<strong>on</strong>g>and</str<strong>on</strong>g> feed wastes in aquaculture. Aquaculture Research 32: 349-360.<br />

Cho, C.Y. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bureau, D.P. 1998. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> bioenergetic models <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> fish-PrFEQ<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware to estimate producti<strong>on</strong>, feeding rati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> waste output in aquaculture. Aquatic Living<br />

Resource 11:199-210.<br />

Craig, C.R. 1957. Isotopic st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards for carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> oxygen <str<strong>on</strong>g>and</str<strong>on</strong>g> correcti<strong>on</strong> factors for mass<br />

spectrometric analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide. Geochimica et Cosmochimica Acta 12: 133-149.<br />

116


Crawford, C., Macleod, C. <str<strong>on</strong>g>and</str<strong>on</strong>g> Mitchell, I. 2002. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> techniques for envir<strong>on</strong>mental<br />

m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong> farms in Tasmania. 8, 1-140. [In] Gardner, C. (ed) The Tasmanian<br />

Aquaculture <str<strong>on</strong>g>and</str<strong>on</strong>g> Fisheries Institute Report, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tasmania<br />

Davies I.M., Slaskib R.J. 2003. Waste producti<strong>on</strong> by farmed Atlantic halibut (Hippoglossus<br />

hippoglossus). Aquaculture 219(1-4):495-502.<br />

Dell'Anno A., Mei M.L., Pusceddu A., D<strong>on</strong>ovaro R. 2002. Assessing <strong>the</strong> trophic state <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

eutrophicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal marine systems: a new approach based <strong>on</strong> <strong>the</strong> biochemical compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sediment organic matter. Marine Polluti<strong>on</strong> Bulletin 44 (7): 611-622.<br />

Delwiche, C.C. <str<strong>on</strong>g>and</str<strong>on</strong>g> Steyn, P.L. 1970. Nitrogen isotope fracti<strong>on</strong>ati<strong>on</strong> in soils <str<strong>on</strong>g>and</str<strong>on</strong>g> microbial<br />

reacti<strong>on</strong>s. Envir<strong>on</strong>mental Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology 4 (11):929–935.<br />

Demps<strong>on</strong>, J.B. <str<strong>on</strong>g>and</str<strong>on</strong>g> Power, M. 2004. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> stable isotopes to distinguish farmed from wild<br />

atlantic salm<strong>on</strong>, salmo salar. Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Freshwater Fish 13:176-184.<br />

DeNiro, M.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Epstein, S.1978. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> diet <strong>on</strong> <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> isotopes in<br />

animals. Geochimica et Cosmochimica Acta 42:495-506.<br />

DeNiro, M.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Epstein, S. 1981. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> diet <strong>on</strong> <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen isotopes in<br />

animals. Geochimica Cosmochimica Acta 45:341-351.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceans Canada (DFO) 2003. A scientific review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential<br />

envir<strong>on</strong>mental effects <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture in aquatic ecosystems. volume I: Far-field envir<strong>on</strong>mental<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> marine finfish aquaculture (B.T. Hargrave); ecosystem level effects <str<strong>on</strong>g>of</str<strong>on</strong>g> marine bivalve<br />

aquaculture (P. Cranford, M. Dowd, J. grant, B. Hargrave <str<strong>on</strong>g>and</str<strong>on</strong>g> S.McGladdery); chemical use in<br />

marine finfish aquaculture in Canada: A review <str<strong>on</strong>g>of</str<strong>on</strong>g> current practices <str<strong>on</strong>g>and</str<strong>on</strong>g> posssible envir<strong>on</strong>mental<br />

effects (L.E. Burridge). Canadian Technical Report <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Aquatic Sciences 2450: 1-<br />

140<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceans Canada (DFO) 2006. A Scientific Review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Potential<br />

Envir<strong>on</strong>mental Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquaculture in Aquatic Ecosystems Volume V: Behavioural<br />

Interacti<strong>on</strong>s Between Farm <str<strong>on</strong>g>and</str<strong>on</strong>g> Wild Salm<strong>on</strong>: Potential for Effects <strong>on</strong> Wild Populati<strong>on</strong>s (Laura<br />

K. Weir <str<strong>on</strong>g>and</str<strong>on</strong>g> Ian A. Fleming)Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Envir<strong>on</strong>mental Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> Canadian Freshwater<br />

Aquaculture(C.L. Podemski <str<strong>on</strong>g>and</str<strong>on</strong>g> P.J. Blanchfield); A Scientific Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Bivalve Aquaculture:<br />

Interacti<strong>on</strong> Between Wild <str<strong>on</strong>g>and</str<strong>on</strong>g> Cultured Species(T. L<str<strong>on</strong>g>and</str<strong>on</strong>g>ry, M. Skinner, A. LeBlanc, D.<br />

Bourque, C. McKindsey, R.Tremblay, P. Archambault, L. Comeau, S. Courtenay, F. Hartog, M.<br />

Ouellette <str<strong>on</strong>g>and</str<strong>on</strong>g> J.M. Sevigny)<br />

Dudley, R., Panchang, V., Newell, C. 2000. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a comprehensive modeling strategy<br />

for <strong>the</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g> net-pen aquaculture waste transport. Aquaculture 187:319– 349.<br />

117


Einen, O., Holmefjord, I., Asgard, Talbot, C., (1995) Auditing nutrient discharges from fish<br />

farms: <strong>the</strong>oretical <str<strong>on</strong>g>and</str<strong>on</strong>g> practical c<strong>on</strong>siderati<strong>on</strong>s. Aquaculture Research 26: 701–713.<br />

Elberiz<strong>on</strong> R.I., Kelly L.A. 1998. Empirical measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters critical to modelling<br />

benthic impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater salm<strong>on</strong>id cage aquaculture. Aquaculture Research 29 (9):669–677.<br />

Eloranta, P., Palomaeki, A. 1986. Phytoplankt<strong>on</strong> in Lake K<strong>on</strong>nevesi with special reference to<br />

eutrophicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lake by fish farming. Aqua Fennica 16 (1): 37-45.<br />

Enell, M., L<str<strong>on</strong>g>of</str<strong>on</strong>g>, J. 1983. Envir<strong>on</strong>mental impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture —sedimentati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient<br />

loadings from fish cage culture farming. Vatten 39: 364–375.<br />

Erler, D.V., Eyre, B. D. 2010. Quantifying nitrogen process rate in a c<strong>on</strong>structed wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> using<br />

natural abundance stable isotope signatures <str<strong>on</strong>g>and</str<strong>on</strong>g> stable isotope amendments experiments. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Quality 39: 2191-2199.<br />

Farquhar, G. D.1983. On <strong>the</strong> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> isotope discriminati<strong>on</strong> in C 4 species. Australian<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Physiology 10:205-26.<br />

Fern<str<strong>on</strong>g>and</str<strong>on</strong>g>es T., Reid P. 2003. Management <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> marine aquaculture in<br />

Europe. Aquaculture 226 (1-4):139-163.<br />

Findlay, R.H., Watling, L. 1997. Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic impact for salm<strong>on</strong> net-pens based <strong>on</strong> <strong>the</strong><br />

balance <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic oxygen supply <str<strong>on</strong>g>and</str<strong>on</strong>g> dem<str<strong>on</strong>g>and</str<strong>on</strong>g>. Marine Ecology Progress Series 155:147–157.<br />

Food <str<strong>on</strong>g>and</str<strong>on</strong>g> Agricultural Organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> United Nati<strong>on</strong>s (FAO). 2008. The State <str<strong>on</strong>g>of</str<strong>on</strong>g> World<br />

Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Aquaculture 2008. FAO, Rome, Italy.<br />

http://www.fao.org/docrep/011/i0250e/i0250e00.htm<br />

Food <str<strong>on</strong>g>and</str<strong>on</strong>g> Agriculture Organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> United Nati<strong>on</strong>s (FAO). 2012. The State <str<strong>on</strong>g>of</str<strong>on</strong>g> World<br />

Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Aquaculture 2012. FAO, Rome Italy.<br />

http://www.fao.org/docrep/016/i2727e/i2727e00.htm<br />

Franco-Nava, M., Blanchet<strong>on</strong>, J., Deviller, G., Le-Gall, J. 2004. Particulate matter dynamics <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

transformati<strong>on</strong>s in a recirculating aquaculture system: Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stable isotope tracers in<br />

seabass rearing. Aquacultural Engineering 31:135-155.<br />

Fry, B. <str<strong>on</strong>g>and</str<strong>on</strong>g> Parker, P.L. 1979. Animal diet in Texas seagrass meadows; 5C evidence for <strong>the</strong><br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic plants. Estuarine <str<strong>on</strong>g>and</str<strong>on</strong>g> Coastal Marine Science 8: 499--509.<br />

Gal<str<strong>on</strong>g>and</str<strong>on</strong>g>, P.E., Yrjaia, K., C<strong>on</strong>rad, R. 2010. Stable carb<strong>on</strong> isotope fracti<strong>on</strong>ati<strong>on</strong> during<br />

methanogenesis in three boreal peatl<str<strong>on</strong>g>and</str<strong>on</strong>g> ecosystems. Biogeosciences 7: 3893-3900.<br />

Gannes, L.Z., O'Brien, D. M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Martinez del Rio, C. 1997. Stable isotopes in animal ecology:<br />

Assumpti<strong>on</strong>s, caveats, <str<strong>on</strong>g>and</str<strong>on</strong>g> a call for more laboratory experiments. Ecology 78(4):1271-1276.<br />

118


Gaye-Siessegger, J., Focken, U., Abel, H. J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Becker, K. 2003. Feeding level <str<strong>on</strong>g>and</str<strong>on</strong>g> diet quality<br />

influence trophic shift <str<strong>on</strong>g>of</str<strong>on</strong>g> C <str<strong>on</strong>g>and</str<strong>on</strong>g> N isotopes in Nile tilapia (Oreochromis niloticus). Isotopes in<br />

Envir<strong>on</strong>mental <str<strong>on</strong>g>and</str<strong>on</strong>g> Health Studies 39(2):125-134.<br />

Gaye-Siessegger, J., Focken, U., Abel, H., Becker, K. 2004. Individual protein balance str<strong>on</strong>gly<br />

influences δ 15 N <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 13 C values in Nile tilapia, (Oreochromis niloticus). Naturwissenschaften –<br />

The Science <str<strong>on</strong>g>of</str<strong>on</strong>g> Nature 91:90-93.<br />

Gill, A.E. 1982. Atmosphere-ocean dynamics. Academic Press.<br />

Goevert, D. <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>rad, R. 2009. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Substrate C<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> Carb<strong>on</strong> Isotope<br />

Fracti<strong>on</strong>ati<strong>on</strong> during Acetoclastic Methanogenesis by Methanosarcina barkeri <str<strong>on</strong>g>and</str<strong>on</strong>g> M. acetivorans<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> in Rice Field Soil. Applied <str<strong>on</strong>g>and</str<strong>on</strong>g> Envir<strong>on</strong>mental Microbiology 75(9): 2605-2612.<br />

Gross, M.R. 1998. One species with two biologies: Atlantic Salm<strong>on</strong> (Salmo salar) in <strong>the</strong> wild<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> in aquaculture. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Aquatic Sciences 55: 131–144.<br />

Gu, B., C. L. Schelske, <str<strong>on</strong>g>and</str<strong>on</strong>g> M. V. Hoyer. 1997. Intra-populati<strong>on</strong> feeding diversity in blue tilapia:<br />

evidence from stable-isotope analyses. Ecology 78:2263–2266.<br />

Guelinckx, J., Dehairs, F., Ollevier, F. 2008. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> digesti<strong>on</strong> <strong>on</strong> <strong>the</strong> δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g> δ 15 N <str<strong>on</strong>g>of</str<strong>on</strong>g> fish-gut<br />

c<strong>on</strong>tents. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish Biology 72: 301-309.<br />

H<str<strong>on</strong>g>and</str<strong>on</strong>g>ley LL, Raven JA.1992.The use <str<strong>on</strong>g>of</str<strong>on</strong>g> natural abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen isotopes in plant<br />

physiology <str<strong>on</strong>g>and</str<strong>on</strong>g> ecology. Plant Cell Envir<strong>on</strong>ment 15:965–985.<br />

Hanss<strong>on</strong>,S., Hobbie, J.E., Elmgren, R., Larss<strong>on</strong>, U., Fry, B., Johanns<strong>on</strong>, S. 1997. The stable<br />

nitrogen isotope ratios as a marker <str<strong>on</strong>g>of</str<strong>on</strong>g> food-web interacti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> fish migrati<strong>on</strong>. Ecology 7:2249-<br />

2257.<br />

Hargrave, B.T., Holmer, M., Newcombe, C.P. 2008. Towards a classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

enrichment in marine sediments based <strong>on</strong> biogeochemical indicators. Marine Polluti<strong>on</strong> Bulletin<br />

56:810-824.<br />

Hawley, N. <str<strong>on</strong>g>and</str<strong>on</strong>g> R.W. Muzzi. 2003. Observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nepheloid layers made with an aut<strong>on</strong>omous<br />

vertical pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iler. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Great Lakes Research 29: 124-133.<br />

Herzka, S.Z. <str<strong>on</strong>g>and</str<strong>on</strong>g> Holt, G. J. 2000. Changes in isotopic compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> red drum (Sciaenops<br />

ocellatus) larvae in resp<strong>on</strong>se to dietary shifts: Potential applicati<strong>on</strong>s to settlement studies.<br />

Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Aquatic Sciences 57:137-147.<br />

Hesslein, R.H., Capel, M. J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Fox, D. E.1988. Sulfur isotopes in sulfate in <strong>the</strong> inputs <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

outputs <str<strong>on</strong>g>of</str<strong>on</strong>g> a Canadian Shield watershed. Biogeochem. 5:263-273.<br />

Hobs<strong>on</strong>, K. A.,Sease J.L. 1998. Stable isotope analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> tooth annuli reveal temporal dietary<br />

records: An example using Steller sea li<strong>on</strong>s. Marine Mammal Science 14:116-129.<br />

119


Hobs<strong>on</strong>, K.A., Clark, R.G. 1992. Assessing avian diets using stable isotopes. I: turnover <str<strong>on</strong>g>of</str<strong>on</strong>g> 13C<br />

in tissues. C<strong>on</strong>dor 194:181-188.<br />

Hodell, D. A.<str<strong>on</strong>g>and</str<strong>on</strong>g> Schelske, C. L. 1998. Producti<strong>on</strong>, sedimentati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> isotopic compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic matter in Lake Ontario. Limnology <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceanography 43: 200–214.<br />

Holmes, E., Lavik, G., Fischer, G., Segl, M., Ruhl<str<strong>on</strong>g>and</str<strong>on</strong>g>, G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Wefer, G. 2002. Seas<strong>on</strong>al<br />

variability <str<strong>on</strong>g>of</str<strong>on</strong>g> δ15N in sinking particles in <strong>the</strong> Benguela upwelling regi<strong>on</strong>. Deep-Sea Research<br />

Part I: Oceanographic Research Papers 49: 377-394.<br />

Holmer M.,1991. Imact <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture <strong>on</strong> surrounding sediment: generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic rich<br />

sediments. In: De Pauw, N., Joyce, J. (Eds). Aquaculture <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> Envir<strong>on</strong>ment. European<br />

Aquaculture Society Special Publicati<strong>on</strong> No.16. Gent. Belgium pg. 155-175<br />

Holmer, M., Argyrou, M., Dalsgaard, T., Danovaro, R., Diaz-Almela, E., Duarte, C.M.,<br />

Frederiksen, M., Grau, A., Karakassis, I., Marbà, N., Mirto, S., Pérez, M., Pusceddu, A.,<br />

Tsapakis, M. 2008. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> fish farm waste <strong>on</strong> posid<strong>on</strong>ia oceanica meadows: Syn<strong>the</strong>sis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>itoring <str<strong>on</strong>g>and</str<strong>on</strong>g> management tools. Marine Polluti<strong>on</strong> Bulletin 56:1618-1629.<br />

Hua, K., De Lange, C.F.M., Niimi, A.J., Cole, G.C., Moccia, R.D., Fan, M.Z., <str<strong>on</strong>g>and</str<strong>on</strong>g> Bureau, D.B.<br />

2008. A factorial model to predict phosphorous waste output <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow trout (Oncorynchus<br />

mykiss). Aquaculture Research 1-10.<br />

Huds<strong>on</strong> J.J. Taylor W. D., Schindler D.W.1999. Plankt<strong>on</strong>ic nutrient regenerati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> cycling<br />

efficiency in temperate lakes Nature 400: 659-661.<br />

Jana, B.B.197). Primary producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> bacterioplankt<strong>on</strong> in fish p<strong>on</strong>ds with m<strong>on</strong>o <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

polyculture. Hydrobiologia 62(1): 81-87.<br />

Jenkins, M. C. <str<strong>on</strong>g>and</str<strong>on</strong>g> Kemp, W. M.1984. The coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> denitrificati<strong>on</strong> in two<br />

estuarine sediments. Limnology <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceanography 29(3):609-619.<br />

Johannessen, P., Botnen, H., <str<strong>on</strong>g>and</str<strong>on</strong>g> Tvedten, O. 1994. Macro-benthos: before, during <str<strong>on</strong>g>and</str<strong>on</strong>g> after<br />

afish farm. Aquaculture <str<strong>on</strong>g>and</str<strong>on</strong>g> Fisheries Management 25:55–66.<br />

Johanss<strong>on</strong>, T., Hakans<strong>on</strong>, L., Borum, K., <str<strong>on</strong>g>and</str<strong>on</strong>g> Perss<strong>on</strong>, J. 1998. Direct flow <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

suspended matter from a fish farm to wild fish in Lake Bullaren, Sweeden. Aquaculture<br />

Engineering 17:111-137.<br />

Johnst<strong>on</strong>, T. A., Keir, M., Power, M. 2010. Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> Native <str<strong>on</strong>g>and</str<strong>on</strong>g> Naturalized Fish to<br />

Salm<strong>on</strong>id Cage Culture Farms in Nor<strong>the</strong>rn Lake Hur<strong>on</strong> Canada. Transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> American<br />

Fisheries Society 139: 660:670.<br />

Johnsen, R.I., Grahl-Nielsen, O., Lunestad, B.T.1993. Envir<strong>on</strong>mental distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

waste from a marine fish farm. Aquaculture 118: 229-244.<br />

120


J<strong>on</strong>es, A.B., O'D<strong>on</strong>ohue, M. J., Udy, J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Dennis<strong>on</strong>, W. C. 2001. Assessing ecological impacts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> shrimp <str<strong>on</strong>g>and</str<strong>on</strong>g> sewage effluent: Biological indicators with st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard water quality analyses.<br />

Estuarine, Coastal <str<strong>on</strong>g>and</str<strong>on</strong>g> Shelf Science 52: 91-109.<br />

Joye, S.B. <str<strong>on</strong>g>and</str<strong>on</strong>g> Hollibaugh, J.T. 1995. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Sulfide Inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nitrificati<strong>on</strong> <strong>on</strong> Nitrogen<br />

Regeneratri<strong>on</strong> in Sediments Science 270: 623:625<br />

Kanazawa, N. <str<strong>on</strong>g>and</str<strong>on</strong>g> Urushigawa, Y. 2007. Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen removal rate in aqueous phase<br />

based <strong>on</strong> δ 15 N in microorganisms in solid phase. Water Research 41: 3201-3208.<br />

Kelly, C.A., Chynoweth, D.P., 1981. The c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> input <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic matter to c<strong>on</strong>trolling rates <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment methanogenesis. Limnology <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceanography<br />

26: 891–897.<br />

Kelly, L.A. 1993. Release rates <str<strong>on</strong>g>and</str<strong>on</strong>g> biological availability <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus released from<br />

sediments receiving aquaculture wastes. Hydrobiologia 235: 569-572.<br />

Keough, J.R., Sierszen, M. E. <str<strong>on</strong>g>and</str<strong>on</strong>g> Hagley, C. A. 1996. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a Lake Superior coastal food<br />

web with stable isotope techniques. Limnology <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceanography 41(1): 136-146.<br />

Kendall,R.J.,Anders<strong>on</strong>,T.A.,Baker,R.J.,Bens,C.M.,Carr,J.A.,Chiodo,L.A.,Cobb,G.P.,<br />

Dickers<strong>on</strong>,R.L.,Dix<strong>on</strong>,K.R.,Frame,L.T.,Hooper,M.J.,Martin,C.E.,McMurry,S.T., Patino,<br />

R.,Smith,E.E.,Theodorakis,C.W. 2001. Ecotoxicology. In: Klaassen,C.D. (Ed.), Casarett<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Doull’sToxicology: <strong>the</strong> Basic Science <str<strong>on</strong>g>of</str<strong>on</strong>g> Pois<strong>on</strong>s. McGraw-Hill, NewYork, pp.1013–1045.<br />

Kidd, K.A., Bootsma, H.A., Hesslein, R.H., Muir, D.C.G., Hecky, R.E. 2001. Biomagnificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> DDT through <strong>the</strong> benthic <str<strong>on</strong>g>and</str<strong>on</strong>g> pelagic food webs <str<strong>on</strong>g>of</str<strong>on</strong>g> Lake Malawi, East Africa: importance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

trophic level <str<strong>on</strong>g>and</str<strong>on</strong>g> carb<strong>on</strong> source. Envir<strong>on</strong>mental Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology 35:14–20.<br />

Koike, I. <str<strong>on</strong>g>and</str<strong>on</strong>g> Hattori, A.1978. Simultaneous determinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrate reducti<strong>on</strong><br />

in coastal sediments by a 15N diluti<strong>on</strong> technique. Applied <str<strong>on</strong>g>and</str<strong>on</strong>g> Envir<strong>on</strong>mental Microbiologym35:<br />

853-857.<br />

Krzycki, J.A., Kenealy, W.R., DeNiro,M.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Zeikus, J.G. 1987. Stable carb<strong>on</strong> isotope<br />

fracti<strong>on</strong>ati<strong>on</strong> by methanosarcina barkeri during methanogenesis from acetate, methanol, or<br />

carb<strong>on</strong> dioxide-hydrogen. Applied <str<strong>on</strong>g>and</str<strong>on</strong>g> Envir<strong>on</strong>mental Microbiology 53(10): 2597-2599.<br />

Kullman, M.A., Podemski, C.L., Kidd, K.A. 2007. A sediment bioassay to assess <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aquaculture waste <strong>on</strong> growth, reproducti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> sphaerium simile (say) (bivalvia:<br />

Sphaeriidae). Aquaculture 266: 144-152.<br />

Kullman, M. A., Kidd, K. A. Podemski, C. L., Paters<strong>on</strong>, M. J., Blanchfield, P. J. 2009.<br />

Assimilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater salm<strong>on</strong>id aquaculture waste by native aquatic biota Canadian Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Aquatic Sciences 66 (11): 1965-1975.<br />

121


Kurle C.M, Worthy G. 2001. Stable isotope assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> temporal <str<strong>on</strong>g>and</str<strong>on</strong>g> geographic differences<br />

in feeding ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<strong>the</strong>rn fur seals (Callorhinus ursinus) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir prey. Oecologia 126:254–<br />

265.<br />

Lajtha, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Michener, R. H. 1994. Stable isotopes in ecology <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental science<br />

L<strong>on</strong>d<strong>on</strong>: Blackwell Scientific Publicati<strong>on</strong>s<br />

Lehmann, M.F., Reichert, P., Bernasc<strong>on</strong>i, S.M., Barbieri, A., McKenzie, J.A. 2003. Modelling<br />

nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> oxygen isotope fracti<strong>on</strong>ati<strong>on</strong> during denitrificati<strong>on</strong> in a lacustrine redox-transiti<strong>on</strong><br />

z<strong>on</strong>e. Geochimica et Cosmochimica Acta 67(14): 2529–2542.<br />

Lehmann, M.F., Sigman, D. M., Berels<strong>on</strong>,W. M. 2004. Coupling <strong>the</strong> 15 N <str<strong>on</strong>g>and</str<strong>on</strong>g> 18 O/ 16 O <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrate<br />

as a c<strong>on</strong>straint <strong>on</strong> benthic nitrogen cycling. Marine Chemistry 88:1-20.<br />

Leggett, M.F., Servos, M. R., Hesslein, R., Johannss<strong>on</strong>, O., Millard, E. S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Dix<strong>on</strong>, D. G.<br />

1999. Biogeochemical influences <strong>on</strong> <strong>the</strong> carb<strong>on</strong> isotope signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> Lake Ontario biota.<br />

Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Aquatic Sciences 56: 2211-2218.<br />

Lichtfouse, E. 2000. Compound-specific isotope analysis applicati<strong>on</strong> to archaeology, biomedical<br />

sciences, biosyn<strong>the</strong>sis, envir<strong>on</strong>ment, extraterrestrial chemistry, food science, forensic science,<br />

humic substances, microbiology, organic geochemistry, soil science <str<strong>on</strong>g>and</str<strong>on</strong>g> sport. Rapid<br />

Communicati<strong>on</strong>s in Mass Spectrometry 14: 1337-1344.<br />

Limburg, K.E. 1998. Anomalous migrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> anadromous herrings revealed with natural<br />

chemical tracers. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Aquatic Sciences 55: 431-437.<br />

Lorrain A, Paulet Y-M, Chauvaud L, Savoye N, D<strong>on</strong>val A, Saout C. 2002. Differential δ 13 C <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

δ 15 N signatures am<strong>on</strong>g scallop tissues: implicati<strong>on</strong>s for ecology <str<strong>on</strong>g>and</str<strong>on</strong>g> physiology. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Experimental Marine Biology <str<strong>on</strong>g>and</str<strong>on</strong>g> Ecology 275:47-61.<br />

Lumb, C.M. 1989. Self-polluti<strong>on</strong> by Scottish salm<strong>on</strong> farms Marine Polluti<strong>on</strong> Bulletin 20: 375-<br />

379.<br />

Lund, S.G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Tufts, B.L. 2003. The physiological effects <str<strong>on</strong>g>of</str<strong>on</strong>g> heat stress <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<br />

shock proteins in rainbow trout (Oncorhynchus mykiss) red blood cells. Fish Physiology <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Biochemistry 29: 1-12.<br />

Macko, S.A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Estep, M.L.F. 1984. Microbial alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stable nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> carb<strong>on</strong> isotopic<br />

compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter. <str<strong>on</strong>g>Organic</str<strong>on</strong>g> Geochemistry 6:787-790.<br />

Machás, R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Santos, R. 1999. Sources <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter in Ria Formosa revealed by stable<br />

isotope analysis. Acta Oecologica 20(4):463-469.<br />

122


MacGregor, B.J., Mooy, B. V., Baker, B.J., Mell<strong>on</strong>, M., Mois<str<strong>on</strong>g>and</str<strong>on</strong>g>er, P.H., Paerl, H.W., Zehr, J.,<br />

Holl<str<strong>on</strong>g>and</str<strong>on</strong>g>er, D., Stahi, D.A. 2001. Microbiological, molecular biological <str<strong>on</strong>g>and</str<strong>on</strong>g> stable isotopic<br />

evidence for nitrogen fixati<strong>on</strong> in <strong>the</strong> open waters <str<strong>on</strong>g>of</str<strong>on</strong>g> Lake Michigan. Envir<strong>on</strong>mental<br />

Microbiology 3:205-219.<br />

Mann, K H 1982. The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal waters a systems approach volume 8, Blackwell,<br />

Oxford<br />

Manicinelli R.L. <str<strong>on</strong>g>and</str<strong>on</strong>g> White, M.R. 2000. Inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> denitrificati<strong>on</strong> by ultraviolet radiati<strong>on</strong>.<br />

Advances in Space Research 26(12):2041-2046.<br />

Maren, V. <str<strong>on</strong>g>and</str<strong>on</strong>g> Struck, U.1997. Stable nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> carb<strong>on</strong> stable isotopes as indicator <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

eutrophicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Oder River (Baltic Sea). Marine Chemistry 59:35-49.<br />

Mariotti, A., Germ<strong>on</strong>, J., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., Tardieux, P. 1981.<br />

Experimental determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen kinetic isotope fracti<strong>on</strong>ati<strong>on</strong>: Some principles;<br />

illustrati<strong>on</strong> for <strong>the</strong> denitrificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrificati<strong>on</strong> processes. Plant Soil 62:413-430.<br />

Mariotti, A.1983. Atmospheric nitrogen is a reliable st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard for natural 15 N abundance<br />

measurements. Nature 303: 685-687.<br />

Mat<strong>the</strong>ws, K.R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Berg, N.H. 1997. Rainbow trout resp<strong>on</strong>ses to water temperature <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

dissolved oxygen stress in two sou<strong>the</strong>rn California stream pools. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish Biology 50:50-<br />

67.<br />

Matulla, C., Schmutz, S., Melcher, A., Gerersdorfer, T., Haas, P. 2007. Assessing <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

downscaled climate change simulati<strong>on</strong> <strong>on</strong> <strong>the</strong> fish fauna in an inner-alpine river. Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biometeorology 52:127-137.<br />

Mazumder, A., McQueen, D., Taylor, W., Lean, D. 1990. Pelagic food web interacti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

hypolimnetic oxygen depleti<strong>on</strong>: Results from experimental enclosures <str<strong>on</strong>g>and</str<strong>on</strong>g> lakes. Aquatic<br />

Science 52:144-155.<br />

Mazzola, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Sarà, G.2001. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fish farming organic waste <strong>on</strong> food availability for<br />

bivalve molluscs (Gaeta gulf, Central Tyrrhenian, MED): Stable carb<strong>on</strong> isotopic analysis.<br />

Aquaculture 192:361-379.<br />

McCarthy, I.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> Waldr<strong>on</strong>, S. 2000. Identifying migratory Salmo trutta using carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

nitrogen stable isotope ratios. Rapid Communicati<strong>on</strong>s in Mass Spectrometry 14:1325-1331.<br />

McGhie, T.K., Crawford, C.M., Mitchell, I.M., O'Brien, D. 2000. The degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish-cage<br />

waste in sediments during fallowing. Aquaculture 187:351-366.<br />

123


McClell<str<strong>on</strong>g>and</str<strong>on</strong>g>, J.W., Valiela, I., Michener, R.H. 1997. Nitrogen-stable isotope signatures in<br />

estuarine food webs: a record <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing urbanizati<strong>on</strong> in coastal watersheds. Limnology <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Oceanography 42: 930–937.<br />

McGoldrick, D.J., Bart<strong>on</strong>, D.R., Power, M., Scott R., W., Butler, B.J. 2008. Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bacteria–substrate stable isotope separati<strong>on</strong>: dependence <strong>on</strong> substrate availability <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

implicati<strong>on</strong>s for aquatic food web studies. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Aquatic Sciences<br />

65: 1983–1990.<br />

Meyers, P.A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Ishiwatar, R.1993. Lacustrine organic geochemistry—an overview <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter sources <str<strong>on</strong>g>and</str<strong>on</strong>g> diagenesis in lake sediments. <str<strong>on</strong>g>Organic</str<strong>on</strong>g> Geochemistry 20<br />

(7): 887-900.<br />

Milne, J. E.2012. M<strong>on</strong>itoring <str<strong>on</strong>g>and</str<strong>on</strong>g> modeling total phosphorous c<strong>on</strong>tributi<strong>on</strong>s to a fresh water lake<br />

with cage aquaculture. M.Sc. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph. Guelph, Ontario<br />

15<br />

Minagawa, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Wada, E. 1984. Stepwise enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> N al<strong>on</strong>g food chains: Fur<strong>the</strong>r<br />

15<br />

evidence <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> relati<strong>on</strong> between δ N <str<strong>on</strong>g>and</str<strong>on</strong>g> animal age. Geochimica et Cosmochimica Acta 48:<br />

1135-1140.<br />

Moccia, R.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bevan, D. J. 2000. Aquaculture legislati<strong>on</strong> in Ontario. AGDEX 485/872, 1-8.<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph<br />

Moccia, R. D. <str<strong>on</strong>g>and</str<strong>on</strong>g> D. J. Bevan 2007. Aquastats 2005 – Ontario Aquacultural Producti<strong>on</strong> in<br />

2005.University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph, Aquaculture Extensi<strong>on</strong> Centre Factsheet, No. 07-001<br />

Moccia, R.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> Beavan, D.J. 2011. Maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> Ontario’s Aquaculture Statistics Program:<br />

AQUASTATS. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph, Aquaculture Centre 15 p.<br />

Moccia,R.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> Beavan, D.J. 2003. Aquastats 2003. Ontario aquaculture producti<strong>on</strong> in 2003.<br />

Aquastats 04-002. Ontario Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquaculture <str<strong>on</strong>g>and</str<strong>on</strong>g> Food. Guelph, Ont. 2007 ORDER NO.<br />

07-002<br />

Moccia, R.D., Naylor, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Reid, G.1997. An overview <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture in Ontario. 96-003, 1-4.<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph<br />

Moccia, R.D., Reid G. 2007. Aquaculture sustainability: Developing c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> a decisi<strong>on</strong><br />

support tool for licensing freshwater cage aquaculture in Ontario. AAC Spec. Publ. No. 12<br />

Mol<strong>on</strong>ey, B. 2001. Envir<strong>on</strong>mental requirements <str<strong>on</strong>g>and</str<strong>on</strong>g> tolerances <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow trout (Oncorhynchus<br />

mykiss) <str<strong>on</strong>g>and</str<strong>on</strong>g> brown trout (Salmo trutta) with special reference to Western Australia: A review.<br />

Fisheries Research Report. 130.<br />

124


Morrissey, M.T., J.W. Park <str<strong>on</strong>g>and</str<strong>on</strong>g> L. Huang. 2000. Surimi processing waste: Its c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

utilizati<strong>on</strong>. In:Park, J.W. (Ed.),Surimi <str<strong>on</strong>g>and</str<strong>on</strong>g> SurimiSea Food, pp. 127–165. Marcel Dekker Inc.<br />

Munro, J.R., M.G. Foster, T. Paws<strong>on</strong>, A. Stelzig, T. Tseng, <str<strong>on</strong>g>and</str<strong>on</strong>g> L. King.1985. St. Clair River<br />

point source survey, 1979–1980. OntarioMinistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Envir<strong>on</strong>ment/Envir<strong>on</strong>ment Canada,<br />

Tor<strong>on</strong>to/Ottawa.<br />

Nakatsuka, T., H<str<strong>on</strong>g>and</str<strong>on</strong>g>a, N., Wada, E. <str<strong>on</strong>g>and</str<strong>on</strong>g> W<strong>on</strong>g, C. S. 1992. The dynamic changes <str<strong>on</strong>g>of</str<strong>on</strong>g> stable<br />

isotopic ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen in suspended <str<strong>on</strong>g>and</str<strong>on</strong>g> sedimented particulate organic matter<br />

during a phytoplankt<strong>on</strong> bloom. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Marine Research 50: 267-296.<br />

Naylor, S.J., Moccia, R.D., Durant, G.M. 1999. The chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> settleable solid fish<br />

waste (manure) from commercial rainbow trout farms in Ontario, Canada. North American<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquaculture 61: 21-26.<br />

Nix<strong>on</strong>, S.W. 1995. Coastal marine eutrophicati<strong>on</strong>: a definiti<strong>on</strong>, social causes, <str<strong>on</strong>g>and</str<strong>on</strong>g> future<br />

c<strong>on</strong>cerns. Ophelia 41:199–219.<br />

Nor<strong>the</strong>rn Ontario Aquaculture Associati<strong>on</strong> (NOAA). 2007. Ec<strong>on</strong>omic Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Cage<br />

Aquaculture Industry in Ontario. http://<strong>on</strong>tarioaquaculture.com/wpc<strong>on</strong>tent/uploads/2012/05/Ec<strong>on</strong>omic-Impact-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<strong>the</strong>-Cage-Culture-Industry-in-Ontario-March-<br />

2007.pdf<br />

Ohizumi, T., Fukuzaki, N., Kusakabe, M. 1997. Sulfur isotopic view <strong>on</strong> <strong>the</strong> sources <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur in<br />

atmospheric fallout al<strong>on</strong>g <strong>the</strong> coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Sea <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan. Atmospheric Envir<strong>on</strong>ment 31:1339–<br />

1348.<br />

Ostrom, N.E., Macko, S.A., Deibel, D., Thomps<strong>on</strong>, R.J. 1997. Seas<strong>on</strong>al variati<strong>on</strong> in <strong>the</strong> stable<br />

carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen isotope biogeochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> a coastal cold ocean envir<strong>on</strong>ment. Geochimica<br />

et Cosmochimica Acta 61: 2929-2942.<br />

Papatryph<strong>on</strong>, E., Petit, J., Hayo, V., Kaushik, S.J., Claver, K.2005. Nutrientbalance modelling as<br />

a tool for envir<strong>on</strong>mental management in aquaculture: <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> trout farming in France. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Management 35(2): 161–174.<br />

Pears<strong>on</strong>, T.H., Rosenberg, R. 1978. Macrobenthic successi<strong>on</strong> in relati<strong>on</strong> to organic enrichment<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> polluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> marine envir<strong>on</strong>ment. Oceanography <str<strong>on</strong>g>and</str<strong>on</strong>g> marine biology : an annual review<br />

16: 229–311.<br />

Peters, K.E., Sweeney, R.E., Kaplan, I.R. 1978. Correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen stable isotope<br />

ratios in sedimentary organic matter. Limnology <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceanography 23 (4): 598-604<br />

Peters<strong>on</strong>, B.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Fry, B. 1987. Stable isotopes in ecosystem studies. Ecology, Evoluti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Systematics 18: 293-320.<br />

125


Peters<strong>on</strong>, B.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Howarth, R. W. 1987. Sulfur, carb<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen isotopes used to trace<br />

organic matter flow in <strong>the</strong> salt-marsh estuaries <str<strong>on</strong>g>of</str<strong>on</strong>g> Sapelo Isl<str<strong>on</strong>g>and</str<strong>on</strong>g>, Georgia. Limnology <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Oceanography 32(6): 1195-1213.<br />

Piola RF, Moore SK, Su<strong>the</strong>rs IM . 2006. Carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen stable isotope analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> three<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> oyster tissue in an impacted estuary. Estuarine, Coastal <str<strong>on</strong>g>and</str<strong>on</strong>g> Shelf Science 66: 255−266.<br />

Rao, Y.R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Murthy, C.R. 2001. Coastal Boundary Layer Characteristics during Summer<br />

Stratificati<strong>on</strong> in Lake Ontario. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Oceanography 31: 1088–1104.<br />

Reid, S.D., Dockray, J.J., Lint<strong>on</strong>, T.K., McD<strong>on</strong>ald, D.G., Wood, C.M. 1995. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

summer temperature regime representative <str<strong>on</strong>g>of</str<strong>on</strong>g> a global warming scenario <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> protein<br />

syn<strong>the</strong>sis in hardwater- <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>twater-acclimated juvenile rainbow trout (Oncorhynchus mykiss).<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermal Biology 20: 231-244.<br />

Reid, G. K., McMillan, I., Moccia, R.D. 2006. Near-field loading dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> total phosphorous<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> short term water quality variati<strong>on</strong>s at a rainbow trout cage farm in Lake Hur<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Envir<strong>on</strong>mental M<strong>on</strong>itoring 8: 947-954.<br />

Reid, G.K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Moccia, R.D.2006. Diel fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soluble phosphorus in <strong>the</strong> tank water <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rainbow trout, Oncorhynchus mykiss (walbaum), <str<strong>on</strong>g>and</str<strong>on</strong>g> relati<strong>on</strong>ships with feed inputs <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

dissolved oxygen. Aquaculture Research 37:1606-1610.<br />

Reid, G. K, Litikus, M., Robins<strong>on</strong>, S. M. C., Chopin, T.R., Blair, T., L<str<strong>on</strong>g>and</str<strong>on</strong>g>er, T., Mullen, J., Page,<br />

F., Moccia, R.D. 2009. A review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> biophysical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong>id faeces: implicati<strong>on</strong>s<br />

for aquaculture waste dispersal models <str<strong>on</strong>g>and</str<strong>on</strong>g> integrated multi-trophic aquaculture. Aquaculture<br />

Reasearch 40: 257-273.<br />

Reinhardt, M., B. Müller, R. Gächter <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Wehrli. 2006. Nitrogen removal in a small<br />

c<strong>on</strong>structed wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>: an isotope mass balance approach. Envir<strong>on</strong>mental Science & Technology<br />

40:3313–3319.<br />

Rogers, E. M. 2003.Diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> innovati<strong>on</strong>s (5th editi<strong>on</strong>) Free Press: New York<br />

Ruokolahti, C. 1988. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> fish farming <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> chlorophyll a c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> Cladophora.<br />

Marine Polluti<strong>on</strong> Bulletin 19:166–169.<br />

Saino, T. <str<strong>on</strong>g>and</str<strong>on</strong>g> Hattori, A. 1987. Geographical variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> water column distrubuti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

suspended particulate organic nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> its 15N natural abundance in <strong>the</strong> pacific <str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

marginal seas. Deep Sea Research Part A. Oceanographic Research Papers 34: 807-827.<br />

Sakai, Y.S., Murase, J., Sugimoto, A., Okubo, K., <str<strong>on</strong>g>and</str<strong>on</strong>g> Nakayama, E. 2002. Resuspensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bottom sediment by an internal wave in Lake Biwa. Lakes <str<strong>on</strong>g>and</str<strong>on</strong>g> Reservoirs: Research <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Management 7: 339-344.<br />

126


Salazar-Hermoso, F. 2007. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stable isotopes for <strong>the</strong> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaculture<br />

waste in aquatic envir<strong>on</strong>ment. M.Sc. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph. Guelph, Ontario, Canada<br />

Satterfield IV, F.R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Finney, B. P. 2002. Stable isotope analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific salm<strong>on</strong>: Insight<br />

into trophic status <str<strong>on</strong>g>and</str<strong>on</strong>g> oceanographic c<strong>on</strong>diti<strong>on</strong>s over <strong>the</strong> last 30 years. Progress in Oceanography<br />

53: 231-246.<br />

Savage, C., <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Elmgren. 2004. Macroalgal (Fucus vesiculosus) δ 15 N values trace decrease in<br />

sewage influence. Ecological Applicati<strong>on</strong>s 14: 517–526.<br />

Schisler, G.J., Bergersen, E.P. <str<strong>on</strong>g>and</str<strong>on</strong>g> Walker P.G. 2000. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple stressors <strong>on</strong> morbidity<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> fingerling rainbow trout infected with Myxobolus cerbralis. Transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

American Fisheries Society 129: 859-865.<br />

Sheng, J., D.G. Wright, R.J. Greatbatch <str<strong>on</strong>g>and</str<strong>on</strong>g> D.E. Dietrich. 1998. CANDIE: A new versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

DieCAST ocean circulati<strong>on</strong> model. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Atmospheric <str<strong>on</strong>g>and</str<strong>on</strong>g> Oceanic Technology 15: 1414-<br />

1432.<br />

Sheng, J., <str<strong>on</strong>g>and</str<strong>on</strong>g> Rao, Y.R. 2006. Circulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>rmal structure in Lake Hur<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Georgian<br />

Bay: Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a nested-grid hydrodynamic model. C<strong>on</strong>tinental Shelf Research 26: 1496-<br />

1518.<br />

Sierszen, M.E., Morrice, J. A., M<str<strong>on</strong>g>of</str<strong>on</strong>g>fett, M. F. <str<strong>on</strong>g>and</str<strong>on</strong>g> West, C. W. 2004. Benthic versus plankt<strong>on</strong>ic<br />

foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> three Lake Superior coastal wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> food webs. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Great Lakes Research<br />

30(1): 31-43.<br />

Slater, G. F., Dempster, H. S., Sherwood Lollar, B. <str<strong>on</strong>g>and</str<strong>on</strong>g> Ahad, J. 1999. Headspace analysis: A<br />

new applicati<strong>on</strong> for isotopic characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved organic c<strong>on</strong>taminants. Envir<strong>on</strong>mental<br />

Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology 33: 190–194.<br />

Smith, J.N., Yeats, P.A., Milligan, T.G. 2005. Sediment geochr<strong>on</strong>ologies for fish farm<br />

c<strong>on</strong>taminants in Lime Kiln Bay, Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundy. In: Hargrave, Barry (Ed.), Envir<strong>on</strong>mental Effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Marine Finfish Aquaculture, The H<str<strong>on</strong>g>and</str<strong>on</strong>g>book <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Chemistry, 5 M. Springer,<br />

pp.221–236<br />

Statistics Canada 2007. Aquaculture statistics. Catalogue no. 23-222-X12<br />

http://www5.statcan.gc.ca/bsolc/olc-cel/olc-celcatno=23-222-X&CHROPG=1&lang=eng<br />

Statistics Canada 2011. Aquacuture statistics. Catalogue no. 23.222-x<br />

http://www.statcan.gc.ca/pub/23-222-x/23-222-x2011000-eng.pdf<br />

Stewart, N.T., Boardman, G.D., Helfrich, L.A. 2006. Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient leaching rates<br />

from settled rainbow trout (<strong>on</strong>corhynchus mykiss) sludge. Aquacult. Eng. 35, 191-198.<br />

127


Strain, P.M., D.J. Wildish, <str<strong>on</strong>g>and</str<strong>on</strong>g> P.A. Yeats. 1995. The Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nutrient Loading <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Oxygen Dem<str<strong>on</strong>g>and</str<strong>on</strong>g> to <strong>the</strong> Management <str<strong>on</strong>g>of</str<strong>on</strong>g> a Marine Tidal Inlet. Marine Polluti<strong>on</strong> Bulletin 30(4) 253-<br />

261.<br />

Strain, P.M. <str<strong>on</strong>g>and</str<strong>on</strong>g> P.A. Yeats. 1999. The relti<strong>on</strong>ships between chemical measures <str<strong>on</strong>g>and</str<strong>on</strong>g> potential<br />

predictors <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eutrophicati<strong>on</strong> status <str<strong>on</strong>g>of</str<strong>on</strong>g> inlets. Marine Polluti<strong>on</strong> Bulletin 38: 1163-1170.<br />

Thomps<strong>on</strong>, P.M., Sultana, P. <str<strong>on</strong>g>and</str<strong>on</strong>g> Khan, A.K.M. 2005. Aquaculture extensi<strong>on</strong> impacts in<br />

Bangladesh : A case study from Kapasia, Gazipur. World fish centre technical reports. pp. 1-5.<br />

Trought<strong>on</strong> JH, Card KA, Hendy CH.1974. Photosyn<strong>the</strong>tic path-ways <str<strong>on</strong>g>and</str<strong>on</strong>g> carb<strong>on</strong> isotope<br />

discriminati<strong>on</strong> by plants. In: Annual Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Biology, Carnegie<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> 73:768–779.<br />

The State <str<strong>on</strong>g>of</str<strong>on</strong>g> Word Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Aquaculture SOFIA 2012. Food <str<strong>on</strong>g>and</str<strong>on</strong>g> Agricultural Organizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> United Nati<strong>on</strong>s http://www.fao.org/docrep/016/i2727e/i2727e.pdf<br />

The State <str<strong>on</strong>g>of</str<strong>on</strong>g> World Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> Aquacuture SOFIA 2008. Food <str<strong>on</strong>g>and</str<strong>on</strong>g> Agricultural Organizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> United Nati<strong>on</strong>s http://www.fao.org/docrep/011/i0250e/i0250e00.htm<br />

Thornt<strong>on</strong>, S.F. <str<strong>on</strong>g>and</str<strong>on</strong>g> McManus, J. 1994. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen stable isotope<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> C/N ratios as source indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter provenance in estuarine systems: Evidence<br />

from <strong>the</strong> Tay estuary, Scotl<str<strong>on</strong>g>and</str<strong>on</strong>g>. Estuarine, Coastal <str<strong>on</strong>g>and</str<strong>on</strong>g> Shelf Science 38: 219-233.<br />

Thorpe, J.E., Cho, Y., 1995. Minimising waste through bioenergetically <str<strong>on</strong>g>and</str<strong>on</strong>g> behaviourally based<br />

feeding strategies. Water Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology 31: 29–4.<br />

Tyrell, T. 1999. The relative influences <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> phosphorus <strong>on</strong> oceanic primary<br />

producti<strong>on</strong>. Nature 400:525–53.<br />

Viant, M.R., Werner, I., Rosenblum, E.S., Gantner, A.S., Tjeerdema, R.S., Johns<strong>on</strong>, M.L. 2003.<br />

Correlati<strong>on</strong> between heat-shock protein inducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reduced metabolic c<strong>on</strong>diti<strong>on</strong> in juvenile<br />

steelhead trout (<strong>on</strong>corhynchus mykiss) chr<strong>on</strong>ically exposed to elevated temperature. Fish<br />

Physiology <str<strong>on</strong>g>and</str<strong>on</strong>g> Biochemistry 29: 159-171.<br />

Wada, E. <str<strong>on</strong>g>and</str<strong>on</strong>g> Hattori, A. (1976) Natural abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 N in particulate organic matter in <strong>the</strong><br />

North Pacific Ocean. Geochimica et Cosmochimica Acta 40: 249-251.<br />

Wells M.G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Parker, S. 2010. The <strong>the</strong>rmal variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> waters <str<strong>on</strong>g>of</str<strong>on</strong>g> Fathom Five Nati<strong>on</strong>al<br />

Marine Park, Lake Hur<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Great Lakes Research 36: 570-576.<br />

doi:10.1016/j.jglr.2010.04.009<br />

Weiler, R. 1988. Chemical limnology <str<strong>on</strong>g>of</str<strong>on</strong>g> Georgian Bay <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> North Channel between 1974 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

1980. Hydrobiologia 163:77-83.<br />

128


Werner, I., Smith, T.B., Felciano, J., <str<strong>on</strong>g>and</str<strong>on</strong>g> Johns<strong>on</strong>, M.L. 2005. Heat shock proteins in juvenile<br />

steelhead reflect <strong>the</strong>rmal c<strong>on</strong>diti<strong>on</strong>s in <strong>the</strong> Navarro river watershed, California. Transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> American Fisheries Society 134: 399-410.<br />

West<strong>on</strong>, D.P., M.J. Phillips, <str<strong>on</strong>g>and</str<strong>on</strong>g> L.A. Kelly. 1996. Envir<strong>on</strong>mental impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> salm<strong>on</strong>id culture, p.<br />

919–967. In W. Pennell <str<strong>on</strong>g>and</str<strong>on</strong>g> B.A. Bart<strong>on</strong> [eds.]. Principles <str<strong>on</strong>g>of</str<strong>on</strong>g> Salm<strong>on</strong>id Culture. Developments<br />

in Aquaculture <str<strong>on</strong>g>and</str<strong>on</strong>g> Fisheries Science, vol. 29. Amsterdam, Elsevier, 1039 p.<br />

Wetzel, Robert G. 1975. Limnology. Philadelphia: Saunders College Publishing<br />

Wildish, D.J., M. Dowd, T.F. Su<strong>the</strong>rl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> C.D. Levings. 2004. Near-field organic enrichment<br />

from marine finfish aquaculture. In: A Scientific Review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Potential Envir<strong>on</strong>mental Effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Aquaculture in Aquatic Ecosystems. Vol. III. Canadian Technical Report <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Aquatic Sciences 2450: 3-10<br />

Whitcar, M.J., Faber, E., Schoell, M.1986. Biogenic methane formati<strong>on</strong> in marine <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

freshwater envir<strong>on</strong>ments: CO 2 reducti<strong>on</strong> vs. acetate fermentati<strong>on</strong>--Isotope evidence. Geochimica<br />

et Cosmochimica Acta 50 (5): 693-709.<br />

Winfree, R.A., Kindshi, G.A.,Shaw, H.T.1998) Elevated water temperature, crowding, <str<strong>on</strong>g>and</str<strong>on</strong>g> food<br />

deprivati<strong>on</strong> accelerate fin erosi<strong>on</strong> in juvenile steelhead. The Progressive Fish-Culturist 60: 192-<br />

199.<br />

Yamada, Y., Yokoyama, H., Ishihi, Y. <str<strong>on</strong>g>and</str<strong>on</strong>g> Azeta, M. 2003. Historical feeding analysis in fish<br />

farming based <strong>on</strong> carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen stable isotope ratio in sediment. Fisheries Science 69: 213-<br />

215.<br />

Yokoyama, H., Ishihi, Y., 2007. Variati<strong>on</strong> in food sources <str<strong>on</strong>g>of</str<strong>on</strong>g> macrobenthos al<strong>on</strong>g a l<str<strong>on</strong>g>and</str<strong>on</strong>g>–sea<br />

transect: a stable isotope study. Marine Ecology Progress Series 346:127–14.<br />

Yoshii, K., Melnik, N. G., Timoshkin, O. A., B<strong>on</strong>darenko, N. A., Anoshko, P. N., Yoshioka, T.<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Wada, E. 1999. Stable isotope analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pelagic food web in Lake Baikal. Limnology<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Oceanography 44(3): 502-511.<br />

Yoshinari, T.<str<strong>on</strong>g>and</str<strong>on</strong>g> Wahen, M.1985. Oxygen isotope ratios in N2O from nitrificati<strong>on</strong> at a<br />

wastewater treatment facility. Nature 317: 349-350.<br />

129


APPENDIX I<br />

Wire frame charts from period <str<strong>on</strong>g>of</str<strong>on</strong>g> July 30 to August 27 th for all <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 sites tested<br />

Site 1<br />

Figure 25. Wireframe plot <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for Site 1 July 30 to August 13, 2007<br />

130


Figure 26. Wireframe plot <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for Site 1 from August 13 to August 27, 2007<br />

131


Figure 27. Wireframe plot <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for Site 1 August 27 to September 10, 2007<br />

132


Site 2<br />

Figure 28. Wire frame chart for Site 2 July 30 to August 13, 2007<br />

133


Figure 29. Wire frame chart for Site 2 August 13 to August 27, 2007<br />

134


Figure 30. Wire frame chart for Site 2 August 27 to September 10, 2007<br />

135


Site 3<br />

Figure 31. Wire frame chart for site 3 July 30 to August 13, 2007<br />

136


Figure 32. Wire frame chart for site 3 August 13 to August 27, 2007<br />

137


Figure 33. Wire frame chart for site 3 August 27 to Sept 10, 2007<br />

138


Site 4<br />

Figure 34. Wire frame plot for site 4 July 30 to August 13, 2007<br />

139


Figure 35. Wire frame plot for site 4 from August 13 to August 27, 2007<br />

140


Figure 36. Wire frame plot for site 4 from August 27 to September 10, 2007<br />

141


Site 5<br />

Figure 37. Wire frame chart for site 5 July 30 to August 13, 2007<br />

142


Figure 38. Wire frame plot for site 5 from August 13 to August 27, 2007<br />

143


Figure 39. Wire frame chart for site 5 from August 27 to September 10, 2010.<br />

Site 6<br />

144


Figure 40. Wire frame diagram for site 6 from July 30 to August 13, 2007<br />

145


Figure 41. Wire frame diagram for site 6 from August 13 to August 27, 2007<br />

146


Figure 42. Wire frame diagram for site 6 from August 27 to September 10, 2070<br />

147


Site 7<br />

Figure 43. Wire frame diagram for site 7 from July 30 to August 13, 2007<br />

148


Figure 44. Wire frame diagram for site 7 from August 13 to August 27, 2007<br />

149


Figure 45. Wire frame diagram for site 7 from August 27 to September 10, 2070<br />

150


Site 8<br />

Figure 46. Wire frame chart diagram for site 8 from July 30 to August 13, 2007<br />

151


Figure 47. Wire frame diagram for site 8 from August 13 to August 27, 2007<br />

152


Figure 48. Wire frame diagram for site 8 from August 27 to September 10, 2007<br />

153


APPENDIX II<br />

Spectral density plots<br />

154


155


156


157


158


159


160


161


Spectral Density Estimate by Period( 0 :72) or AQSH Depth 10 53<br />

_,.,<br />

-<br />

"<br />

l<br />

"'<br />

"'<br />

10 20 30 40 50 60 70<br />

Period<br />

162


163


164


165


166


Spectral Density Estimate by Priod( o :72 ) for BUZW Depth 4.5 53<br />

0 10 20 30 40 50 60 70<br />

Period<br />

Spectral Density Estimat by Period( o :72) f or BUZW Depth 9 53<br />

------------ ---- -<br />

_.r--<br />

u 10 40 ou 00 / U<br />

Period<br />

167


168


Spectral Density Estimate by Period( 0 :72) f or CWEI Depth 0.5 53<br />

•<br />

i<br />

0<br />

0<br />

10 20 30 4 0 50 60 70<br />

Period<br />

Spectral Den sity Estimate by Period( o :72 ) f or CW EI Depth 4.5 SJ<br />

10 20 30 40 50 60 70<br />

Period<br />

169


170


Spectral Density Estimate by Period( 0 :72) for CW EI Depth 15 53<br />

,'l<br />

l<br />

;l<br />

1 D 20 30 40 50 60 70<br />

Per od<br />

Spectral Density Estimate by Period( 0 :72 ) for CWEI Depth 18 53<br />

1 D 20 30 40 50 60 70<br />

Per od<br />

171


172


173


174


175


176


177


178


179


180


181


182


183


184


185


186


187


188

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!